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Hantaviruses, family Bunyaviridae, are rodent-borne RNA viruses that can cause hantavirus pulmonary syndrome (HPS) in
various regions of the Americas. A coevolutionary relationship exists between hantaviruses and their specific rodent
reservoir hosts; the phylogeny of the viruses generally matches that of the rodents. There are several Peromyscus-borne
hantaviruses, including Sin Nombre virus, the most common cause of HPS in North America. This report describes the
genetic detection and characterization of a newly discovered Peromyscus boylii-borne virus, Limestone Canyon (LSC) virus,
the most divergent member of the Peromyscus-borne hantaviruses to date. Analysis of a 1209-nucleotide region of the S
segment of LSC virus showed it to be more closely related to hantaviruses found in harvest mice (Reithrodontomys megalotis
and R. mexicanus) than to other Peromyscus-associated hantaviruses (Sin Nombre, New York, and Monongahela). Phyloge-
netic analysis of virtually the entire M genome segment (3489 nucleotides) of LSC virus revealed a similar picture in which
LSC virus was found to be very distinct from other Peromyscus-associated viruses, but its exact relationship to the other
Peromyscus-borne and the Reithrodontomys-borne viruses was not resolved. These results indicate that hantavirus host
species-jumping events can occur by which a hantavirus may switch to, and become established in, a rodent host belonging
to a different genus. P. boylii are present throughout the southwestern United States and central Mexico. More extensive
screening of HPS patients by using RT-PCR assays will be necessary to determine if LSC virus can cause human disease.
© 2001 Academic Press
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INTRODUCTION ters, 1998). HPS-associated hantaviruses of North Amer-
ica include Sin Nombre (SN), New York (NY), Black Creek
Canal (BCC), Bayou (BAY), Monongahela (MGL), and
Choclo viruses (Nichol et al, 1993; Hjelle et al, 1995b;
Ravkov et al., 1995; Morzunov et al., 1995; Rhodes et al,,
2000; Vincent et al., 2000). Other hantaviruses have been
identified in Sigmodontinae rodents in North and Central

Hantaviruses make up one of five recognized genera
within the family Bunyaviridae. These negative-stranded
RNA viruses consist of a tripartite genome encoding four
structural proteins: the nucleoprotein (N), two glycopro-
teins (G1 and G2), and a viral polymerase (Elliott et al.,
1991). The hantaviruses hosted by rodents in the Muri-

nae and Arvicolinae subfamilies of the family Muridae
(reviewed in Plyusnin et al, 1996) have long been rec-
ognized as the cause of hemorrhagic fever with renal
syndrome in the Old World.

Within the past decade, several New World hantavi-
ruses have been identified as the cause of hantavirus
pulmonary syndrome (HPS). The hosts of these hantavi-
ruses are rodents of the subfamily Sigmodontinae, also
within the family Muridae. Many different strains of han-
taviruses have been discovered in humans and/or ro-
dents throughout North, Central, and South America (Pe-

The nucleotide sequences of the Limestone Canyon virus S and M
RNA segments reported in this article have been deposited with the
GenBank Database under Accession Nos. AF307322 and AF307323,
respectively.

'To whom correspondence and reprint requests should be ad-
dressed. Fax: (404) 639-1118. E-mail: stn1@cdc.gov.
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America but are not known to be associated with human
disease. These include Blue River (BR), Muleshoe (MUL),
El Moro Canyon (ELMC), Rio Segundo (RIOS), and Cala-
bazo (Morzunov et al., 1998; Rawlings et al, 1996; Hjelle
et al., 1994, 1995a; Vincent et al., 2000).

Phylogenetic studies have established a coevolution-
ary relationship between hantaviruses and their specific
rodent hosts, with the occurrence of occasional species-
jumping events (Monroe et al, 1999; Nichol, 1999;
Plyusnin and Morzunov, 2000). Among the North Ameri-
can hantaviruses associated with Peromyscus spp., spe-
cies-jumping has been observed (Morzunov et al., 1998).
While all of the known hantaviruses of Peromyscus spe-
cies origin have been shown to be monophyletic (John-
son et al, 1997, 1999; Morzunov et al., 1998; Monroe et
al, 1999), NY virus, a P leucopus-borne hantavirus, has
been shown to be contained within the same monophy-
letic clade as viruses associated with P maniculatus (SN
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and MGL) rather than in a clade with BR virus, another P,
leucopus-associated hantavirus (Morzunov et al., 1998).
In an earlier study to analyze the patterns of associa-
tion of hantaviruses with different rodent hosts and hab-
itats throughout the southwestern United States, 20% of
Peromyscus boylii (brush mice) were found to have been
infected by hantaviruses based on serologic testing of
the rodent blood specimens by using a SN virus-recom-
binant nucleoprotein antigen in an enzyme-linked immu-
nosorbent assay (ELISA) (Mills et al, 1997). At some
sites, seropositive P boylii were found in the absence of
P. maniculatus, suggesting that these infections did not
represent spillover infection with Sin Nombre virus from
P.maniculatus. Subsequently, a mark—recapture rodent
study in central Arizona reported the predominant spe-
cies captured as P. boylii (70%), of which 20% had been
infected with a hantavirus (Abbott et a/, 1999). In the
current study, genetic material of a unique hantavirus, for
which we propose the name Limestone Canyon (LSC)
virus, was amplified from the blood of a representative
sample of these same P boylii. Phylogenetic analysis
based on virus S segment sequences shows this newly
identified virus to be more closely related to Reithrodon-
tomys-borne hantaviruses than to the other Peromyscus-
associated hantaviruses. Similar phylogenetic analysis
of virus M segment sequences also shows the P. boylii-
borne LSC virus to reside outside of the main Peromys-
cus-borne hantavirus clade. These results suggest that
in addition to occasional species-jumping events among
rodent members of the same genus, host-switching can
also occur between more distantly related rodents.

RESULTS
Diagnostic PCR sequence analysis

Rodent blood samples were obtained from a mark—
recapture trapping study over a 3-year period in Lime-
stone Canyon, north of Prescott, Arizona (Abbott et al,
1999). Each month rodents were captured in this study,
they were tested by ELISA for the presence of antibodies
reactive with SN virus recombinant nucleocapsid anti-
gen. Due to the observation that P. boylii was the pre-
dominant rodent captured, as well as the predominantly
seropositive rodent in this study, three P. boylii from each
of two web-trapping sites (S-1 and S-2) were selected for
genetic testing. Given the recapture element of the study,
samples representing the first hantavirus-specific anti-
body-positive bleed from each of these rodents were
chosen for genetic testing, based on the assumption that
these rodents were recently infected and would be more
likely to have virus present in the blood.

Primers previously designed to target partial N, G1,
and G2 coding regions of Sigmodontinae-associated
hantaviruses were used for reverse transcription—poly-
merase chain reaction (RT-PCR) and second-round PCR
testing of RNA from the six selected seropositive rodent

blood samples (Johnson et al, 1997, Morzunov et al.,
1995; Fulhorst et al, 1997). A PCR product for each of
these three regions was obtained for all six rodents. After
primers were trimmed away, a 394-nt fragment of N, a
259-nt fragment of G1, and a 139-nt fragment of G2 for
each of the rodent samples were compared with one
another. Nucleotide differences between the N se-
guences were less than 1% for the six rodents, while aa
sequences were all identical. The G1 fragments had nt
differences of 0 to 1.9% and no aa differences. The G2 nt
and aa sequences were all identical.

One of the rodents in this study (68273) had been
recaptured and rebled several times. RT-PCR was used
to detect viral RNA extracted from the first hantavirus
antibody-positive blood sample (month 1) and the last
collected blood sample (month 8). Virus N- and Gi-
encoding RNA was detected in both samples and pos-
sessed identical nt sequences.

S segment sequence

Since analysis of the diagnostic fragment sequences
showed a high degree of identity between the six ro-
dents analyzed, one rodent (68273) was chosen for fur-
ther PCR and seguencing analysis. Primers SS5 and
SS1253R (Fig. 1) were used in conjunction with specific
primers designed within the diagnostic N-coding frag-
ment to produce a longer sequence of 1209 nt [mostly
N-coding region with 15 nt of noncoding region (NCR)
before the N start codon]. Pairwise comparison of this
sequence with the equivalent region of other known New
World hantaviruses revealed that the closest relationship
at the nt level was with ELMC virus (19.7% difference),
followed by RIOS virus (22.0% difference), as shown in
Table 1A. Amino acid comparisons showed the same
pattern, with ELMC virus being the closest (only 9.1%
difference in identity), again followed by RIOS (10.8%
difference). Both ELMC and RIOS viruses are from
Reithrodontomys spp. and are 8.0% different from one
another at the aa level. Greater differences were seen
with the aa sequence of the P boylii virus (LSC) and
those of other Peromyscus-borne hantaviruses (SN,
MGL, and NY), ranging from 14.3 to 14.8%. This result
contrasts with the 3.5 to 6.3% difference seen on com-
parison of the other Peromyscus-borne hantaviruses to
one another. Even greater aa differences were seen
when comparing the P boylii LSC virus with the South
American sigmodontine-associated hantaviruses [BAY,
BCC, MUL, Cafio Delgadito, Rio Mamore (RIOM), Laguna
Negra (LN), and Andes (AND)]. Interestingly, LSC virus
and ELMC virus shared 100% aa identity for the immu-
nodominant linear N protein epitope previously charac-
terized in SN virus (Yamada et al., 1995).

Phylogenetic analysis of the 1209-nt S segment frag-
ment of LSC virus and the corresponding region of other
known hantaviruses was performed. Maximum parsi-
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FIG. 1. Primers used to extend Limestone Canyon (LSC) virus diagnostic PCR fragments. Hantavirus segments are shown in cDNA sense. Primers
were designed on the basis of multiple sequence alignments of Sigmodontinae-associated hantaviruses. Primers SS5, SM5, and SM3 target the
termini of the viral segments. Primers SS12563R and SM123C target internal regions of viral segments; the number in the primer name denotes the
position of the primer in the multiple sequence alignment. These primers were used in conjunction with specific LSC virus primers (denoted by arrows
above hatched boxes) for RT-PCR followed by either nested or heminested PCR. In addition, two sets of specific LSC virus primers were designed
to amplify the region joining the G1 and G2 diagnostic PCR fragments. Inosines within primer sequences are represented by the letter I. NCR,

noncoding region; ORF, open reading frame.

mony analysis (using a 4:1 weighting of transversions to
transitions) of the nt sequences placed LSC virus in a
highly supported (99% bootstrap support) monophyletic
clade with the two Reithrodontomys-associated hantavi-
ruses, ELMC and RIOS (Fig. 2A). The other Peromyscus-
associated hantaviruses (SN, MGL, and NY) occupied a
separate clade with 100% bootstrap support. Maximum

parsimony analysis of the deduced S segment aa se-
guences also showed two distinct and well-supported
clades, with one consisting of LSC virus and the Reithro-
dondomys viruses and the other clade containing the
other Peromyscus-borne viruses (Fig. 2B). Further sup-
port of this topology was demonstrated by maximum
likelihood analysis of the nt sequences (Fig. 2C).
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TABLE 1

LSC Virus and Other Hantaviruses: Percentages of Difference in Nucleotide and Amino Acid Identities®

A. S segment”

Virus LSC EMC RS SN MGL NY BAY BCC MUL CD RM LN AND PUU HTN
LSC — 19.7 22.0 23.2 23.4 23.2 25.6 24.6 24.6 26.8 24.7 25.3 24.8 32.1 39.6
EMC 9.1 - 20.5 23.7 23.7 23.0 23.7 24.8 24.7 241 23.8 25.7 23.7 32.8 39.0
RS 10.8 8.0 — 24.4 25.4 26.2 24.7 26.6 27.5 26.2 25.8 25.3 26.0 30.2 40.9
SN 14.8 15.3 16.6 — 16.4 15.9 23.2 24.5 24.9 23.9 23.8 23.8 23.7 32.4 38.8
MGL 14.6 15.8 17.3 6.3 — 14.7 22.9 24.3 24.5 23.9 23.5 25.2 21.5 32.2 38.4
NY 14.3 16.1 171 6.0 3.5 — 22.7 24.3 23.5 24.0 23.0 23.8 22.8 30.9 39.3
BAY 15.6 15.6 16.8 12.8 11.6 12.3 — 18.6 19.1 24.4 22.2 22.4 23.4 30.1 36.8
BCC 16.8 17.3 18.3 16.1 141 14.8 7.8 - 19.1 26.4 23.2 22.8 23.7 31.8 37.3
MUL 18.3 17.8 19.4 17.6 16.3 16.6 7.3 10.3 — 25.0 23.0 24.2 23.1 31.4 37.9
CD 19.7 18.4 20.2 16.8 16.5 16.5 18.4 19.2 18.6 — 24.0 25.5 22.6 32.8 39.3
RM 16.3 17.6 18.6 15.3 13.6 13.6 12.1 13.3 14.1 16.5 — 17.5 20.6 31.6 37.8
LN 17.3 18.1 19.4 14.8 13.6 13.1 12.8 14.6 16.1 16.8 7.0 — 20.8 30.9 36.4
AND 15.6 17.6 18.3 13.8 121 12.3 11.8 13.8 14.6 15.7 9.3 9.8 — 32.4 37.4
PUU 28.9 30.4 29.9 29.7 29.9 29.7 28.1 27.9 27.6 29.5 29.2 28.9 28.1 — 39.2
HTN 38.4 39.2 39.5 38.7 38.4 38.2 37.7 36.9 38.4 40.1 37.2 37.4 36.9 40.9 —
B. M segment®

Virus LSC EMC SN NY BR BAY BCC LN AND LEC ORN PUU HTN
LSC —_ 27.3 26.1 26.6 25.9 27.7 27.3 29.8 28.7 29.5 30.1 34.0 39.6
EMC 19.7 — 27.8 28.6 27.6 28.8 28.2 30.0 30.8 31.2 30.6 34.9 40.5
SN 16.9 19.7 — 19.2 19.6 27.1 26.6 28.8 28.1 27.9 28.7 33.5 41.6
NY 17.3 20.9 5.1 —_ 19.6 28.0 27.2 28.5 28.6 29.7 29.3 34.2 40.8
BR 17.6 20.1 6.7 6.8 — 27.8 26.6 27.7 28.7 28.4 28.4 33.4 40.5
BAY 20.8 22.1 18.3 20.3 19.8 — 22.3 29.5 28.6 29.3 29.4 34.8 40.8
BCC 20.8 22.5 19.4 20.8 20.4 11.3 — 28.3 28.3 29.7 29.4 35.2 40.9
LN 24.4 25.1 22.3 23.3 22.5 23.2 23.2 — 24.4 24.1 24.0 33.8 41.2
AND 24.0 25.4 20.8 22.4 21.6 22.8 23.5 12.7 — 21.3 21.2 34.4 411
LEC 23.6 25.3 20.9 22.0 21.5 23.5 23.5 12.9 6.4 — 18.9 35.7 41.6
ORN 24.4 26.1 21.6 22.4 22.0 23.5 23.6 13.2 7.6 4.6 — 34.7 421
PUU 32.2 32.4 32.4 32.5 32.2 34.4 33.9 33.4 32.5 32.5 32.7 — 41.4
HTN 41.7 42.8 44.6 44.9 43.8 44.3 449 445 44.2 43.4 44.2 455 —

“Values above the dashed lines represent the percentages of difference in nucleotide identities and those below represent the percentages of
difference in amino acid identities. Values were calculated using the DISTANCES program of the Genetics Computer Group software. Virus
abbreviations and GenBank Accession Nos.: LSC, Limestone Canyon, AF307322, AF307323; EMC, El Moro Canyon RM-97, U11427, U26828; RS, Rio
Segundo RMx-Costa-1, U18100; SN, Sin Nombre NM H10, L25784, L25783; MGL, Monongahela-1, U32591; NY, New York RI-1, U09488, U36801; BAY,
Bayou, L.36929, L.36930; BCC, Black Creek Canal, L39949, L39950; MUL, Muleshoe, U54575; CD, Cafio Delgadito 574 and 757, AF000140, Fulhorst et
al, 1997; RM, Rio Mamore OM-556, U52136; LN, Laguna Negra, AF005727, AF005728; AND Andes, AF004660, Padula et al, unpublished; LEC,
Lechiguanas, AF028022; ORN, Oran, AF028024; PUU, Puumala Sotkamo, X61035, X61034; HTN, Hantaan 76-118, M14626, M14627.

© Percentages of difference for the S segment sequences were based on 1225 nucleotide and 403 amino acid multiple sequence alignments except
for differences from CD, which were based on 1146 nucleotide and 381 amino acid alignments.

° Nucleotide comparisons were done on the open reading frame portion of the M segment sequence. Percentages of difference for the M segment
sequences were based on 3355 nucleotide and 1119 amino acid multiple sequence alignments.

difference) than to the Reithrodondomys-borne ELMC
virus (27.3%) (Table 1B). A similar pattern was seen on
comparison of the deduced aa sequences, with the se-
quences of the Peromyscus-borne hantaviruses again
being the closest to that of LSC virus, albeit with sub-

M segment sequence

The primers SMb5, SM123C, and SM3 (Fig. 1) were
used together with specific primers designed within the
G1 and G2 diagnostic fragments to obtain an almost
complete M segment sequence of 3489 nt, including 161

nt of the NCR after the glycoprotein precursor (GPC) stop
codon (rodent 68273). Unlike the results obtained with
the S segment data, pairwise comparison of the nt se-
qguences (ORF portion) of virus M segments showed LSC
virus to be slightly more related to the other Peromyscus-
associated hantaviruses BR, SN, and NY (25.9 to 26.6%

stantial differences of 16.9 to 17.6% in identity. The next
closest viruses were ELMC (19.7% difference), followed
by the South American sigmodontine-associated hanta-
viruses [BAY, BCC, LN, AND, Lechiguanas (LEC), and
Oran (ORN)]. Although LSC virus demonstrated the clos-
est relationship with the Peromyscus-borne hantavi-
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ruses, it was still quite distant in comparison to the
relationship of the other Peromyscus-associated hanta-
viruses to one another (only 5.1 to 6.8% difference). If the
comparison is limited to the G1 aa coding region, LSC
virus is even more divergent from the other Peromyscus-
borne viruses (19.5% different from SN, BR, and NY).

The only M segment nucleotide sequence information
that is available for Cafio Delgadito virus is that for the
139-nt diagnostic fragment. Comparison of this se-
guence region with that of LSC virus shows that they
differ by 28.8% and demonstrates that these M segments
are not closely related.

Phylogenetic analysis of hantavirus M segment nt and
deduced aa sequences provided less clear resolution of
the virus relationships than was obtained with the S
segment data. Maximum parsimony analysis (with 4:1
weighting of transversions to transitions) of the 3489-nt
sequence of LSC virus and that of other known hantavi-
ruses generated a well-supported (100%) monophyletic
clade that included all of the previously described Pero-
myscus-associated hantaviruses (BR, SN, and NY) (Fig.
3A). The analysis placed LSC virus in a separate clade
with ELMC, but with relatively weak bootstrap support
(60%). The maximum parsimony aa analysis also strongly
supported the monophyletic grouping of BR, SN, and NY
viruses (Fig. 3B). However, there was little support for the
monophyly of LSC virus and ELMC virus in this analysis,
but instead LSC virus was placed on a separate branch,
with some bootstrap support. A maximum likelihood
analysis of the nt sequences was then conducted to try
to more precisely resolve the phylogenetic relationship
of LSC virus relative to the other known Sigmodontinae-
associated hantaviruses (Fig. 3C). This analysis pro-
duced a tree topology similar to that seen with the nt and
aa maximum parsimony analyses, but placed LSC virus
on a separate individual branch as in the aa tree. Boot-
strap analysis using maximum likelihood was not possi-
ble due to the computationally intensive nature of the
analysis.

DISCUSSION

Previous studies have revealed a high prevalence of
SNV-reactive antibody in P boylii populations in the
Southwest (Mills et al.,, 1999). A study of the population
dynamics and seropositivity patterns of these rodents
strongly suggested that these hantaviral infections did
not simply represent spillover infection from a different
host species. In a 35-month mark—-recapture study of
rodent populations in Limestone Canyon in central Ari-
zona, eight different species of rodents were captured
and serologically tested for antibodies to SN virus (Ab-
bott et al, 1999). P. boylii was by far the predominant
species captured (70%), followed by P truei (18%). P,
boylii also had the highest hantavirus antibody preva-
lence (20%), followed by P truei (3%), with all other

captured rodent species being negative for the presence
of hantavirus antibody. These results, in addition to the
fact that the few seropositive P, truei were captured when
P. boylii densities were at their highest, are evidence that
P. boylii is a hantavirus primary reservoir host and that
these infections do not represent spillover infection in
the brush mice from another sympatric rodent. The
present study was aimed at determining the identity of
the virus for which P boylii is apparently the distinct
rodent host.

Six representative P. boylii from the previous trapping
study were selected, and diagnostic PCR fragments
were amplified from the blood. All of the rodents were
infected with the same virus, as the nt sequences for the
virus partial N, G1, and G2 coding regions differed by
less than 2% among the rodents, and the deduced aa
sequences were all identical.

Extended sequences of the S and M viral segments
allowed us to gain insight into the identity of this partic-
ular virus. The S segment sequence provided the clear-
est picture. Unexpectedly, the closest relationship to the
P. boylii virus was shown to be the hantaviruses of
Reithrodontomys origin. The difference in aa sequence
was 9.1% to ELMC virus (R. megalotis) and 10.8% to RIOS
virus (R. mexicanus), suggesting that the P boylii virus
was a quite distinct virus. Phylogenetic analysis of the S
segment using three different methods supports this
relationship by placing the P boylii virus in a well-sup-
ported clade with the Reithrodontomys viruses, while the
other Peromyscus-borne viruses occupy their own highly
supported clade.

The unique nature of the P. boylii virus was further
demonstrated by the M segment sequence pairwise
comparisons. The closest known hantavirus aa se-
guence was 16.9% different, not to a Reithrodontomys-
associated virus but to SN virus (P. maniculatus). In fact,
the other Peromyscus-borne hantavirus sequences (NY
and BR) were also closer to the P. boylii virus sequence
than ELMC. Phylogenetic analysis of the M sequences
showed LSC virus to be distinct from the other Peromys-
cus-associated hantaviruses, but did not clearly resolve
the relationship of the virus relative to the Reithrodonto-
mys- and other Peromyscus-borne viruses. The maxi-
mum parsimony nt tree placed the P boylii virus in a
monophyletic clade with ELMC. However, the maximum
parsimony aa tree and the maximum likelihood nt tree
both placed the P boylii virus on a branch alone, sepa-
rated from both ELMC and the Peromyscus-borne han-
taviruses. However, poor bootstrap support was ob-
tained for the placement of the P. boylii virus on either of
the maximum parsimony-generated topologies.

Given the distinct nature of the P boylii virus, we have
proposed the name Limestone Canyon (LSC) virus after the
geographic location of the initial detection of the virus. The
S segment analyses indicate a clear relationship of LSC
virus to the Reithrodontomys-borne viruses, which presum-
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ably means that a host species-jumping event must have
taken place during the long evolutionary history of these
viruses. Extensive studies of hantavirus genetic sequences
support a general scenario in which a single rodent spe-
cies or subspecies is found to host each genetically distinct
hantavirus, with occasional spillover infections occurring
from the primary rodent host into other species, which
result in only transient infections (Monroe et al, 1999; Ni-
chol, 1999). The finding of a small number of examples of
actual host species-jumping events suggests that occa-
sionally these spillover infections may result in establish-
ment of a hantavirus in a new rodent reservoir and its
evolutionary adaptation to that host (Monroe et al, 1999;
Vapalahti et al, 1999). A previous example of this in North
America is the P leucopus-borne NY virus, which appears
to be more phylogenetically related to the R maniculatus
viruses than to other P. Jeucopus viruses (Morzunov et al.,
1998). While this host-switching event appears to have
involved rodents of the same genus, the LSC virus example
described here suggests that virus host-switching can also
occur between rodents of different genera. In the case of
LSC virus, the switch likely involved an ancestor virus/
rodent host of Peromyscus and Reithrodontomys, both
members of the neotomine—peromyscine rodent group of
North America (Engel et al, 1998). A similar transgenus
jump has also been recently suggested to explain the
finding of the Microtus fortis-borne Khabarovsk virus being
phylogenetically more closely related to viruses of lem-
mings and Clethrionomys voles than to other Microtus-
borne viruses (Horling et al, 1996; Vapalahti et al, 1999;
Nichol, 1999).

Phylogenetic analysis of mtDNA sequences of Pero-
myscus species suggests that P boylii is not particularly
unusual relative to the other Peromyscus species and is
not more ancestral relative to P maniculatus and P
leucopus (Engel et al, 1998). Thus, even if the weakly
supported virus tree topologies (obtained by maximum
parsimony analysis of M segment deduced aa sequence
or maximum likelihood analysis of M segment nt se-
guence data) that depict LSC virus as not being mono-
phyletic with Reithrodontomys-borne hantaviruses are
correct, the placement of LSC virus quite separate from
and ancestral to the other Peromyscus-borne viruses
would still be at odds with a strict virus—rodent coevolu-
tionary scenario. If the evolutionary history of the LSC
virus S and M segments are truly different, then the
possibility of a segment reassortment event may also be
considered. This appears to be supported by the pair-
wise comparisons in which the opposite scenario is
seen from the S segment analysis, where the LSC virus
S segment sequence is seen to be closer to the ELMC
virus sequence than to those of the other Peromyscus-
borne viruses. However, analysis of additional hantavirus
sequences may be necessary before the precise phylo-
genetic relationships of ELMC and LSC viruses relative
to other hantaviruses can be determined.

Finally, the RT-PCR detection of LSC virus RNA in blood
specimens taken over an 8 month period from a naturally
infected P boylii is evidence of long-term infection and
further supports the conclusion that P boylii is the rodent
host for this newly identified hantavirus. This rodent is
found throughout much of the southwestern United States
and down into central Mexico. Currently, there are no data
linking this virus to human infections, but further monitoring
and surveillance of infected individuals throughout the
range of P boylii will be necessary to rule out this possi-
bility. Whether other unique Peromyscus-borne viruses ex-
ist will also require further testing of other species. As part
of an HPS case investigation in Arizona, several hantavirus
antibody-positive R eremicus (cactus mice) were trapped
on a river landing less than 1 acre in size, which was
bordered by a high cliff wall on one side and the Colorado
river on the other sides. No P maniculatus were found
during the trapping; however, the virus associated with the
P eremicus was shown by RT-PCR analysis to be a minor
variant of Sin Nombre virus (Nichol, Ksiazek, Sanchez,
Stevens, and Leslie, unpublished). While several hantavi-
ruses have now been found to be associated with different
Peromyscus species or subspecies, it is possible that not
all of the 53 recognized Peromyscus species will harbor
unigue hantaviruses.

MATERIALS AND METHODS
Genetic testing and analysis

RNA extraction, RT-PCR, nested PCR, and product
purification were done as previously described, except
when amplifying products between 1.5 and 2.0 kilobases
(kb) where extension times were increased from 2 to 3
min for both first- and second-round PCR (Johnson et al,,
1997, 1999).

Primers were used that amplified partial N and G1
protein coding regions of Sigmodontinae-associated
hantaviruses (Johnson et al., 1997). Primers designed to
detect a region of the G2-coding sequence of BAY virus
were also used (Morzunov et al,, 1995; Fulhorst et al,
1997). Once sequence was obtained for each of these
regions, specific RT-PCR primers were designed and
used together or in various combinations with terminal
and internal primers designed to target Sigmodontinae-
associated hantaviruses. These were used in either
nested or hemi-nested PCR formats to obtain larger
fragments (Fig. 1).

After purification of the PCR products, direct sequenc-
ing was done on an ABI 377 sequencer using the dye
termination cycle sequencing technique (Applied Biosys-
tems, Inc., Foster City, CA). Sequencher version 3.1.1
(Gene Codes Corp., Ann Arbor, MI) was used for initial
editing of the obtained sequences. These sequences
were then compiled and analyzed with the Wisconsin
Sequence Analysis Package version 10.0 (Genetics
Computer Group, Inc., Madison, WI). Phylogenetic anal-
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ysis was done using the PAUP* version 4.0b4a Macin-
tosh computer software program (Swofford, 1998). Nu-
cleotide analyses included maximum parsimony employ-
ing a 4:1 weighting of transversions to transitions and
maximum likelihood. Amino acid sequence alignments
were analyzed by maximum parsimony using the step
matrix PROTPARS. For maximum likelihood analyses, an
unweighted parsimony tree was first generated, and cer-
tain parameters estimated from this analysis (transition:
transversion ratio, proportion of invariable sites, and
gamma distribution value for variable sites) were entered
into the maximum likelihood analysis to facilitate the run.
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