An Algebraic Approach to Population-Based Evolutionary Algorithm Generation

Yu-Jun Zheng1,2, Bei Zhang, Min-Xia Zhang

Abstract

Evolutionary algorithms (EAs) are popular in solving a diversity of problems, but current algorithm design approaches typically require formulating an algorithmic structure for each individual problem. The paper presents an algebraic framework for high-level specification of general-purpose metaheuristic methods, which cover a wide range of population-based EAs. Based on specification composition and refinement, the framework support mechanical program generation for concrete problem solving. We illustrate the applications of the framework in two typical optimization problems, which show that the proposed approach can achieve a high level of abstraction and mechanization without losing performance.

Keywords: Algebraic specifications, evolutionary algorithms (EAs), code generation, generic types.

1 Introduction

In the areas of science and engineering, a very wide class of problems are found to be computationally intractable by traditional deterministic algorithmic methods. In recent two decades, evolutionary algorithms (EAs), including genetic algorithm (GA) \[5\], evolutionary strategy (ES) \[1\], evolutionary programming (EP) \[4\], swarm intelligence methods \[2\], etc., have received great interest and achieved great success in solving such problems. In general, EAs are stochastic search methods that are mainly inspired by biological evolution and that support a parallel trial and error of a population of different solutions. They do not guarantee finding the exact optimal solution in a single simulation run, but in most cases they are capable of finding acceptable solutions in a reasonable computational time.

Rigorously speaking, EAs are not real “algorithms”; Instead they are “meta-heuristics” which are high-level strategies for designing heuristics procedures for

\[1\] This work was supported by National Natural Science Foundation of China under Grant No. 61020106009, 61105073 and 61272075.

\[2\] Email:zhengyujun@acm.org

http://dx.doi.org/10.1016/j.entcs.2014.12.008

1571-0661o 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
solving different problems, e.g., the knapsack problem, the traveling salesman problem (TSP), the vehicle routing problem (VRP), etc. Nevertheless, due to the inherent complexity and diversity of the problems, the application of an EA typically requires formulating different algorithmic structures for different problems, which leads to poor reusability, maintainability, and extensibility.

The community has advocated the use of algebraic specification and program transformation technologies to improve software productivity and quality for many years [7], and a number of development tools and environments have been proposed for this purpose [3]. However, most of those methods and tools are used only in limited areas such as real-time and embedded systems. Moreover, few works have been done on the implementation of general-purpose EAs for a wide range of problems which are often encountered in a variety of real-world applications.

In order to minimize the user efforts and ensure product quality in algorithmic program development, we have studied the algebraic approach to transform abstract specifications to concrete programs based on data type refinement and functional refinement [10,11,15], which have been successfully applied to a set of classical algorithm design methods including dynamic programming, greedy, and branch-and-bound [13,17,18], and some heuristic methods such as tabu search [14]. The approach has been used in a number of industrial software projects and has demonstrated its advantage in software quality and productivity.

In this paper, we present a high-level but practical framework for mechanical implementation of population-based EAs for complex problem solving. The framework supports algebraic specification of metaheuristic methods and optimization problems, and mechanical generation of algorithmic programs for concrete problems. Using algebraic specification composition and refinement techniques, our approach achieves a high level of abstraction and mechanization without losing performance in detailed implementation.

The remainder of the paper is structured as follows: Section 2 introduces the preliminaries of algebraic data types and specifications, Section 3 presents our algebraic framework of metaheuristic EAs, including specifications of typical EAs such as GA, PSO, and biogeography-based optimization (BBO) [9]; Section 4 presents our algebraic approach to concrete program generation, and finally Section 5 concludes with discussion.

2 Preliminaries of Basic Concepts

The basic concepts and constructions used in our approach are based on algebraic data types and specifications [8]. Formally, a specification is the finite presentation of a theory with the signature describing objects, operations, and properties:

- A signature $\Sigma = \langle S, \Omega \rangle$ consists of a set S of sorts and operations Ω over S;
- A specification $SP = \langle S, \Omega, A \rangle$ consists of a signature $\Sigma = \langle S, \Omega \rangle$ and a set of Σ-sentences A called axioms;
- A specification morphism $F : \langle S_1, \Omega_1, A_1 \rangle \rightarrow \langle S_2, \Omega_2, A_2 \rangle$ maps S_1 to S_2 and Ω_1 to Ω_2.
to Ω_2 such that for each $a \in A_1$ we have $F(a) \in A_2$.

The following presents the algebraic specifications of basic data types Boolean and Real respectively.

type Boolean (abbr. \mathbb{B})

constants $true, false : \rightarrow Boolean$

operations $\neg : Boolean \rightarrow Boolean$

$\land, \lor : Boolean \times Boolean \rightarrow Boolean$

axioms $\neg true = false; \neg false = true$

$(b, b_1, b_2 : Boolean) b_1 \land b_2 = b_2 \land b_1; b_1 \lor b_2 = b_2 \lor b_1$

$false \land b = false; true \lor b = true; true \land b = b; false \lor b = b$

$b \land (b_1 \land b_2) = (b \land b_1) \land b_2; b \lor (b_1 \lor b_2) = (b \lor b_1) \lor b_2$

$b \land (b_1 \lor b_2) = (b \land b_1) \lor (b \land b_2); b \lor (b_1 \land b_2) = (b \land b_1) \lor (b \land b_2)$

type Real (abbr. \mathbb{R})

imports Boolean

constants $0, 1, \infty : \rightarrow Real$

operations $+, -, \times, / : Real \times Real \rightarrow Real$

axioms $(a, a_1, a_2 : Real) a_1 + a_2 = a_2 + a_1; a_1 \times a_2 = a_2 \times a_1$

$0 + a = a; 1 \times a = a; 0 \times a = 0;$

$a \neq \infty \Rightarrow a/\infty = 0; a \neq 0 \Rightarrow a \times \infty = \infty$

$a + (a_1 + a_2) = (a + a_1) + a_2; a \times (a_1 \times a_2) = (a \times a_1) \times a_2$

$a \times (a_1 + a_2) = (a \times a_1) + (a \times a_2); a_1 \times (a/a_1) = a$

$...$

A parameterized specification has formal parameters that are themselves specifications, the binding of actual values to which is accomplished by specification morphisms. The incremental development of specifications involves developing simple specifications and then importing them into more complex ones. For example, the following gives the algebraic specification of data structure Set, in which type
parameter T denotes the abstract type of set elements.

```
type Set(T)
imports Boolean, Nat
sorts T
constants ∅ $: \rightarrow \text{Set}(T)$
operations $\{\}$ $: T \rightarrow \text{Set}(T); |\|: \text{Set}(T) \rightarrow \text{Nat}$
    $\in: T \times \text{Set}(T) \rightarrow \text{Boolean}$
    $\subset, \subseteq: \text{Set}(T) \times \text{Set}(T) \rightarrow \text{Boolean}$
    $\cup, \cap, \setminus: \text{Set}(T) \times \text{Set}(T) \rightarrow \text{Set}(T)$
axioms

According to the theory of algebraic data types, a specification defines a problem
by specifying a domain of problem inputs and the notion of what constitutes a
solution to a given input [6].

```
type Problem(D, Z)
imports \mathbb{B}
sorts D, Z
operations I $: D \rightarrow \mathbb{B}; O : D \times Z \rightarrow \mathbb{B}$

where the input condition $I(x)$ constrains the input domain D and the output
condition $O(x, z)$ describes the condition under which the output domain value
$z \in Z$ is feasible solution with respect to an input $x \in D$.
In particular, an optimization problem, which is typically defined on a partial ordered set (Poset), can be treated as an extension of problem as follows:

\[
\text{type } \text{OptProblem}\langle D, Z \rangle \\
\text{refines } \text{Problem}\langle D, Z \rangle \\
\text{imports } \mathbb{B}, \mathbb{R}, \text{Set} \\
\text{sorts } D, Z \\
\text{operations } \xi : D \rightarrow \text{Set}\langle Z \rangle; \quad c : D \times Z \rightarrow \mathbb{B}; \quad f : Z \rightarrow \mathbb{R} \\
\text{axioms } (d_1, d_2 : D) \ d_1 \leq_D d_2 \Rightarrow \xi(d_1) \subseteq \xi(d_2)
\]

where \(\xi \) is the generative function for generating the solution space, \(c \) is the constraint function defining the feasibility, \(f \) is the objective function for evaluating the optimality, and \(\leq_D \) is the ordering relation on \(D \).

3 Algorithm Framework

3.1 A General Framework for Population-Based EAs

In its search procedure, an EA typically evolves a population of candidate solutions to a given problem, using operators inspired by natural or biological evolution. We define a very high-level specification of a population-Based EA as follows, which consists of the signatures of a problem of \(\text{OptProblem}\langle D, Z \rangle \) and a set of abstract functions:

\[
\text{type } \text{Alg}\langle D, Z \rangle \\
\text{imports } \mathbb{B}, \mathbb{R}, \text{Set, List, OptProblem} \\
\text{sorts } D, Z; \\
\quad P : \text{OptProblem}\langle D, Z \rangle; \quad \text{POP} : \text{Set}\langle Z \rangle; \\
\quad \text{OP} : \text{List}\langle Z \times Z \rightarrow Z \rangle \\
\text{operations } \text{init} : D \times \mathbb{N} \rightarrow \text{Set}\langle Z \rangle; \quad \text{evol} : \rightarrow \text{Set}\langle Z \rangle; \\
\quad \text{solve} : D \times \mathbb{N} \rightarrow Z; \quad \text{best} : \rightarrow Z; \quad \text{tune} : \rightarrow \\
\text{axioms } (z : Z) \ z \in \text{POP} \Rightarrow P.f(\text{best}()) \leq P.f(z)
\]

In the above specification, \(\text{init} \) is used for initializing a set of solutions for a given problem input \(d \), \(\text{evol} \) performs an iteration of evolution of the algorithm, \(\text{solve} \) runs a given number of iterations to produce a result solution, \(\text{best} \) returns the optimal solution found so far, and \(\text{tune} \) adjusts related control parameters after each iteration; \(\text{POP} \) maintains a population of solutions, and \(\text{OP} \) is a set of evolutionary operators of the algorithm.

Among the abstract functions, the default implementation of \(\text{evol} \) applies each evolutionary operator to the solutions in \(\text{POP} \) one by one:
def fun evol() : Set(Z)
begin
 let POP1 = new Set(Z)();
 for each z ∈ POP do
 POP1 ← POP1 ∪ {z};
 for each o ∈ OP do
 for each z ∈ POP1 do
 z ← o(z);
 best();
tune();
return POP1;
end

And the default implementation of solve evolves the population for a given number of generations:

def fun solve(d : D; size, iters : N) : Z
begin
 POP ← init(d, size);
 for k = 1 to iters do
 POP ← evol();
 return best();
end

3.2 Specifications of Typical EAs

By specifying different evolutionary operators and their application procedures, the top-level specification Alg can be refined to different EA specifications. GA is such a typical EA that uses two well-known evolutionary operators: crossover and mutation, and the specification of GA can be easily defined based on Alg:

type GA(D, Z)
refines Alg
imports ℜ, ℜ, Set, List, OptProblem
operations mutate : Z → Z; crossover : Z × Z → Z × Z;
select : Set(Z) → Z

Note that the crossover operator of GA takes two parent solutions and produces two child solutions, and its signature does not meet that defined in specification Alg. Thereby, we redefine its evol operator by overriding the default implementation in Alg:

Beside overriding a default implementation, another common way to tackle with variation of operation signatures is wrapping. For example, the BBO algorithm uses a migration operator that migrate features from a probably high quality solution to a low quality one. The following specification defines a selMigrate to perform
override fun evol() : Set(Z)
begin
 let POP1 = new Set(Z)();
 while |POP1| < |POP| do
 let z1 = select(POP), z2 = select(POP);
 POP1 ← POP1 ∪ {crossover(z1, z2)};
 for each z ∈ POP1 do
 z ← mutate(z);
 best();
 return POP1;
end

such an operation, and lets OP contains the other three functions that satisfy the signatures defined in Alg:

\[
\text{type } \text{BBO}\langle D, Z \rangle \\
\text{refines } \text{Alg} \\
\text{imports } \mathbb{B}, \mathbb{R}, \text{Set}, \text{List}, \text{OptProblem} \\
\text{sorts } \text{OP} = \{\text{migrate, mutate}\} \\
\text{operations } \text{migrate} : Z \rightarrow Z; \text{ mutate} : Z \rightarrow Z; \text{ selMigrate} : Z \times Z \rightarrow Z; \text{ select} : \text{Set}(Z) \rightarrow Z;
\]

And the migrate function encapsulates selMigrate in its default implementation as follows:

\[
\text{def fun migrate}(z : Z) : Z \\
\begin{array}{l}
\text{let } z_1 = \text{select}(POP); \\
\text{return selMigrate}(z, z_1); \\
\end{array}
\]

The following presents the algebraic specification of the PSO algorithm and its standard implementations of main operations, where Particle is a data type extends the basic definition of problem solution.

\[
\text{type } \text{Particle}\langle Z \rangle \\
\text{sorts } z : Z; \ \ pb : Z; \ \ v : \text{Vector}
\]
type \text{PSO}\langle D, Z \rangle
\refines Alg
\text{imports } \mathbb{B}, \mathbb{R}, \text{Set}, \text{List}, \text{OptProblem}
\text{sorts } \text{POP} = \text{List}\langle \text{Particle}\langle Z \rangle \rangle; \quad \text{PB} : \text{List}\langle Z \rangle;
\quad \text{gb} : Z; \quad w, c_1, c_2 : \mathbb{R};
\text{OP} = \{ \text{learn}, \text{move} \}
\text{operations } \text{learn} : Z \to Z; \quad \text{move} : Z \times \text{Vector} \to Z;

\text{def fun } \text{learn}(z : Z) : Z
\text{begin}
\quad z.V \leftarrow w \ast (z.V + \text{rand}()) \ast c_1 \ast (z.pb - z.z) + \text{rand}() \ast c_2 \ast (\text{gb} - z.z));
\quad z.z \leftarrow \text{move}(z.z, z.V);
\quad \text{return } z;
\text{end}

4 Program Generation for Concrete Problem Solving

Given a concrete problem specification of $\text{OptProblem}\langle D, Z \rangle$, the process for generating algorithmic program from the algebraic specification can be divided into the following steps:

(i) Construct the refinement morphisms from type parameters in the algebraic specification to their concrete types;

(ii) For each abstract function in the specification, if no user-defined implementation is provided, then use its default implementation in the framework;

(iii) Construct the refinement morphisms from abstract functions to their implementations;

(iv) Generate the concrete algorithmic program by colimit computation on generic specification and its refinements [16];

(v) Transform the abstract algorithmic program to one or more executable programs [12].

Next we illustrate the process using two different problems.

4.1 Algorithms for Integer Programming

Integer programming problem is a class of mathematical optimization problems where the decision variables are restricted to integer values. Based on our algebraic
framework, an integer programming problem can be specified as:

\[
\textbf{type} \quad \text{IPProblem} \\
\text{refines} \quad \text{OptProblem}(\text{Vector}(\mathbb{Z}) \rightarrow \mathbb{R}, \text{Vector}(\mathbb{Z})) \\
\text{imports} \quad \mathbb{B}, \mathbb{Z}, \mathbb{R}, \text{Vector}, \text{Set} \\
\text{sorts} \quad \text{obj} : \text{Vector}(\mathbb{Z}) \rightarrow \mathbb{R} \\
\text{VL, VU} : \text{Vector}(\mathbb{Z})
\]

refinement with \(c, d, z = \forall i : (0 \leq i < |d|) : \text{VL}[i] \leq d[i] \leq \text{VU}[i] \);
\(f = \text{obj} \)

To apply the GA specification to the problem, we respectively construct the morphisms from the \textit{crossover} and \textit{mutate} operations to the following two implementations:

fun \(\text{crossover}(z_1, z_2 : \mathbb{Z}) : \mathbb{Z} \times \mathbb{Z} \)
begin
let \(p = \text{rand}(1, |z| - 1) \);
let \(z_1' = z_1[0..p]#z_2[p + 1..] \);
let \(z_2' = z_2[0..p]#z_1[p + 1..] \);
return \((z_1', z_2')\);
end

fun \(\text{mutate}(z : \mathbb{Z}) : \mathbb{Z} \)
begin
if \(\text{rand()} < \text{mr} \) //mutation rate
let \(p = \text{rand}(0, |z|) \);
\(z[p] \leftarrow \text{round}(\text{VL}[p] + \text{rand()} \times \text{VU}[p]) \);
return \(z \);
end

Based on categorical computation, we directly work out the following GA program for solving an integer programming problem:
Algorithm 1 GA

\begin{algorithm}
\begin{algorithmic}
\STATE \textbf{POP} : Set(Vector(\mathbb{Z})); \textbf{mr} : \mathbb{R}
\FUNCTION{main}(d : IPProblem; size, iters : \mathbb{N})
\STATE \textbf{begin}
\STATE \textbf{POP} \leftarrow \textbf{init}(d, size);
\FOR{$k = 1$ \TO iters}
\STATE \textbf{POP} \leftarrow \textbf{evol}();
\ENDFOR
\STATE \textbf{return} \textbf{best}();
\STATE \textbf{end}
\FUNCTION{init}(d : IPProblem; size : \mathbb{N}) : Set(Vector(\mathbb{Z}))
\STATE \textbf{begin}
\STATE \textbf{POP} \leftarrow \textbf{newSet}(Vector(\mathbb{Z}));
\FOR{$k = 1$ \TO size}
\STATE \textbf{POP} \leftarrow \textbf{POP} \cup \{\text{rand}(VL, VU)\};
\ENDFOR
\STATE \textbf{return} \textbf{POP};
\STATE \textbf{end}
\FUNCTION{evol}() : Set(Vector(\mathbb{Z}))
\STATE \textbf{begin}
\STATE \textbf{let} \textbf{POP1} = \textbf{newSet}(Vector(\mathbb{Z}));
\WHILE{$|\textbf{POP1}| < |\textbf{POP}|$}
\STATE \textbf{let} $z_1 = \textbf{select}(\textbf{POP})$, $z_2 = \textbf{select}(\textbf{POP})$;
\STATE \textbf{let} $p = \text{rand}(1, |z| - 1)$;
\STATE \textbf{let} $z'_1 = z_1[0..p]#z_2[p+1..]$
\STATE \textbf{let} $z'_2 = z_2[0..p]#z_1[p+1..]$
\STATE \textbf{POP1} \leftarrow \textbf{POP1} \cup \{z'_1, z'_2\}$
\FOR {each $z \in \textbf{POP1}$}
\STATE \textbf{if} \text{rand}() < \textbf{mr}
\STATE \textbf{p} \leftarrow \text{rand}(0, |z|);
\STATE \textbf{z}[p] \leftarrow \text{VL}[p] + \text{rand()} \times \text{VU}[p];
\STATE \textbf{best}();
\STATE \textbf{tune}();
\ENDFOR
\STATE \textbf{return} \textbf{POP1};
\ENDWHILE
\STATE \textbf{end}
\end{algorithmic}
\end{algorithm}

If we use PSO to solve the integer programming problem, we can keep the default implementation of \texttt{learn} and simply construct the morphisms from \texttt{move} to the following implementation, and thereby obtain a PSO program for integer programming (the detailed code is omitted here).

\begin{algorithm}
\begin{algorithmic}
\FUNCTION{move}(z : Vector(\mathbb{Z}), v : Vector) : Vector(\mathbb{Z})
\STATE \textbf{begin}
\FOR{$k = 0$ \TO $|z| - 1$}
\STATE $z[k] \leftarrow \text{round}(z[k] + v[k])$
\ENDFOR
\STATE \textbf{return} \textbf{z};
\STATE \textbf{end}
\end{algorithmic}
\end{algorithm}
4.2 Algorithms for the Traveling Salesman Problem

The traveling salesman problem (TSP) is a well-known combinatorial optimization problem, which takes a weighted graph as the input and a Hamiltonian cycle of the graph with minimum weight as a solution. A weighted graph can be represented by a matrix of real numbers and a Hamiltonian cycle can be represented by a permutation of nodes, and thus the TSP can be specified as:

\[
\text{type TSP} \quad \text{refines} \quad \text{OptProblem} \langle \text{Matrix, Perm} \rangle
\]

\[
\text{imports } \mathbb{B}, \mathbb{Z}, \mathbb{R}, \text{Matrix, Set, Perm}
\]

\[
\text{refinement with } \xi_{d} = \text{allperms}(|a|); \quad c_{d} z = (|z| = |m|); \quad f_{z} = \sum_{i=0}^{\frac{|z|-2}{2}} m[i, i+1] + m[|z| - 1, 0]
\]

If we use BBO to solve the TSP, the migration operation can be used for migrating a subsequence of the emigrating solution to the current one, meanwhile keeping the solution a permutation. Thus the target implementation can be respectively defined as:

fun selMigrate\(z, z_{1} : \text{Perm}\) : Perm

\[
\begin{align*}
\text{begin} & \quad \text{let } p_{1} = \text{rand}(0, |z| - 2); \quad p_{2} = \text{rand}(p_{1}, |z| - 1); \\
& \quad \text{for } k = p_{1} \text{ to } p_{2} \text{ do} \\
& \quad \quad \text{let } p = \text{indexof}(z_{1}[k], z); \\
& \quad \quad (z[k], z[p]) \leftarrow (z[p], z[k]); \\
& \quad \text{return } z;
\end{align*}
\]

And the mutate operation can be simply defined as swapping two randomly chosen nodes in the permutation:

fun mutate\(z : \text{Perm}\) : Perm

\[
\begin{align*}
\text{begin} & \quad \text{let } p_{1} = \text{rand}(0, |z| - 2); \quad p_{2} = \text{rand}(p_{1}, |z| - 1); \\
& \quad (z[p_{1}], z[p_{2}]) \leftarrow (z[p_{2}], z[p_{1}]); \\
& \quad \text{return } z;
\end{align*}
\]

The result BBO program for solving the TSP is as follows:
Algorithm 2 BBO

\[\text{POP} : \text{Set}(\text{Perm}); \quad \text{ems, ims, ms} : \text{List}(\mathbb{R}); \] //emigration, immigration, and mutation rates

fun main(d : TSP; size, iters : N)
begin
 POP ← init(d, size);
 for k = 1 to iters do
 POP ← evol();
 return best();
end

fun init(d : TSP; size : N) : Set(Perm)
begin
 POP ← newSet(Perm)();
 for k = 1 to size do
 POP ← POP ∪ \{randperm(|d|)\};
 return POP;
end

fun evol() : Set(Perm)
begin
 let POP1 = new Set(Perm)();
 for each z ∈ POP do
 if rand ≤ ims(z)
 let z₁ = select(Pop);
 let p₁ = rand(0, |z| - 2); p₂ = rand(p₁, |z| - 1);
 for k = p₁ to p₂ do
 let p = indexof(z₁[k], z);
 \((z[k], z[p]) \leftarrow (z[p], z[k]); \)
 end
 end
 POP1 ← POP1 ∪ \{z\};
 for each z ∈ POP1 do
 if rand() < ms(z)
 \((z[p₁], z[p₂]) \leftarrow (z[p₂], z[p₁]); \)
 end
 best();
 tune();
 return POP1;
end

5 Conclusion

The paper presents an algebraic framework for high-level specification of general-purpose metaheuristic methods and mechanical generation of algorithmic programs for concrete problem solving. Our algebraic approach is mathematically abstract and computationally efficient. Currently we are extending the approach to support
algorithms for multiobjective optimization problems.

References

