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It has been suggested that the existence of a non-Gaussian fixed point in general relativity might cure
the ultraviolet problems of this theory. Such a fixed point is connected to an effective running of the
gravitational coupling. We calculate the effect of the running gravitational coupling on the black hole
production cross section in models with large extra dimensions.
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1. Introduction

The overwhelming success of the Standard Model of particle
physics in providing a consistent description of strong and elec-
troweak interactions encourages further steps towards the unifica-
tion of all forces. A next step could be the unified description of
the Standard Model and the general relativity, which can be de-
rived from the Einstein–Hilbert action. In order to unify the two
theories one needs to solve two major problems.

One problem is encountered, when the assumption is made that
general relativity and the Standard Model have their origins in a
single unified field theory X with a single unified mass scale M X .
It is not understood why the mass scales of general relativity (mPl)
and of the Standard Model (mH ) are so different in nature. In fact,
a simple estimate shows that

mH

mPl
∼ 10−17. (1)

This difference is known as the hierarchy problem. Since the grav-
itational coupling is G N ∼ 1/M2

Pl, this leads to the question: “Why
is gravity so weak as compared to the other forces in nature?”. The
hierarchy problem, which is shown in Eq. (1), can be resolved by
either a Higgs mass of the order of 1019 GeV rather than the ex-
pected few hundred GeV [1] or by lowering the Planck mass down
to the TeV region. However, a higher Higgs mass would aggravate
the hierarchies between mH and the light fermions. This attempt
would then create a new hierarchy by eliminating the other. Low-
ering the Planck scale, however, would be much more desirable.
In the context of extra dimensions there exist scenarios that give
rise to a lower Planck scale and explain the difference in Eq. (1).
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Although, an explanation for the mass hierarchy does not imply
that the unified theory X has been found, it might give a useful
hint on how to proceed. In Refs. [2–4] Arkani-Hamed, Dimopoulos,
and Dvali do this by assuming that the additional spatial dimen-
sions are compactified on a small radius R and further demanding
that all known particles live on a (3+1)-dimensional sub-manifold
(3-brane). They find that the fundamental mass M f and the Planck
mass mPl are related by

m2
Pl = Md+2

f Rd. (2)

Within this approach it is possible to have a fundamental gravita-
tional scale of M f ∼ 1 TeV. The huge hierarchy between mH and
mPl would then come as a result of our ignorance regarding extra
spatial dimensions.

Another problem is the bad ultraviolet behavior of gravity. The
standard approach to the quantization of general relativity with the
metric gMN (x) includes perturbations hMN (x) (gravitons) around
the flat Minkowski metric ηMN as the local quantum degrees of
freedom [5]

gMN (x) = ηMN + hMN (x). (3)

The standard loop expansion in the gravitational coupling, fails
because every new order in the perturbative expansion brings
new ultraviolet (UV) divergent contributions to any physical pro-
cess. Since the Einstein–Hilbert action contains operators of mass
dimension higher than four, those divergences cannot be cured
by the standard renormalization procedure used in the Standard
Model. A solution to this problem would be found if one could
show that the poor UV behavior is not present in the full theory
but only comes about due to the expansion in the gravitational
coupling. However, the full quantum gravitational action might
contain terms of higher order in Rμν and R [6]. Those correc-
tions can become dominant at very high energy scales and spoil
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the UV behavior of the theory, even if the non-Gaussian fixed
point exists for the energy dependent lowest order gravitational
coupling. The hope in applying the renormalization group for the
incomplete and truncated Einstein–Hilbert action is, that it makes
the right physical predictions anyhow. Such renormalization group
(RG) techniques have been successfully used for a number of dif-
ferent problems [7–12].

A combination of these two approaches would solve both, the
hierarchy problem and the UV problem. Since the existence of a
non-Gaussian fixed point in higher-dimensional gravity was shown
in [13,14], an implementation of the running coupling into theo-
ries with large extra dimensions [15,16] was possible. Moreover, RG
effects on graviton production, graviton exchange, and Drell–Yan
processes in the context of extra dimensions have been considered
in [17–19]. In this Letter we study how RG affects the possible pro-
duction of microscopical black holes (BH), which is probably the
most prominent collider signal for large extra dimensions.

2. Black hole production due to large extra dimensions

A complete understanding of all BH properties is only possi-
ble in a unified theory of quantum-gravity. In the framework of
large extra dimensions the metric of a spherically symmetric neu-
tral black hole with mass M is given by

ds2 = −
(

1 − 16π M

(d + 2)Ad+2Md+2
f rd+1

)
dt2

+ 1

1 − 16π M
(d+2)Ad+2 Md+2

f rd+1

dr2 + r2 dΩ2
d+2, (4)

where Ad+2 is the area of the (d + 2)-dimensional sphere

Ad+2 = 2π
3+d

2

Γ ( 3+d
2 )

. (5)

Due to the low fundamental scale M f ∼ TeV and the hoop conjec-
ture [20], it might be possible to produce such objects with mass
of approximately 1 TeV in future colliders [21–24]. This can only
be the case when the invariant scattering energy

√
s reaches the

relevant energy scale M f . The higher-dimensional Schwarzschild
radius [23,25] of these black holes is given by

Rd+1
H = 16π(2π)d

(d + 2)Ad+2

(
1

M f

)d+1 M

M f
. (6)

This would open up a unique possibility of studying quantum grav-
ity in the laboratory. A semi-classical approximation for the BH
production cross section is given by

σ(M) ≈ π R2
Hξ(

√
s − M f ), (7)

where the function ξ ensures that black holes are only produced
above the M f threshold. The function ξ is one for

√
s � M f and

zero for
√

s ≈ M f . In many simulations ξ is replaced by a theta
function. A threshold condition is necessary because a black hole
with M < M f would not be well defined, as it would have for ex-
ample a temperature T > M . An other argument for the threshold
is that the Compton wavelength of the colliding particle of energy√

s/2 has to lie within the Schwarzschild radius for the black hole
with the collision energy

√
s. Such a threshold will have crucial

significance in the RG approach to BHs. The validity of this approx-
imation has been debated in [26–36]. Still, improved calculations
including the diffuseness of the scattering particles (as opposed to
point particles) and the angular momentum of the collision (as op-
posed to head on collisions) as well as string inspired arguments
only lead to modifications of the order of one [37–40]. However,
there are arguments that the formation of an event horizon can
never be observed [41,42].
3. Renormalization group in extra dimensions

Non-perturbative renormalization is performed in Euclidian
spacetime and has been successfully applied to a variety of field
theories such as quantum chromodynamics [43] and gravity [8,44].
In the case of gravity, it offers a possible solution for the prob-
lem of non-renormalizable UV divergences in the perturbative
approach. This solution appears due to the possible existence of
a Gaussian fixed point in the UV regime and a non-Gaussian fixed
point in the infrared regime.

The main idea in this approach is that it is possible to introduce
an infrared cutoff operator in the theory, which leaves the effec-
tive Lagrangian invariant under general diffeomorphism transfor-
mations. After a gauge fixing it was possible to derive an exact evo-
lution equation for the effective action [7]. Recently this method
has been generalized to more than three spatial dimensions [13,14]
and applied to models with large extra dimensions [17–19]. Both
approaches show that cross sections in extra-dimensional theories,
which originally had a non-unitary behavior for

√
s � M f [15,16],

are now well defined in this high energy limit.
In [12,17] the running gravitational mass scale M̃ f (

√
s ) is

obtained from the non-perturbative renormalization group equa-
tion. Like the RG equations in perturbative quantum field the-
ory this equation has an anomalous dimension η. After assuming
an Einstein–Hilbert truncation function Q (

√
s ) which suppresses

higher Ricci-curvature terms in the full gravitational action one
finds the running gravitational mass scale

M̃ f (
√

s ) = M f

(
1 +

(
s

t2M2
f

) d+2
2

) 1
d+2

. (8)

The value of t can be calculated from a series of non-trivial in-
tegrals involving the anomalous dimension η and the truncation
function Q (

√
s ). It turns out that t is of the order one in the

relevant region of parameter space [17]. This running mass scale
has two asymptotic regimes. For low energies M f � √

s � 1/R

one obtains M̃ f (
√

s → 1/R) = M f , whereas, for very high energies√
s � M f one sees that the effective higher-dimensional Planck

mass diverges since M̃ f (
√

s � M f ) ≈ √
s/t . This shows that the

parameter t physically corresponds to the slope of M̃ f (
√

s ) in the
high energy limit and a small value of t gives rise to a steep
slope of the running gravitational mass scale. Since the gravita-
tional coupling is inversely related to M̃2+d

f , this diverging mass
scale corresponds to a vanishing gravitational coupling, which is
exactly the desired asymptotic safety.

4. Modified black hole production due to the renormalization
group

For three spatial dimensions the RG effects on the decay of
astronomical black holes have already been discussed in [45]. Sur-
prisingly enough, it turned out that RG effects slow down the
Hawking evaporation until a stable black hole remnant is formed.
This prediction about extra-dimensional BH’s at the large hadron
collider was also derived by using different arguments [46–49].
However, before considering the decay of mini black holes, the RG
effects on the formation of black holes should be studied.

Quantum corrections to the semi-classical black hole cross sec-
tion are believed to be suppressed by the order of M f /

√
s [50]

and the classical cross section is reliable as long as the suppres-
sion condition ξ(

√
s − M f ) is fulfilled. Therefore, it is legitimate to

transfer the renormalization group results from the low curvature
regime Eq. (8) where quantum operators can be calculated to low
the curvature classical result of Eq. (7), as long as one stays in the
low curvature regime and the condition ξ(

√
s − M f ) is fulfilled.



336 B. Koch / Physics Letters B 663 (2008) 334–337
Fig. 1. BH area in μb for M f = 2000 GeV and t = 3 as a function of
√

s.

This transfer is done by plugging Eq. (8) into Eq. (7). One finds the
cross section for the case of a running gravitational coupling

σ̃ (
√

s ) ≈ π

M̃2
f (

√
s )

(
16π(2π)d√s

(d + 2)Ad+2M̃ f (
√

s )

)2/(d+1)

× ξ
(√

s − M̃ f (
√

s )
)
. (9)

Further quantum corrections to the classical cross section (7) are
not considered here, since they would make it necessary to per-
form a separate renormalization procedure. The running Planck
scale in Eq. (9) has three consequences. First, for

√
s ∼ M f the

higher-dimensional Planck mass is enhanced by a factor of (1 +
t−d−2)1/(d+2) which lowers the area only by a factor of (1 +
t−d−2)

− 2d+3
(d+2)(d+1) . As long as t is of order one, this corresponds to

a change of just a few percent. Secondly, for very high energies√
s � M f , the asymptotic safety wins over the increased energy

and the BH area goes to zero σ ∼ 1/s (
√

s/M f )
−1/(d+1) . In Fig. 1

the BH area is shown as a function of
√

s for the cases with and
without RG effects. The area drops off when

√
s is large and, there-

fore, looks like a “black hole resonance”. The third consequence of
the running M̃ f is on the threshold condition. The argument of the
threshold function in (9) gives

√
s = tM f

(
1

t2+d − 1

)1/(d+2)

, (10)

which shows that there are dramatic consequences for the stan-
dard picture of BH production as soon as t is of order one. For
large t � 1 the threshold C will basically be just slightly raised
above M f but as soon as t approaches one the shift increases until
when t � 1 black holes no longer produced. The sharp behavior of
the threshold C as a function of t is shown in Fig. 2 for various d.
This cutoff behavior means that the cross section (9) approaches
the standard cross section (7) only in the limit where t → ∞ and
is zero for t � 1, as shown in Fig. 3.

An other way of introducing a threshold into Eq. (7), is by de-
manding that the Compton wave length is smaller than the black
hole radius (6). In this case the condition (10) would be altered to

√
s = tM f

(
1

kt2+d − 1

)1/(d+2)

, (11)

with k = 16π(2π)d/((d + 2)Ad+2). In this case the critical value
for t is between 0.5 and 0.3 for d = 2, . . . ,6.

5. Summary and conclusion

We applied RG techniques to the black hole production scenario
in the context of large extra dimensions. We found two surprising
Fig. 2. Threshold C normalized to M f as a function of t for d = 2,4,6.

Fig. 3. Dependence of the normalized cross section σ̃ /σ on the regularization pa-
rameter t for d = 4 and for

√
s = 2M f (

√
s = 4M f ).

effects. First, the area of the black hole, which is of the same or-
der of magnitude as the production cross section, is not only UV
safe (as it was observed in standard scattering cross section) but
it is damped so strongly that it goes to zero. Secondly, the trunca-
tion parameter t , which does not play an important role in the
qualitative standard scattering cross section picture, is very im-
portant for the BH threshold. Moreover, BH production could be
completely forbidden for t � 1, which according to [17] is perfectly
possible.

In the simplest picture of BH production the RG has dramatic
consequences. Further study is needed to check whether the re-
sults obtained here remain valid after an improved formulation of
the BH cross section, the BH threshold, the RG solutions, and the
truncation parameter t . This should also include recent progress in
the background independent formulation of the RG approach [51].
If the results do not change in a more detailed formulation and if
t can be determined to be smaller than one no black holes will
be produced at future colliders regardless if large extra dimensions
exist or not.
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