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a b s t r a c t

The Riemann–Liouville fractional integral for repeated fractional integration is expanded in
block pulse functions to yield the block pulse operational matrices for the fractional order
integration. Also, the generalized block pulse operational matrices of differentiation are
derived. Based on the above results we propose a way to solve the fractional differential
equations. The method is computationally attractive and applications are demonstrated
through illustrative examples.
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1. Introduction

Fractional calculus has become the focus of interest for many researchers in different disciplines of science and
technology [1–5]. A great deal of research has shown the advantageous use of the fractional calculus in the modeling and
control of many dynamical systems [1–8]. However, the fractional order systems are represented in the frequency domain
by irrational transfer functions, which correspond to linear time varying differential equations in the time domain. One of
the main difficulties is how to solve the fractional differential equations, so some techniques were proposed to solve them.
The most commonly used ones are Adomian decomposition method (ADM) [9], Variational Iteration Method (VIM) [10],
Fractional Differential TransformMethod (FDTM) [11], OperationalMatrixMethod [12], Homotopy AnalysisMethod [13,14],
Fractional Difference Method (FDM) [15] and Power Series Method [16]. Also there are some classical solution techniques,
e.g. Laplace Transform Method [17].

It is somewhat surprising that among different solution techniques few papers reported application of the orthogonal
function method for the fractional order differential equations [18–21]. However, through the analysis of the orthogonal
function method, we hold that it should be applicable to solve the fractional order systems.

For an ordinary dynamical system, the orthogonal function method is based on converting the underlying differential
equations into integral equations through integration, approximating various signals involved in the equation by truncated
orthogonal series and using the operational matrix of integration to eliminate the integral operations. Typical examples are
the Walsh functions [22,23], block pulse functions [24–27], Legendre polynomials [28–30], Chebyshev polynomials [31],
Laguerre polynomials [32,33], and Fourier series [34,35].

In this paper, our purpose is to extend the orthogonal functionmethod to solve the fractional linear differential equations.
Similar to the process of using the orthogonal function method to solve the ordinary dynamical systems, for the fractional
systems, we need to convert the underlying fractional differential equations into integral equations through the fractional
integration, expand various signals involved in the equation by block pulse functions and using the operational matrix for
the fractional integration to eliminate the fractional integral operations. So, there are some questions to be answered:
(i) How to derive block pulse operational matrices of the fractional integration and differentiation.
(ii) How to solve the fractional order linear systems via block pulse operational matrices of the fractional integration.
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2. Brief review of block pulse functions (BPFs) and the related operational matrices [36]

A set of BPFs Φm(t) containing m component functions in the semi-open interval [0, T ) is given by

Φm(t) , [ϕ0(t) ϕ1(t) · · · ϕi(t) · · · ϕm−1(t)]T , (1)

where T denotes transpose.
The ith component ϕi(t) of the BPF vector Φm(t) is defined as

ϕi(t) =


1 iT/m ≤ t < (i + 1)T/m
0 otherwise

where i = 0, 1, 2, . . . , (m − 1).
A square integrable time function f (t) of Lebesgue measure may be expanded into anm-term BPF series in t ∈ [0, T ) as

f (t) = [c0 c1 · · · ci · · · c(m−1)]Φm(t) , CTΦm(t). (2)

The constant coefficients ci’s in Eq. (2) are given by

ci = (1/h)
∫ (i+1)h

ih
f (t)dt, (3)

where h = T/m is the duration of each component BPF along time scale.
In the m-term BPF domain, an operational matrix for integration Pm has been given by Deb et al. [37] as the following

upper triangular matrix:

Pm , h


1/2 1 1 · · · 1 1
0 1/2 1 · · · 1 1
0 0 1/2 · · · 1 1
· · · · · · · · · · · · · · · · · ·

0 0 0 · · · 1/2 1
0 0 0 · · · 0 1/2

 . (4)

Thematrix Pm performs as an integrator in the BPF domain and it is pivotal in any BPF domain analysis. Thus, approximate
integration of a function f (t), using Eqs. (2) and (4), is∫ T

0
f (t)dt ≈ CTPmΦm(t). (5)

3. Block pulse operational matrices for fractional calculus

We now derive the operational matrix for the fractional calculus. Several definitions of a fractional calculus have been
proposed [2,3,5]. we formulate the problem in terms of the Riemann–Liouville fractional integration, which is defined as

(Iα f )(t) =
1

Γ (α)

∫ t

0
(t − τ)α−1f (τ )dτ =

1
Γ (α)

tα−1
∗ f (t), 0 ≤ t < T , (6)

where α is the order of the integration, Γ (α) is the Gamma function and tα−1
∗ f (t) denotes the convolution product of

tα−1 and f (t). Now if f (t) is expanded in block pulse functions, as shown in Eq. (2), the Riemann–Liouville fractional integral
becomes

(Iα f )(t) =
1

Γ (α)
tα−1

∗ f (t) ≈ CT 1
Γ (α)

{tα−1
∗ Φm(t)}. (7)

Thus if tα−1
∗ f (t) can be integrated, then expanded in block pulse functions, the Riemann–Liouville fractional integral is

solved via the block pulse functions.
According to the linear nature of Laplace transform, in order to compute the convolution product CT 1

Γ (α)
{tα−1

∗ Φm(t)},
we only need to compute 1

Γ (α)
tα−1

∗ ϕi(t).
For ϕi(t), applying definition of the convolution, we have

tα−1
∗ ϕi(t) =

∫ t

0
τ α−1

· ϕi(t − τ)dτ . (8)
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Since ϕi(t) = 1 in [iT/m, (i + 1)T/m), then we have

tα−1
∗ ϕ0(t) =


∫ t

0
τ α−1dτ =

tα

α
, 0 ≤ t < T/m∫ t

t−T/m
τ α−1dτ =

tα − (t − T/m)α

α
, T/m ≤ t < T

(9)

tα−1
∗ ϕ1(t) =


0, 0 ≤ t < T/m
(t − T/m)α

α
, T/m ≤ t < 2T/m

(t − T/m)α − (t − 2T/m)α

α
, 2T/m ≤ t < T

(10)

tα−1
∗ ϕ2(t) =


0, 0 ≤ t < 2T/m
(t − T/m)α

α
, 2T/m ≤ t < 3T/m

(t − 2T/m)α − (t − 3T/m)α

α
, 3T/m ≤ t < T

(11)

...

tα−1
∗ ϕm−1(t) =


0, 0 ≤ t < (m − 1)T/m
[t − (m − 1)T/m]

α

α
, (m − 1)T/m ≤ t < T .

(12)

Set
(IαΦm)(t) ≈ FαΦm(t). (13)

Next, we derive Block pulse operational matrix for fractional integration. For (Iαϕ0)(t) we have

(Iαϕ0)(t) = f11ϕ0(t) + f12ϕ1(t) + · · · + f1mϕm−1(t) (14)
where

f11 =
m
b

∫ b
m

0

tα

Γ (α + 1)
dt =


b
m

α

·
1

Γ (α + 2)
(15)

f1i =
m
T

∫ iT/m

(i−1)T/m

tα − (t − T/m)α

Γ (α + 1)
dt =


b
m

α

·
1

Γ (α + 2)
[iα+1

− 2 · (i − 1)α+1
+ (i − 2)α+1

],

i = 2, . . . ,m. (16)
For another (Iαϕi)(t), i = 1, . . . ,m − 1, applying shifting property, we can directly obtain the coefficients expanded by

BPFs.
Finally, we can get

Fα = hα 1
Γ (α + 2)


1 ξ1 ξ2 · · · ξm−1
0 1 ξ1 · · · ξm−2
0 0 1 · · · ξm−3

0 0 0
. . .

...
0 0 0 0 1

 , (17)

where

ξk = (k + 1)α+1
− 2kα+1

+ (k − 1)α+1, (k = 1, 2, . . . ,m − 1). (18)
Fα is called the block pulse operational matrix of fractional integration. When α = 1, matrix Fα is equal to matrix Pm, so
matrix Fα is a generalization of the block pulse operational matrix for integration Pm.

Let Dα is the block pulse operational matrix for the fractional differentiation, According to the property of fractional
calculus, DαFα = I , we can easily get matrix Dα by inverting the Fα matrix.

According tomatrix theory,we know that the inversematrix of an upper triangularmatrix is also upper triangularmatrix.
So, we can write

1 ξ1 ξ2 · · · ξm−1
0 1 ξ1 · · · ξm−2
0 0 1 · · · ξm−3

0 0 0
. . .

...
0 0 0 0 1


−1

=


d0 d1 d2 · · · dm−1
0 d0 d1 · · · dm−2
0 0 d0 · · · dm−3

0 0 0
. . .

...
0 0 0 0 d0

 . (19)
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Fig. 1. 0.5-order integration of the function f (t) = t .

That is
1 ξ1 ξ2 · · · ξm−1
0 1 ξ1 · · · ξm−2
0 0 1 · · · ξm−3

0 0 0
. . .

...
0 0 0 0 1

 ·


d0 d1 d2 · · · dm−1
0 d0 d1 · · · dm−2
0 0 d0 · · · dm−3

0 0 0
. . .

...
0 0 0 0 d0

 = Im, (20)

where Im is the identity matrix of orderm × m. After solving the matrix equation of Eq. (20), we get

d0 = 1, d1 = −ξ1d0, . . . , dm−1 = −

m−1−
k=1

ξkdm−k−1. (21)

For example, let α = 0.5,m = 8, T = 1, the operational matrices F0.5 and D0.5 are computed below:

F0.5 =



0.2660 0.2203 0.1434 0.1160 0.1001 0.0894 0.0816 0.0755
0 0.2660 0.2203 0.1434 0.1160 0.1001 0.0894 0.0816
0 0 0.2660 0.2203 0.1434 0.1160 0.1001 0.0894
0 0 0 0.2660 0.2203 0.1434 0.1160 0.1001
0 0 0 0 0.2660 0.2203 0.1434 0.1160
0 0 0 0 0 0.2660 0.2203 0.1434
0 0 0 0 0 0 0.2660 0.2203
0 0 0 0 0 0 0 0.2660



D0.5 =



3.7599 −3.1148 0.5527 −0.4178 −0.0091 −0.0998 −0.0442 −0.0460
0 3.7599 −3.1148 0.5527 −0.4178 −0.0091 −0.0998 −0.0442
0 0 3.7599 −3.1148 0.5527 −0.4178 −0.0091 −0.0998
0 0 0 3.7599 −3.1148 0.5527 −0.4178 −0.0091
0 0 0 0 3.7599 −3.1148 0.5527 −0.4178
0 0 0 0 0 3.7599 −3.1148 0.5527
0 0 0 0 0 0 3.7599 −3.1148
0 0 0 0 0 0 0 3.7599


.

The fractional integration and differentiation of the function t was selected to verify the correctness of matrices Fα and
Dα . That is because the fractional integration and differentiation of the function f (t) = t is easily obtained as following
(Iα f )(t) =

Γ (2)
Γ (α+2) t

α+1 and (Dα f )(t) =
Γ (2)

Γ (2−α)
t1−α , respectively, which is easily used to compare the results obtained by the

proposed method. When α = 0.5, T = 1, m = 32, the comparison results for the fractional integration and differentiation
are shown in Figs. 1 and 2, respectively.

4. Solution of the fractional differential equations by the generalized block pulse operational matrix

4.1. Linear multi-order fractional differential equation

In this section, we are concerned with providing a numerical solution to multi-order fractional linear system of the form

Dαy(t) =

n−
j=1

aj(t)Dβjy(t) + a0(t)y(t) + f (t) (22)
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Fig. 2. 0.5-order differentiation of the function f (t) = t .

subject to the initial conditions

y(k)(0) = bk, k = 0, 1, . . . , ⌈α⌉ − 1, (23)

where α > β1 > β2 > · · · > βn, Dα denotes the Caputo fractional derivative of order α, aj(t) is known function for
j = 0, 1, . . . , n, and f (t) is input signal, y(t) is output response.

The general procedure of numerical solution of fractional differential equations consists of two steps.
First, initial conditions are used to reduce a given initial-value problem to a problem with zero initial conditions. At this

stage, instead of a given equation a modified equation, incorporating the initial values, is obtained.
Then, the generalized block pulse operational matrix of fractional integration is used to transform the fractional

differential equation into an algebraic equation.
The solution of the initial-value problem Eq. (22) can be written in the form

y(t) = y∗(t) + z(t) (24)

where y∗(t) is some known function, satisfying the conditions y(k)(0) = bk, k = 0, 1, . . . , ⌈α⌉−1, and z(t) is a newunknown
function.

Substituting Eq. (24) into the Eq. (22) and the initial conditions Eq. (23), we obtain for the function z(t) an initial-value
problem with zero initial conditions.

Dαz(t) =

n−
j=1

aj(t)Dβjz(t) + a0(t)z(t) + g(t) (25)

subject to the initial conditions

z(k)(0) = 0, k = 0, 1, . . . , ⌈α⌉ − 1. (26)

The input signal g(t) and output response Dαz(t) may be expanded by the BPFs as

g(t) ≈ GTΦm(t), (27)

Dαz(t) ≈ CTΦm(t) (28)

where G = [g0, g1, . . . , gm]
T is a known but C = [c0, c1, . . . , cm]

T is an unknownm × 1 column vector.
Similarly, aj(t) for j = 0, 1, . . . , n, may also be expanded by the BPFs as

aj(t) ≈ AT
j Φm(t) (29)

where Aj is a knownm × 1 column vector.
Using Eq. (28) together with property of fractional calculus, we have

Dβjz(t) = Iα−βj [Dαz(t)] = Iα−βj [CTΦm(t)] = CT Fα−βjΦm(t). (30)

Substituting Eqs. (27)–(30) into (25), we have

CTΦm(t) =

n−
j=1

AT
j Φm(t)[Φm(t)]T [Fα−βj ]

TC + AT
0Φm(t)[Φm(t)]T [Fα]

TC + GTΦm(t). (31)

According to the properties of BPFs, we can get

Φm(t)[Φm(t)]T =


ϕ1(t) O

ϕ2(t)
. . .

O ϕm(t)

 . (32)
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Set [Fα−βj ]
TC = Xj = [xj1, xj2, . . . , xjm]

T , then we have

Φm(t)[Φm(t)]T [Fα−βj ]
TC =


xj1 O

xj2
. . .

O xjm

 Φm(t) = diag(Xj)Φm(t). (33)

Using Eq. (33) we can rewrite Eq. (31) as

CTΦm(t) =

n−
j=1

AT
j diag(Xj)Φm(t) + AT

0(diag[Fα]
TC)Φm(t) + GTΦm(t) (34)

or

C =

n−
j=1

diag(Xj)Aj + (diag[Fα]
TC)A0 + G. (35)

Solving the system of algebraic equations, we can obtain the coefficients CT . Then, we can get the output response

z(t) = CT FαΦm(t). (36)

4.2. Nonlinear multi-order fractional differential equation

Consider the nonlinear multi-order fractional differential equation

Dαy(t) =

n−
j=1

ajDβjy(t) + a0[y(t)]m + g(t) (37)

subject to the initial conditions

y(k)(0) = ck, k = 0, 1, . . . , ⌈α⌉ − 1 (38)

where α > β1 > β2 > · · · > βn, Dα denotes the Caputo fractional derivative, aj is constant for j = 0, 1, . . . , n.
Compared with the linear case, a major distinction lies in the computation of [y(t)]i, when we use the generalized Block

pulse operational matrix to solve the nonlinear multi-order fractional differential equation.
Set

Dαy(t) ≈ CTΦm(t) (39)

then we have

y(t) ≈ CT FαΦm(t). (40)

Set CT Fα = [x1, x2, . . . , xm], then we have

[y(t)]i = [xi1, x
i
2, . . . , x

i
m]Φm(t). (41)

The derivation is similar to the linear case, we have

CTΦm(t) =

n−
j=1

ajCT Fα−βjΦm(t) + a0[xi1, x
i
2, . . . , x

i
m]Φm(t) + GTΦm(t). (42)

This is a nonlinear system of algebraic equation, we use the ‘‘fsolve’’ in Matlab to solve it.

5. Numerical examples

Example 1. Consider the fractional equation [11]

D2y(t) + Dαy(t) + y(t) = 8, t > 0, 0 < α < 2. (43)

Subject to

y(0) = 1, y′(0) = 0.

This problem was solved in [11], for α = 0.5 and α = 1.5. Our results compared to Ref. [11] are given in Table 1, where
h = 0.001. According to the exact solution given in Ref. [11], ours results are in high agreement with results obtained using
the FDTM and better than those obtained using the ADM. We show the approximate solution in Fig. 3 for h = 0.1.
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Table 1
Our results compared to Ref. [11].

t α = 0.5 α = 1.5
Ours FDTM [11] ADM [11] Ours FDTM [11] ADM[11]

0.1 0.039754 0.039750 0.039874 0.033510 0.033507 0.036478
0.2 0.157043 0.157036 0.158512 0.125226 0.125221 0.140640
0.3 0.347373 0.347370 0.353625 0.267611 0.267609 0.307485
0.4 0.604699 0.604695 0.622083 0.455439 0.455435 0.533284
0.5 0.921768 0.921768 0.960047 0.684336 0.684335 0.814757
0.6 1.290458 1.290457 1.363093 0.950395 0.950393 1.148840
0.7 1.702007 1.702008 1.826257 1.249959 1.249959 1.532571
0.8 2.147286 2.147287 2.344224 1.579558 1.579557 1.963033
0.9 2.616998 2.617001 2.911278 1.935832 1.935832 2.437331
1.0 3.101902 3.101906 3.521462 2.315526 2.315526 2.952567

Fig. 3. Numerical and exact solution of Example 2 for h = 0.1.

Table 2
Absolute error in y(t) for different values of h.

t h = 0.1 h = 0.05 h = 0.025 h = 0.0125 h = 0.00625

0.5 0.0024 0.6084E−3 0.1524E−3 0.3815E−4 0.9549E−5
1.5 0.0020 0.5058E−3 0.1267E−3 0.3173E−4 0.7945E−5
2.5 0.0018 0.4403E−3 0.1102E−3 0.2759E−4 0.6902E−5
3.5 0.0016 0.4124E−3 0.1032E−3 0.2581E−4 0.6457E−5
4.5 0.0016 0.3995E−3 0.0999E−3 0.2499E−4 0.6249E−5

Example 2. Consider the fractional variable coefficient linear differential equation [38]

aD2y(t) + b(t)Dα2y(t) + c(t)Dy(t) + e(t)Dα1y(t) + k(t)y(t) = f (t), t ∈ [0, T ] (44)

where 0 < α1 ≤ 1, 1 < α2 ≤ 2, and

f (t) = a −
b(t)

Γ (3 − α2)
t2−α2 − c(t)t −

e(t)
Γ (3 − α1)

t2−α1 + k(t)

2 −

1
2
t2


,

subject to

y(0) = 2, y′(0) = 0.

It is easily verified that the exact solution of this problem is

y(t) = 2 −
1
2
t2.

For a = 1, b(t) = t1/2, c(t) = t1/3, e(t) = t1/4, k(t) = t1/5, α1 = 0.5, α2 = 1.5 we present numerical values of the
solution to Eq. (44) by our method with h = 0.01 and exact solution in Fig. 3, which is in perfect agreement with the exact
solutions, the absolute errors of y(t) at given points for different values of h are shown in Table 2.

Example 3. Consider the nonlinear fractional differential equation, which has been studied in [9,11].

Dαy(t) = y2(t) + 1, t ∈ (0, 1), m − 1 < α ≤ m, (45)
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Table 3
Our results compared to Refs. [9,11].

t α = 0.5 α = 1.5
Ours FDTM [11] ADM [11] Ours FDTM [11] ADM[11]

0.1 0.023800 0.023790 0.023790 0.000954 0.000952 0.000951
0.2 0.067335 0.067330 0.067330 0.005385 0.005383 0.005382
0.3 0.123900 0.123896 0.123896 0.014836 0.014833 0.014833
0.4 0.191368 0.191362 0.191362 0.030455 0.030450 0.030449
0.5 0.268862 0.268856 0.268856 0.053203 0.053197 0.053196
0.6 0.356244 0.356238 0.356238 0.083931 0.083925 0.083924
0.7 0.453956 0.453950 0.453950 0.123418 0.123412 0.123412
0.8 0.563014 0.563007 0.563007 0.172397 0.172391 0.172391
0.9 0.685067 0.685056 0.685056 0.231582 0.231574 0.231574
1.0 0.822525 0.822509 0.822511 0.301686 0.301676 0.301676

subject to

yk(0) = 0, k = 0, 1, . . . ,m − 1.

It has been studied by using FDTM [11] and ADM [9]. Our results compared to Refs. [9,11] are given in Table 3, where
h = 0.01. Our results are in good agreement with the results in Refs. [9,11].

6. Conclusion

In this paper, we derive a numerical method for the fractional differential equations based on the operational matrix
Fα for the fractional integration and differentiation. A general procedure of forming this matrix Fα is summarized. Several
examples are given to demonstrate the powerfulness of the proposed method. The matrix Fα can also be used to solve
problems such as fractional system identification, fractional order optimal control.
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