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Accuracy plays a vital role in the medical field as it concerns with the life of an individual. Extensive
research has been conducted on disease classification and prediction using machine learning techniques.
However, there is no agreement on which classifier produces the best results. A specific classifier may be
better than others for a specific dataset, but another classifier could perform better for some other data-
set. Ensemble of classifiers has been proved to be an effective way to improve classification accuracy. In
this research we present an ensemble framework with multi-layer classification using enhanced bagging
and optimized weighting. The proposed model called “HM-BagMoov” overcomes the limitations of
conventional performance bottlenecks by utilizing an ensemble of seven heterogeneous classifiers.
The framework is evaluated on five different heart disease datasets, four breast cancer datasets, two
diabetes datasets, two liver disease datasets and one hepatitis dataset obtained from public repositories.
The analysis of the results show that ensemble framework achieved the highest accuracy, sensitivity and
F-Measure when compared with individual classifiers for all the diseases. In addition to this, the ensem-
ble framework also achieved the highest accuracy when compared with the state of the art techniques.
An application named “IntelliHealth” is also developed based on proposed model that may be used by

hospitals/doctors for diagnostic advice.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Data mining in the medical domain collects data from the past
experiences and analyzes them to identify trends and solutions to
the present situations [1]. It is an efficient analytical methodology
for detecting unknown and valuable information, from large vol-
ume of medical data [2]. Data mining techniques can be used for
development of predicative models that enable classification and
prediction. Learning is the process of building a scientific model
after discovering knowledge from data. Which brings us to the con-
cept of machine learning, which can be formally defined as “the
complex computation process of automatic pattern recognition
and intelligent decision making based on training sample data”
[3]. Depending on the availability of the data, machine learning
classifiers are categorized into supervised learning and unsuper-
vised learning [3]. In supervised learning, training data is available
and a learning model is trained. Popular methods include Artificial
Neural Network (ANN), Support Vector Machine (SVM), and Deci-
sion Trees. In unsupervised learning, no label is given in sample
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data. Examples include k-means clustering and self-organization
map. An ensemble approach combines the results of single classi-
fication techniques and results in better performance as compared
to a single classifier [4,5]. Multiple techniques are utilized for con-
structing the ensemble and each results in different diagnosis
accuracy. Bagging [6], boosting [7] and stacking [8] are the most
common ensemble approaches.

In the last few decades, multiple machine learning techniques
have been widely used for classification and prediction of heart
disease [9], breast cancer [10], diabetes [11], liver disease [12]
and hepatitis [13]. The comparison of these techniques is shown
in Tables 1-5.

It can be seen from the above tables that extensive research has
been conducted in this field. However, there is no agreement on
which methodology is better than others: one classifier could per-
form better than others in respect of a given dataset or a specific
disease, while a further approach could outperform the others
when dealing with a different dataset or a disease.

This uncertainty about which model represents an optimal
solution has been overcome in this research by introducing a novel
ensemble approach named “HM-BagMoov” which is able to exploit
the potentials of several classifiers.
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Table 1 Table 4
Machine learning techniques used on heart disease datasets. Machine learning techniques used on liver disease datasets.
Author/reference Year Technique Accuracy (%) Author/reference Year Technique Accuracy (%)
Thenmozhi et al. [14] 2014  K-Mean based on MAFIA 74 Vijayarani et al. [31] 2015 Support vector machine 61.2
Chitra et al. [15] 2013 Cascaded Neural Network 84 Jin et al. [32] 2014 Naive Bayes 539
Support Vector Machine 82 Decision tree 69.4
Shouman et al. [16] 2013 Gain ratio Decision Tree 79.1 Multi layer perception 67.9
Naive Bayes 83.5 K nearest neighbor 65.3
K Nearest Neighbor 83.2 Sugawara et al. [33] 2013  Self-Organizing Map 66
Shouman et al. [17] 2012 K mean clustering with 78.62 Kumar et al. [34] 2013 Rule based classification model 72
Naive Bayes algorithm Ramana et al. [35] 2012 NN+CFS 73
Ghumbre et al. [18] 2011 Support Vector Machine 84.05 MLP 74
Radial Basis Function 82.24 148 73
Simple CART 69
K star 68
Table 2

Machine learning techniques used on breast cancer datasets.

Author/reference Year

Chaurasia et al. [19] 2014

Technique Accuracy (%)

Sequential Minimal 94.2
Optimization

Ashfaq Ahmed et. al. [20] 2013 Support Vector 75.00
Machine
Random forest 75.00

Salama et al. [21] 2012 SMO + J48 + MLP 77.31
+IBK

Lavanya et al. [22] 2012 Hybrid approach 93.96

Lavanya et al. [23] 2011 CART with feature 94.56
selection

Table 3

Machine learning techniques used on diabetes datasets.

Author/ Year Technique Accuracy (%)

reference

Gandhi et al. 2014 F-score feature selection + SVM 75
[24]

Stahl et al. 2014 Sliding Window Bayesian Model 61
[25] Averaging

Aslam et al. 2013  Genetic programming with 79
[26] comparative partner selection

Nirmala Devi 2013 K nearest neighbor 87.4
etal. [27]

Christobel 2012 K nearest neighbor with imputation = 73.38
et al. [28] and scaling

Zolfaghari [29] 2012 BP Neural Network and SVM 88

Lee [30] 2011 Fuzzy diabetes ontology 75

The main contributions of this paper are summarized as
follows:

e An optimal combination of classifiers is presented which is
comprised of Naive Bayes, Linear Regression, Quadratic
Discriminant Analysis, Instance Based Learner, Support Vector
Machine, Artificial Neural Network and Random Forest.

e The ensemble approach uses bagging with multi-objective
optimized weighted vote based technique and multi-layer
classification.

e We compare our approach with existing state of the art tech-
niques to prove the superiority of our proposed ensemble.

e An application named “IntelliHealth” has been developed based
on the proposed ensemble model that may be used by hospi-
tals/doctors for diagnostic advice.

The proposed HM-BagMoov ensemble approach is an enhanced
version of our BagMoov ensemble approach [55]. However the
major difference between the two techniques is that BagMoov
ensemble approach follows the taxonomy of flat structure where
all base classifiers are arranged in single layer with bagging.
HM-BagMoov is a multi-layer classification scheme to further

Table 5
Machine learning techniques used on hepatitis datasets.

Author/reference Year Technique Accuracy (%)
Pushpalatha et al. [36] 2014 Model framework 80
El Houby [37] 2013  Associative classification 80
Karthikeyan et al. [38] 2013 Naive Bayes 84

J48 83

Random forest 83
Kaya et al. [39] 2013 Rough set-ELM 86.4
Kumar et al. [40] 2012 Support vector machine 79.33

enhance the prediction. In HM-BagMoov, the number of classifiers
has been increased from 5 to 7 as well as utilization of enhanced
bagging and optimized weighting. We have also introduced feature
selection, missing value imputation, noise removal and outlier
detection to further improve the accuracy.

The rest of the paper is organized as follows: Section 2 presents
the proposed ensemble framework. Section 3 provides the results
and discussion from the experiments carried out. Section 4 pro-
vides details of the IntelliHealth application. Finally, conclusions
and recommendations for future work are summarized in
Section 5.

2. HM-BagMoov ensemble framework

The proposed framework involves data acquisition, pre-
processing, classifier training and HM-BagMoov (Hierarchical
Multi-level classifiers Bagging with Multi-objective optimized vot-
ing) ensemble model for disease prediction based on three layered
approach.

2.1. Data acquisition and pre-processing module

Data acquisition and pre-processing module includes feature
selection, missing value imputation, noise removal and outlier
detection.

e F-Score feature selection: The proposed framework uses F-Score
feature selection method to select the most important and related
features from medical datasets. F-Score is a simple method that
distinguishes the two classes with real values. Following equation
is used to calculate the F-Score of a feature in given dataset:

(X;(” _X;)Z n (X;H —X;)Z
i () e (5 )

where the average of the ith feature of the whole, positive and neg-
ative datasets are denoted by X/, X/(+) and X/(—) respectively. X (+)
is the ith feature of the kth positive instance whereas X (—) is the
ith feature of the kth negative instance. The numerator shows the

F(i) =

(1)



S. Bashir et al./Journal of Biomedical Informatics 59 (2016) 185-200 187

discrimination between the positive and negative sets, and the
denominator defines the one within each of the two sets. The F-
score value for each feature is calculated and then for selecting
the appropriate features, a threshold value is used. It is obtained
by calculating the average F-Score of all features in the dataset.
The feature is added to the feature space which has F-Score value
greater than threshold. For a given vector xi, where k=1,...,n,
and number of positive and negative instances are denoted by n.
and n_. The F-Score of ith feature is then calculated using Eq. (1).
A large value of F-Score indicates that the feature is more
discriminative.

e Missing data imputation using KNN approach: The KNN
approach is used for missing data imputation. The proposed proce-
dure is named as “KNNimpute”. It is defined as, given a set of
instances with incomplete pattern, the K closest cases with known
attribute values are identified from the training cases for which the
attribute values need to be determined. Once K-nearest neighbors
are identified, the missing attribute values are then identified. An
appropriate distance measure is used to determine the K-nearest
neighbors and then to impute the missing value. The proposed
missing data imputation technique uses heterogeneous
Euclidean-overlap metric (HEOM) for distance measure between
two variables. HEOM has a benefit that it can calculate different
distance measures for different types of attributes. For instance,
X, and x;, are two variables and distance between them is denoted
by d(x4, x»). Then following formula is used to calculate the dis-
tance between them:

d(xa, %) = /> di(Xej, %)’ (2)

where distance is determined for jth attribute. dg is an overlap dis-
tance function which assigns a value of 0 if qualitative features are
same other d = 1. For example:

0 Xaj = Xpj
1 Xaj # Xpj

do(Xqj, Xpj) = { 3)
Consider jth attribute is missing for an instance x i.e. m; = 1. The dis-
tance of x from all training instances is calculated and K-nearest
neighbors are identified using the given notation:

Vx = {Vk 55:1 (4)

where k-nearest neighbors of x are arranged in increasing distance
order. For instance, v, is the closest neighbor of x. Once K-nearest
neighbors are identified, the unknown value is determined by an
estimate from jth feature values of V,.

If the jth feature value is continuous value, then missing value is
replaced by mean value of its K nearest neighbors. If the jth input
feature is qualitative value then the missing value is imputed by
determining the category of value using V,. The mode of {V,}}_,
is imputed where same importance is given to all neighbors. A
weighted method assigns a weight o, to each V, and closer neigh-
bors are assigned greater weight. The grouping is performed using
discrete value in the jth input feature. The distance weighted
method for KNN classifier where o is calculated by:

d(Vi,x) — d(Vi, X)
%) = q(Vx) — (V1) ®)
where oy (x) = 1 when all distances are equal. For imputation, con-
sider the jth feature is qualitative having S possible discrete values.
The imputed value is given by

S = argmax {o} (6)

where s is the possible category that is determined as imputed
value. The missing value imputation method can be defined by
flowchart given in Fig. 1.

e Outlier detection and elimination: We have used Grubb’s test
for outlier values that may exist in medical datasets. There are sev-
eral reasons for outliers in disease data such as abnormal condition
of patient or equipment malfunction or recording error. Grubb’s
test is also called ESD (Extreme Studentized Deviate) method. This
method is beneficial as it considers complete dataset values for
outlier detection and elimination. This test is performed as long
as all outliers will be detected. It is a two-step process. First step
is to calculate how far the outliers are from others. The ratio G is
calculated in second step that is the difference between dataset
value and mean divided by standard deviation. Following formula
is used to determine outliers using Grubb’s test.

_ MaXiy nfXi —X|
o

G (7)
where x; is the element of dataset, x is mean of dataset and ¢ is stan-
dard deviation of dataset. A statistical significance (o) level is used
as threshold value. The Grubb’s test calculated value is compared
with « level threshold value. If the calculated value is higher or
lower than significant level, then this value is considered as an
outlier.

e Noise removal: The proposed pre-processing involves noise
removal using clustering approach. It can also result in data reduc-
tion as irrelevant and noisy data is removed from medical dataset.
The data is clustered into groups having similar characteristics. The
centroid is calculated for each cluster and then maximum distance
value is measured for each cluster. If this distance value is larger
than specified threshold than it is considered as noise. Threshold
value is a parameter provided by user and is measured using mean
of all values within a cluster. We have used pair-wise distance in
order to calculate Euclidean distance between pair of objects for
n by p data matrix. The rows of X show instances or observations
whereas columns indicate the variables or attributes. Following
formula is used to measure Euclidean distance between pair of
attributes for two instances:

d = (% = X) (X = X,)' ®)
where

1

X = ﬁzj:x,,- )
and

1

Xs = E;xrs (10)

Following steps are used to remove noise from disease dataset:
Calculate pair-wise distance using Euclidean distance between pair
of objects; Take square distance. Calculate maximum values from
square distance values; Calculate threshold value for each cluster;
If distance > threshold then the value is noise and removed from
dataset.

2.2. Classifier training module

The classifier training module performs further computations
on pre-processed data. Each individual classifier is trained using
the training data in order to make them useful for disease
prediction.

2.3. HM-BagMoov ensemble

In this section we explain the construction of the HM-BagMoov
ensemble. A crucial step of most ensemble methods is the selection
of the optimal set of models to be included in the ensemble. Two
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Fig. 1. Proposed missing data imputation method.

conditions that should be satisfied to achieve a good quality
ensemble are accuracy and prediction diversity.

2.3.1. Multi-objective optimization weighted voting ensemble scheme

There are numerous combing models for ensembles such as
Genetic Programming (GP), which is an evolutionary based opti-
mization technique [76,77]. For example, authors in [76] proposed
a classifier stacking based evolutionary ensemble method for
predicting amino acid sequences associated with breast cancer.
The base classifiers are stacked and GP is employed to generate
the meta-classifier which combines the prediction of the classi-
fiers. However, Unweighted [41] and Weighted Voting [42] are
two of the most common methods for combining models. In
unweighted voting also called majority voting, each model outputs
a class value and the class with the most votes is the one proposed
by the ensemble. For example, simple majority based ensemble
approaches are developed for cancer prediction using amino acid
sequences [74,75]. Ali et al. [74] proposed an ‘IDM-PhyChm-Ens’
classification method by utilizing homogeneous ensemble method
where majority voting is used to combine the results.

Weighted voting scheme has an advantage over majority voting
that in case of different predictions by each base classifier for an
instance, the final prediction will be the classifier which has
highest weight associated with it. Weighted voting technique

determines the final prediction where weights can be assigned
on the basis of classification accuracy. The classifier which has high
accuracy will attain high weight and vice versa. The final predic-
tion will be done based on highest weighted vote. The biasness
of accuracy results can be generated if we have biased dataset in
case of unbalanced classes. An unbiased metric is needed in order
to assign the weights to base classifiers instead of accuracy mea-
sure. Thus we propose using an enhanced version of weighted vote
based ensemble framework based on F-Measure (Precision
+ Recall).
The precision is defined as follows:

True Positive
True Positive + False Positive

Precision = (1)
where true positives are correctly classified actual positives and
false positives are actual negatives that are incorrectly labeled as
positives.

Recall is defined as follows:

True Positive
Recall = — -
True Positive + False Negative

(12)

where false negatives are incorrectly labeled data as negatives that
are actual positives.
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Fig. 2. Detailed architecture of proposed ensemble framework.

The F-Measure is the weighted average of Recall and Precision
and is represented by:

Recall * Precision

F-Measure = 2 « Recall + Precision

(13)

HM-BagMoov therefore, will use multi-objective optimized weight-
ing scheme where the objective functions will be precision and
recall. Formally, it can be stated as: Find the number of vectors V,,
where Vi, ={vy, 15, 13, ...,0,} for each classifier C;, and C, = {C;, G,

Cs, ...,G,} such that simultaneously optimize the N objective crite-
ria, while satisfying the constraints, if any.

2.3.2. Enhanced bagging scheme

Bagging is a “Bootstrap” ensemble method and also termed as
Bootstrap Aggregation. Bootstrap Aggregating (bagging) aims to
sample data sets for an ensemble of classifiers.

Bagging methods form a class of algorithms which build several
instances of a black-box estimator on random subsets of the orig-
inal training set and then aggregate their individual predictions to
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form a final prediction. These methods are used as a way to reduce
the variance of a base estimator, by introducing randomization into
its construction procedure and then making an ensemble out of it
[73]. As Bagging ensemble provides a way to reduce overfitting,
bagging methods work best with strong and complex models
(e.g., fully developed decision trees, Naive Bayes, SVM, etc.), in con-
trast with boosting methods and other ensemble techniques [73].

We have applied an enhanced bagging scheme to the HM-
BagMoov ensemble. At first stage, original training set for each
dataset is divided into multiple bootstrap sets with replacement.
In order to create bootstrap samples from training set of size m, t
multinomial trails are performed, where one of the m examples
is drawn for each trial. The probability of each example to be
drawn in each trial is 1/m. The proposed ensemble chooses a sam-
ple r from 1 to m and the rth training example is added to bootstrap
training set S. Moreover, it is possible that some of the training
examples will not be selected in bootstrap training sets whereas
others may be chosen one time or more. At second stage, classi-
fiers’ training is performed using bootstrap training sets generated
during the first stage. We also state that each classifier in the bag-
ging approach should not have the same weight as each classifier
has a different individual performance level. The HM-BagMoov
ensemble will return a function h(d) that classifies new samples
into class y having the highest weight from the base models h;,
hy, hs, ..., h.

2.3.3. Selection of classifiers

The ensemble frameworks are classified into two categories
[43,44]: homogeneous ensemble frameworks and heterogeneous
ensemble frameworks. The homogenous ensemble framework uses
base classifiers of same type whereas heterogeneous ensemble
framework uses base classifiers of different types. The basic idea
behind ensemble classifiers is that they perform better than their
components when the base classifiers are not identical. A neces-
sary condition for the ensemble approach to be useful is that mem-
ber classifiers should have a substantial level of disagreement, i.e.,
they make error independently with respect to one another. The
limitations of homogeneous ensemble frameworks can be removed
by using heterogeneous ensemble frameworks. For heterogeneous
ensembles, ensemble creation is usually a 2-phase process (some-
times called overproduce & select): many different base models are
generated by running different learning algorithms on the training
data, then the generated models are combined to form the ensem-
ble. Multiple studies show that the strength of heterogeneous
ensemble is related to the performance of the base classifiers and
the lack of correlation between them (model diversity). We have
also introduced multi-layer classification to further enhance the
prediction. In order to keep the ensemble computationally less
expensive we have used a three layer approach. The detailed archi-
tecture of proposed ensemble model is shown in Fig. 2.

The choice of base classifiers is based on diversity where those
classifiers are selected from the literature recently used for disease
classification and prediction in medical domain. We have per-
formed literature survey of almost 200 research papers and
selected classifiers which tend to produce the high classification
and prediction accuracy. Table 6 shows the literature review of
machine learning techniques that have consistently produced high
accuracy. These classifiers become our base classifiers for building
the proposed ensemble.

2.3.3.1. Layer-1 classifiers. The diversity among classifiers is
achieved by selecting entirely different type of classifiers. Naive
Bayes (NB) is probability based classifier which has high classifica-
tion and prediction accuracy [45]. Linear Regression (LR) is linear
classifier which has the advantages of simplicity, interpretability,
scientific acceptance and widespread availability [46]. Quadratic

Table 6
Literature review of selected machine learning techniques along with accuracy range.
Machine learning techniques Papers referenced Accuracy
(%)

Naive Bayes Shouman et al. [16] 83.5
Pattekari and Parveen [78] 80
Shouman et al. [17] 78.62
Shouman et al. [16] 83.5
Peter and Somasundaram 80
[53]
Ramana et al. [66] 56
Karthik et al. [67] 55

Support Vector Machine Ghumbre et al. [18] 85.05
Chitra et al. [15] 82
Ashfaq Ahmed et. al. [20] 75
Aruna et al. [79] 96.84
Christobel et al. [28] 96.84
Zolfaghari et al. [29] 88
Ramana et al. [35] 58
Ramana et al. [66] 82
Kousarrizi et al. [80] 98

K Nearest Neighbor Shouman et al. [16] 83.2
Christobel et al.[28] 719
Ramana et al. [35] 63
Chen et al. [2] 72
Rajkumar et al. [81] 45.67
Polat et al. [82] 87

Linear Regression Kurt et al. [83] 75.3
Liao et al. [84] 97.5
Ma et al. [85] 75
Dubberke et al. [86] 75
William et al. [87] 80
Wilson et al. [88] 85

Quadratic Discriminant Analysis  Ster et al. [89] 96.80
Georgiou-Karistianis et al. 80
[90]
Zhang et al. [91] 78
Maroco et al. [92] 80
Drent et al. [93] 90
Srivastava et al. [94] 85.7

Artificial neural network Das et al. [95] 89.01
Chitra et al. [15] 85
Chen et al. [96] 80
Chunekar et al. [97] 70.72
Kahramanli et al. [98] 84.2
Ramana et al. [35] 73
Chen et al. [96] 80
Das et al. [95] 89.01

Random Forest Tu et al. [99] 78.9
Shouman et al. [16] 79.1
Ashfaq Ahmed et al. [20] 75
Tu et al. [99] 81.41
Shouman et al. [17] 84.1

Discriminant Analysis (QDA) is a common tool for classification
which has quadratic decision surface and requires no parameters
to tune the algorithm [47]. It is inherently multiclass and proven
to work well in practice.

The individual Naive Bayes classifier considers each attribute
independently without taking into account the relation between
them whereas the proposed ensemble model can handle depen-
dency and relation between given attribute set. The linear regres-
sion classifier and quadratic discriminant analysis are used in
proposed model in order to perform correlation analysis between
attribute sets. Thus ensemble model resolves the limitation of indi-
vidual Naive Bayes classifier by handling correlation.

Instance Based Learner (IBL) classifier is distance based classi-
fier which does not build model explicitly [48]. It may simply store
a new instance or throw an old instance away. Instance based
learner avoids the risk of overfitting to noise in the training set.
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Table 7
Comparison of HM-BagMoov ensemble framework with individual classifiers for heart disease.
Classifiers Cleveland Dataset Eric Dataset
Acc (%) Sen (%) Spec (%) F-M (%) Acc (%) Sen (%) Spec (%) F-M (%)
NB 77.23 81.71 71.94 76.51 68.90 77.78 57.61 66.19
SVM 80.86 93.90 65.47 77.15 78.47 89.74 64.13 74.81
LR 83.50 88.41 77.70 82.71 77.99 88.89 64.13 74.51
QDA 65.68 68.29 62.59 65.32 46.41 10.26 92.39 18.46
kNN 64.36 68.90 58.99 63.56 65.55 68.38 61.96 65.01
RF 69.64 84.76 51.80 64.30 69.86 90.60 43.48 58.76
ANN 79.21 79.88 78.42 79.14 76.08 80.34 70.65 75.19
HM-BagMoov 86.20 94.12 76.32 84.29 83.82 91.74 73.74 81.76
SPECT Dataset SPECTF Dataset
NB 80.52 76.36 81.60 78.90 78.28 23.64 92.45 37.65
SVM 67.04 85.45 62.26 72.04 79.40 0.00 100 0.00
LR 83.15 38.18 94.81 5444 78.28 9.09 96.23 16.61
QDA 83.52 36.36 95.75 52.71 20.60 100 0.00 0.00
kNN 79.40 7.27 98.11 13.54 71.91 36.36 81.13 50.22
RF 79.40 0.00 100 0.00 79.40 0.00 100 0.00
ANN 79.78 50.91 87.26 64.30 78.65 50.91 85.85 63.92
HM-BagMoov 84.77 34.73 97.75 51.25 83.03 7.45 99.11 13.85
Statlog Dataset
NB 78.52 82.00 74.17 77.89
SVM 81.85 94.67 65.83 77.66
LR 82.59 87.33 76.67 81.65
QDA 68.15 64.00 73.33 68.35
kNN 65.56 68.67 61.67 64.98
RF 71.11 81.33 58.33 67.94
ANN 78.15 79.33 76.67 77.98
HM-BagMoov 87.93 94.67 79.50 86.42

Acc = Accuracy.

Spec = Specificity.

Sen = Sensitivity.

F-M = F-Measure.

NB = Naive Bayes.

SVM = Support Vector Machine.

LR = Linear Regression.

QDA = Quadratic Discriminant Analysis.
kNN = k Nearest Neighbor.

RF = Random Forest.

ANN = Artificial Neural Network.

Bold values indicate the results of the proposed algorithm.

Table 8
Comparison of HM-BagMoov with state of art techniques for Cleveland Dataset.

Reference Year  Accuracy (%) Sensitivity (%) Specificity (%)
Yang et al. [52] 2015 73.74 - -
Peter et al. [53] 2015 78.2 - -

Kiruthika et al. [54] 2014 78 - -
Shouman et al. [16] 2013 80 - -
Bashir et al. [55] 2015 84.16 92.68 74.10
HM-BagMoov 2015 86 94 76

Support Vector Machines (SVM) are used for classification, regres-
sion and outlier detection [49]. It is effective in high dimensional
space and use different kernel functions for making decisions.
The individual IBL algorithm has limitations such as it is computa-
tionally intensive and requires lot of storage space. The SVM algo-
rithm performs the feature selection by using only subset of data
chosen based on information gain. The ensemble model has
resolved the storage problem by selecting only necessary and use-
ful features for disease analysis and prediction. Moreover SVM
algorithm decreases the overfitting issue and increase the predic-
tion and classification accuracy. In any scenario where one classi-
fier has some limitation, the other classifier performs well,
consequently giving better performance.

The HM-BagMoov ensemble framework utilizes diverse set of
base classifiers that differ in their decisions. Hence, each classifier
in HM-BagMoov ensemble framework has diverse set of qualities

that complement each other to make an accurate ensemble
framework for disease prediction. Moreover the diversity parame-
ter can be determined by the extent to which each individual clas-
sifier disagree about the probability distributions for the test
datasets. Thus, all of the five selected classifiers complement each
other very well. One of the main problems with ensemble models
is that what they deliver in increased accuracy may get lost in
translation. As a result, we have limited the number of different
models in an ensemble to five. For a given instance, each trained
classifier will predict one class either 0 or 1. For each classifier,
the weight is calculated based on F-Measure of the training
dataset. Therefore, five outputs will be obtained from these five
classifiers in form of either O or 1.

2.3.3.2. Layer-2 classifiers. At layer-2 the output of layer-1 is com-
bined using weighted bagging ensemble approach with further
two different classifiers. In order to achieve diversity among the
classifiers, we have used Artificial Neural Networks (ANN) and
Random Forest (RF) classifier. In Layer-1 no decision trees based
classifier is used. So instead of using a single decision tree based
classifier we have opted for RF. Random Forest operates by con-
structing a multitude of decision trees at training time and out-
putting the class that is the mode of the classes (classification) or
mean prediction (regression) of the individual trees. Random forest
classifiers almost always have lower classification error and deal
really well with uneven data sets that have missing variables
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Comparison of HM-BagMoov ensemble framework with individual classifiers for breast cancer datasets.

Classifiers UMC Dataset WPBC Dataset
Acc (%) Sen (%) Spec (%) F-M (%) Acc (%) Sen (%) Spec (%) F-M (%)
NB 68 73.9 75.04 73.92 72.76 36.36 16.5 22.70
SVM 70.31 73.76 89.62 80.92 76.29 0 0 0.00
LR 71.33 74.16 91.12 81.77 78.87 63.02 46.5 53.51
QDA 31.85 66.67 6 11.01 23.71 23.71 100 38.33
kNN 62.22 69.76 81.6 75.22 66.13 28.67 15 19.70
RF 70.28 11.76 95.02 20.94 76.77 100.00 213 417
ANN 65.73 30.59 80.60 44.35 78.28 87.42 48.94 62.75
HM-BagMoov 73.45 74.19 95.57 83.53 80.34 90 195 32.05
WDBC Dataset WBC Dataset
NB 93.45 95.03 94.67 94.85 96.7 91.95 99.58 95.61
SVM 94.84 94.27 97.16 95.69 95.86 94.02 95.28 94.65
LR 95.26 93.78 99.44 96.53 95.85 96.26 91.68 93.91
QDA 79.63 78.97 93.78 85.74 70.53 95.24 15.81 27.12
kNN 78.04 77.67 91.31 83.94 63.09 45.73 36.63 40.68
RF 88.05 69.81 98.88 81.84 92.85 87.14 95.85 91.29
ANN 96.13 92.92 98.04 95.41 96.42 96.27 96.51 91.29
HM-BagMoov 96.56 95 99.16 97.04 97.11 95.78 95.85 95.81
Bold values indicate the results of the proposed algorithm.
[50]. It has better f-scores than a single decision tree and it is fast to Table 10

build. ANN has iterative network learning where many problems
are solved without finding and describing method of such problem
solving, without building algorithms, without developing pro-
grams, even without any case of knowledge about the nature of
solved problems [51]. Neural network classifier with back propaga-
tion learning capability has very low prediction error. The most
important advantage of using ANN is the ability to implicitly detect
complex nonlinear relationships among variables. Such a
characteristic makes the ANNs suitable for prediction and pattern
recognition applications. The final prediction is obtained at
layer-3. Again, for each classifier, the weight is calculated based
on F-Measure of the training dataset.

2.3.3.3. Layer-3 classification. Layer-3 is used to generate the final
prediction result for a given instance. It accepts the result of previ-
ous layer i.e. three class predictions and combine them using novel
multi-layer weighted bagging ensemble approach. The output of
multi-layer weighted bagging ensemble classifier will be final pre-
diction for a given instance. For example, either class O or class 1
will be the predicted class using proposed HM-BagMoov ensemble
approach.

3. Results
3.1. Dataset description

The proposed framework is executed on five different heart dis-
ease datasets, four breast cancer datasets, two diabetes datasets,
two liver disease datasets and one hepatitis dataset. Each dataset
contains diverse set of attributes that ultimate determine the class
of disease (healthy/diseased). Four heart disease datasets (SPECT,
SPECTF, Heart disease and Statlog) are taken from UCI' data repos-
itory, and the fifth dataset (Eric) is taken from ricco’ data repository.
Three breast cancer datasets (WDBC, WBC, WPBC) are obtained from
UCI data repository whereas one dataset (UMC Breast cancer
dataset) is taken from Wisconsin clinical sciences center” repository.

1 http://archive.ics.uci.edu/ml/datasets.html [last accessed 25 September 2014].

2 http://www.eric.univ-lyon2.fr/~ricco/dataset/heart_disease_male.xIs [last
accessed 25 September 2014].

3 https://www.lri.fr/~antoine/Courses/Master-ISI/TD-TP/breast-cancer.arff [last
accessed 2 April 2015].

Comparison of HM-BagMoov ensemble framework with state of art techniques
Wisconsin Breast Cancer dataset.

Reference Year  Accuracy Sensitivity Specificity
(%) (%) (%)

Serensen et al. [56] 2015 92 90 65

Zand [57] 2015 845 70 57

Chaurasia et al. [58] 2014 7447 76.2 92.5

Chaurasia et al. [19] 2014 - 95.8 98

Ashfaq Ahmed et. al. 2013 75 - -

[20]
HM-BagMoov 2015 97 95.78 95.85

Diabetes datasets are named as Pima Indian Diabetes Dataset (PIDD)
and BioStat Diabetes Dataset (BDD). PIDD is taken from UCI reposi-
tory whereas BDD is taken from Biostat data repository.* Liver dis-
ease datasets are named as BUPA liver disease dataset and ILDP
(Indian liver patient dataset) liver disease dataset and both are taken
from UCI data repository. Hepatitis dataset is named as hepatitis dis-
ease dataset which is taken from UCI data repository. In order to
maintain consistency, the class labels of each dataset are replaced
with 0 and 1 where 0 represents the absence of disease and 1 indi-
cates the presence of heart disease. Further details of the datasets
along with the sample set of each dataset can be found in the Sup-
plementary material, Section A.

The multi-layer ensemble model is applied to each test set. Ten
confusion matrices obtained from each fold of cross validation are
then summed up into final confusion matrix. The average predic-
tion results for all subsets are calculated and then analyzed.

3.2. Disease classification and prediction

3.2.1. Heart disease prediction

Table 7 shows the comparison of accuracy, sensitivity, speci-
ficity and F-measure results of the HM-BagMoov for all datasets
with individual classifiers. It can be seen from Table 6 that, HM-
BagMoov ensemble framework produces the highest accuracy level
for all the datasets when compared to other individual classifiers.
HM-BagMoov ensemble framework shows a consistent accuracy
level of around 84%, whereas other classifiers are not stable as

4 http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/diabetes.html [last
accessed 25 September 2015].
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Table 11
Comparison of HM-BagMoov ensemble framework with individual classifiers for diabetes datasets.
Classifiers Pima Indian Diabetes Dataset Biostat Diabetes Dataset
Acc (%) Sen (%) Spec (%) F-M (%) Acc (%) Sen (%) Spec (%) F-M (%)
NB 71.09 81.15 72.6 76.64 85.61 51.45 49.76 50.59
SVM 75.95 78.22 87 82.38 90.57 87.83 50.43 63.34
LR 77.08 79.15 88.4 83.52 91.07 86.67 54.19 66.74
QDA 57.94 82.98 46.8 59.85 14.88 14.88 100 2591
kNN 69.94 75.96 79 7745 85.37 54.55 10.1 17.04
RF 65.10 3.73 98.00 7.19 85.11 100.00 0.00 0.00
ANN 74.74 57.84 83.80 68.44 89.83 95.34 58.33 72.38
HM-BagMoov 78.21 78.65 92.6 85.05 93.07 86.31 65.19 74.28

Bold values indicate the results of the proposed algorithm.

Table 12
Comparison of HM-BagMoov ensemble framework with state of art techniques for
PIDD dataset.

Reference Year  Accuracy Sensitivity Specificity
(%) (%) (%)

Kandhasamy et al. 2015 71.74 53.81 80.4

[59]
Bashir et al. [60] 2014 74.48 81.4 61.5
Gandhi et al. [24] 2014 75 - -
Tapak et al. [61] 2013 753 133 99.9
Karthikeyani et al. 2012 748 - -

[62]
HM-BagMoov 2015 77.21 77.65 91.6

observed in the results. HM-BagMoov ensemble framework
achieved best accuracy of 87.93% with 94.67% sensitivity, 79.50%
specificity, and 86.41% F-Measure. Table 8 shows a comparison of
accuracy, sensitivity, specificity and F-measure for HM-BagMoov
ensemble framework with other state of art classification tech-
niques for the Cleveland heart disease dataset. The comparison of
the results shows that HM-BagMoov ensemble framework per-
formed much better than state of the art classification techniques.

3.2.2. Breast cancer prediction

The evaluation of HM-BagMoov ensemble framework is also
performed for breast cancer datasets. The comparison of
HM-BagMoov ensemble framework is performed with other
classifiers for breast cancer datasets as shown in Table 9. The high-
est accuracy of 97% and 95.78% sensitivity is achieved for WBC
dataset whereas high specificity of 99.16% and 97.04% F-Measure
is achieved for WDBC datasets respectively by HM-BagMoov
ensemble framework. It has produced the highest accuracy across
all the datasets, no single classifier has achieved that.

Table 10 shows accuracy, sensitivity, specificity and f~Measure
comparison of HM-BagMoov ensemble framework with state of
the art techniques for breast cancer datasets. HM-BagMoov ensem-
ble framework produces the highest accuracy level for all the

Table 13

datasets when compared to other state of the art techniques. It
has achieved an accuracy of 97% for WBC dataset whereas
95.78% sensitivity and 95.85% specificity are achieved when
compared with the state of art techniques for the Wisconsin Breast
Cancer dataset.

3.2.3. Diabetes prediction

The comparison of HM-BagMoov ensemble framework is also
performed with other classifiers for diabetes datasets as shown
in Table 11. We have used two diabetes datasets i.e. Pima Indian
Diabetes Dataset (PIDD) and Biostat Diabetes Dataset (BDD) for
comparison of results. Accuracy, sensitivity, specificity and
F-Measure comparison is performed for HM-BagMoov ensemble
framework with other classifiers. The analysis of the results
indicates that HM-BagMoov has achieved the highest prediction
accuracy for both the datasets. It has achieved 77.21% accuracy
for PIDD and 93.07% for BDD datasets respectively.

Table 12 shows accuracy, sensitivity, specificity and F-measure
comparison of HM-BagMoov ensemble framework with other state
of art classification techniques. The analysis of the results indicates
that HM-BagMoov ensemble framework has achieved the highest
accuracy of 77.21%, when compared with the state of the art
techniques for PIDD dataset.

3.2.4. Liver disease prediction

The comparison of HM-BagMoov ensemble framework is also
performed for liver disease datasets with other classifiers. Table 13
shows accuracy, sensitivity, specificity and F-Measure comparison
of different classifiers for BUPA liver disease dataset and Indian
liver patient dataset (ILPD). The analysis of the results indicates
that HM-BagMoov ensemble framework has achieved the highest
accuracy in both liver disease datasets. It has achieved 72.7% accu-
racy for ILPD dataset and 70.16% accuracy for Bupa liver disease
dataset when compared with other classifiers.

Table 14 shows accuracy, sensitivity, specificity and F-Measure
comparison of HM-BagMoov ensemble framework with the state
of the art classification techniques for liver disease datasets. The

Comparison of proposed HM-BagMoov ensemble framework with individual classifiers for liver disease datasets.

Classifiers ILPD Dataset BUPA liver disease dataset
Acc (%) Sen (%) Spec (%) F-M (%) Acc (%) Sen (%) Spec (%) F-M (%)

NB 68.39 46.84 75.35 57.77 60.02 63.8 72.59 67.91
SVM 71.36 0 0 0.00 67.51 67.18 86.02 75.44
LR 70.66 50 5.44 9.81 67.52 69.41 79.06 73.92
QDA 70.10 0 0 0.00 42.03 0 0 0.00
kNN 65.2 38.66 34.15 36.27 63.78 67.21 73.92 70.41
RF 71.70 99.76 1.80 3.53 59.42 7.59 97.00 14.07
ANN 68.44 84.13 29.34 43.51 72.46 60.69 81.00 69.39
HM-BagMoov 72.7 76 2.76 444 70.16 68.81 89.52 77.81

Bold values indicate the results of the proposed algorithm.
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Table 14
Comparison of proposed HM-BagMoov ensemble framework with state of art
techniques for ILPD dataset.

Reference Year  Accuracy (%) Sensitivity (%) Specificity (%)
Gulia et al. [63] 2014 67.2 - -

Jin et al. [64] 2014 653 72.7 46.7

Sug [65] 2012 67.82 - -

Ramana et al. [66] 2011 62.6 55.86 67.5

Karthik et al. [67] 2011 55 - -
HM-BagMoov 2015 727 75 1.76

Table 15

Comparison of proposed HM-BagMoov ensemble framework with individual classi-
fiers for hepatitis dataset.

Classifiers Acc (%) Sen (%) Spec (%) F-M (%)
NB 83 66.67 36.67 47.32
SVM 85 66.67 54.17 59.77
LR 84.38 70.17 55 61.67
QDA 83.75 68.42 40 50.49
kNN 74.04 2143 9.17 12.84
RF 83.12 100.00 18.75 31.58
ANN 83.77 91.80 53.13 67.30
HM-BagMoov 87.04 77.27 51.67 61.93

Bold values indicate the results of the proposed algorithm.

Table 16

Comparison of HM-BagMoov ensemble framework with state of art techniques.
Reference Year  Accuracy Sensitivity Specificity

(%) (%) (%)
Houby [68] 2014 69 87.3 50.6
Karthikeyan et al. 2013 84 - -
[38]

Neshat et al. [69] 2012 70.29 - -
Kumar et al. [13] 2011 83.12 - -
Khan et al. [70] 2008 72 83 66
HM-BagMoov 2015 87.04 77.27 51.67

analysis of the results indicates that HM-BagMoov has achieved
the highest accuracy of 72.7% for ILPD dataset when compared
with other classifiers.

3.2.5. Hepatitis prediction

Table 15 shows accuracy, sensitivity, specificity and F-Measure
comparison of HM-BagMoov ensemble framework with other clas-
sifiers. The analysis of the results indicates that HM-BagMoov
ensemble framework has achieved the highest accuracy, sensitivity
and F-Measure of 87.04%, 77.27% and 61.93% respectively when
compared with individual classifiers.

Table 16 shows accuracy, sensitivity, specificity and F-Measure
comparison of HM-BagMoov ensemble framework with the state

Table 17

of the art techniques for hepatitis disease dataset. The analysis of
the results indicates that HM-BagMoov ensemble framework has
achieved the highest accuracy when compared with the state of
the art techniques.

Looking at the performance of HM-BagMoov ensemble frame-
work, it can be seen that our approach yields the highest accuracy,
sensitivity, specificity and F-Measure for all the diseases and data-
sets. While some classifiers have produced good results for a single
dataset, that same classifier when applied to another dataset has
produced poor results. Whereas HM-BagMoov ensemble has con-
sistently produced the highest accuracy for all datasets. This is con-
tributed to our ensemble framework, which utilizes an optimal
model of class diversity. Each classifier in HM-BagMoov ensemble
framework has diverse set of qualities that complement and over-
come the limitations of each other to make an accurate ensemble
framework for disease prediction.

3.3. Discussion

Looking at the performance of our approach and existing
approaches, it can be seen that our approach yields the highest
accuracy for all the diseases. This increased in accuracy is con-
tributed to our ensemble approach which uses bagging with
multi-objective optimized weighted vote based technique and
multi-layer classification.

3.3.1. Single layer vs. multi-layer classification

The multi-layer classifiers allows for flexibility in many ways as
compared to single layer classifiers. The main advantage is that we
can use different models for respective granularity of problems. If
we use different classifiers for different layers, we can use different
features for each layer; and the classification tasks can be more
refined [71]. Another advantage of multiple layers is that we can
split up the imbalanced classification problems in two more or rel-
atively more balanced classification problems [71]. The multi-layer
technique is theoretically modest and scalable for hierarchical
training and classification and can be applicable for large medical
datasets [72].

In layered architecture, the negative sample is smaller at top
level layer, because it includes the item only from same top level.
As a result of that, training is faster at top level layer [72]. Also the
hierarchical structure always provide better classification quality
than the flat structure, because of computing errors at each level.
Hence, it reduces the risk of making an error in the top down clas-
sification process [71].

The empirical evaluation of HM-BagMoov approach in layered
structure and putting all seven classifiers (NB, QDA, LR, IBM,
SVM, RF, ANN) in single layer is also performed. Table 17 shows
the comparison of single layer ensemble classifier and layered
HM-BagMoov ensemble approach for heart disease datasets. It is

Comparison of HM-BagMoov with single layered ensemble classifier for heart disease datasets.

Dataset Technique Accuracy (%) Sensitivity (%) Specificity (%) F-Measure (%)
Cleveland Single layer Ensemble 84.16 92.07 74.82 82.55
HM-BagMoov 86.20 94.12 76.32 84.29
Eric Single layer Ensemble 78.95 87.18 68.48 76.71
HM-BagMoov 83.82 91.74 73.74 81.76
SPECT Single layer Ensemble 83.15 30.91 96.70 46.84
HM-BagMoov 84.77 34.73 97.75 51.25
SPECTF Single layer Ensemble 78.28 14.55 94.81 25.22
HM-BagMoov 83.03 7.45 99.11 13.85
Statlog Single layer Ensemble 84.81 92.00 75.83 83.14
HM-BagMoov 87.93 94.67 79.50 86.42
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Table 18

Comparison of HM-BagMoov with other ensemble and voting approaches for heart disease datasets.

Classifiers Cleveland Dataset Eric Dataset
Acc (%) Sen (%) Spec (%) F-M (%) Acc (%) Sen (%) Spec (%) F-M (%)
Bagging 84.16 92.68 74.10 82.36 81.82 89.74 71.74 79.74
AdaBoost 79.21 83.54 74.10 78.54 77.03 80.34 72.83 76.40
Majority voting 82.84 87.80 76.98 82.04 77.51 87.18 65.22 74.62
Accuracy-Weighting 84.16 92.95 74.21 82.53 81.50 85.55 70.99 77.59
HM-BagMoov 86.20 94.12 76.32 84.29 83.82 91.74 73.74 81.76
SPECT Dataset SPECTF Dataset
Bagging 82.77 32.73 95.75 48.78 79.03 5.45 98.11 10.33
AdaBoost 83.90 36.36 96.23 52.78 78.28 45.45 86.79 59.66
Majority voting 83.52 36.36 95.75 52.71 79.78 9.09 98.11 16.64
Accuracy-Weighting 83.99 32.50 93.99 48.29 80.03 5.45 95.50 10.31
HM-BagMoov 84.77 34.73 97.75 51.25 83.03 745 99.11 13.85
Statlog Dataset
Bagging 85.93 92.67 77.50 84.41
AdaBoost 78.89 83.33 73.33 78.01
Majority voting 82.59 90.67 72.50 80.57
Accuracy-Weighting 85.55 92.67 77.50 84.40
HM-BagMoov 87.93 94.67 79.50 86.42
Acc = Accuracy.
Spec = Specificity.
Sen = Sensitivity.
F-M = F-Measure.
Bold values indicate the results of the proposed algorithm.
Table 19
Comparison of HM-BagMoov with other ensemble and voting approaches for breast cancer datasets.
Classifiers UMC Dataset WPBC Dataset
Acc (%) Sen (%) Spec (%) F-M (%) Acc (%) Sen (%) Spec (%) F-M (%)
Bagging 71.05 73.75 91.60 81.71 77.24 100.00 20.00 3333
AdaBoost 64.34 28.24 79.60 41.68 79.80 92.72 38.30 54.21
Majority voting 72.38 20.00 94.53 33.01 82.32 98.01 31.91 48.15
Accuracy-Weighting 72.95 45.46 85.55 59.37 82.85 97.95 32.91 49.26
HM-BagMoov 73.45 74.19 95.57 83.53 80.34 90 19.5 32.05
WDBC Dataset WABC Dataset
Bagging 94.19 94.60 95.04 94.81 97.57 94.13 95.08 94.60
AdaBoost 96.13 94.34 97.20 95.75 95.85 92.95 97.38 95.11
Majority voting 95.61 89.15 99.44 94.01 96.71 97.38 95.44 96.40
Accuracy-Weighting 96.01 94.23 98.50 96.31 96.98 93.28 95.01 94.13
HM-BagMoov 96.56 95 99.16 97.04 97.11 95.78 95.85 95.81

Bold values indicate the results of the proposed algorithm.

clear from empirical evaluation that the arrangement of classifiers
in layered structure performs better than the classifiers arranged in
a single layer.

3.3.2. HM-BagMoov comparison with other ensemble and voting
techniques

The experimental comparison of HM-BagMoov is performed
with other ensemble approaches such as Bagging, Majority voting,
Adaboost and voting approaches such as Majority voting and Accu-
racy based weighting (Accuracy-Weighting) techniques in order to
show the superiority of enhanced bagging and optimized weight-
ing. Accuracy, sensitivity, specificity and f~-measure comparison is
performed on heart disease, breast cancer, liver, diabetes and

Table 20

hepatitis datasets; and results are shown in Tables 18-22. It is clear
from the analysis that HM-BagMoov approach is better than simple
Bagging, Majority voting, Adaboost and Accuracy-weighting when
compared to other ensemble and voting techniques).

3.3.3. Time complexity comparison of HM-BagMoov with other
techniques

The training time of HM-BagMoov is also compared wrt time
with individual as well as other ensemble approaches as shown
in Table 23. HM-BagMoov does has high time complexity as com-
pared to single classifiers. This is expected as HM-BagMoov is using
a combination of classifiers with an enhanced bagging. However
we have overcome this limitation by using off-line learning model

Comparison of HM-BagMoov with other ensemble and voting approaches for diabetes datasets.

Classifiers Pima Indian Diabetes Dataset Biostat Diabetes Dataset

Acc (%) Sen (%) Spec (%) F-M (%) Acc (%) Sen (%) Spec (%) F-M (%)
Bagging 77.99 75.96 85 80.22 90.29 84.83 62.48 71.95
AdaBoost 76.43 52.99 89.00 66.42 88.83 96.79 43.33 59.87
Majority voting 76.30 50.00 90.40 64.39 91.07 98.54 48.33 64.86
Accuracy-Weighting 77.00 65.54 85.55 74.21 92.24 95.55 45.76 61.88
HM-BagMoov 78.21 78.65 92.6 85.05 93.07 86.31 65.19 74.28

Bold values indicate the results of the proposed algorithm.
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Comparison of HM-BagMoov with other ensemble and voting approaches for liver disease datasets.

Classifiers ILPD Dataset BUPA liver disease dataset

Acc (%) Sen (%) Spec (%) F-M (%) Acc (%) Sen (%) Spec (%) F-M (%)
Bagging 71.87 46.59 16.92 24.82 69.02 66.72 92.99 77.69
AdaBoost 66.55 81.49 29.34 43.15 68.41 53.79 79.00 64.00
Majority voting 71.53 99.04 2.99 5.81 71.88 45.52 91.00 60.68
Accuracy-Weighting 71.90 75 1.00 1.97 67.01 59.99 75.98 67.04
Enhanced Bagging 72.7 76 2.76 4.44 70.16 68.81 89.52 77.81

Bold values indicate the results of the proposed algorithm.

Table 22

Comparison of HM-BagMoov with other ensemble and voting approaches for

hepatitis dataset.

Classifiers Acc (%) Sen (%) Spec (%) F-M (%)
Bagging 85.50 75.63 48.99 59.46
AdaBoost 83.12 95.08 37.50 53.79
Majority voting 83.12 94.26 40.63 56.78
Accuracy-Weighting 85.55 75.60 50.99 60.90
Enhanced Bagging 87.04 77.27 51.67 61.93

Bold values indicate the results of the proposed algorithm.

Table 23

Time comparison of HM-BagMoov with individual and ensemble classifiers.

which is commonly used in complex expert systems [100]. System
has high time complexity only when it is being trained. At run-
time, only the learned model is used to make a prediction. The
model can be updated/re-trained when the system is not being
used.

4. IntelliHealth: an intelligent medical decision support
application

Using the HM-BagMoov ensemble framework we have devel-
oped an application named “IntelliHealth”. The IntelliHealth med-

Classifiers Time (ms) per instance
Heart disease datasets Diabetes datasets
Cleveland Eric Statlog SPECT SPECTF PIMA Diabetes
NB 0.1 .05 .08 .06 51 .09 13
SVM .03 .01 .01 .02 .03 .01 .02
LR .01 .02 .01 .01 .01 .01 .01
QDA .03 .05 .03 .04 11 .02 .03
kNN 11 .08 11 13 .26 0.2 .19
Bagging 35.42 22.24 38.02 26.88 1189 74.47 63.95
Majority Voting 0.47 0.27 0.47 0.36 1.29 75 .85
AdaBoost 16.17 14.41 21.15 1.87 86.24 16.13 8.28
HM-BagMoov 35.10 221 36.9 25.9 118.2 735 62.07
Breast cancer datasets Liver disease datasets Hepatitis dataset
uMC WPBC WDBC WBC ILPD BUPA Hepatitis
NB .06 43 32 .09 1 1 0.14
SVM .02 .04 .02 .01 .02 .02 .03
LR .02 .04 .01 .01 .01 .01 .03
QDA .02 0.1 .06 .03 .02 .01 .06
kNN 1 17 36 24 0.2 0.1 .09
Bagging 18.11 187.6 490.9 42.07 55.95 31.79 38.19
Majority Voting 24 2.13 6.03 0.58 0.7 0.39 0.49
AdaBoost 9.6 138.9 186.3 16.96 13.46 14.33 233
HM-BagMoov 17.98 150.9 467.3 40.2 54.82 30.09 36.7

Bold values indicate the results of the proposed algorithm.

+$

Please enter Username and Password

Usemame

Password

Heart Disease Breast Cancer Diabetes

Liver Disorders Hepatitis About Health Gate

Fig. 3. The login and dashboard of the application.
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Fig. 4. Architecture of proposed IntelliHealth application.

ical application is developed with the purpose of assisting the
physician in diagnosing diseases. The login and dashboard of the
application is show in Fig. 3, whereas the architecture of Intelli-
health application is shown in Fig. 4.

4.1. Modules of IntelliHealth

The application is divided into four main modules:
. Data acquisition and preprocessing module.
. Classifier training and model generation.

. Disease prediction module.
. Report generation.

AW N =

Train Model  Patient Details | Add to Training Set

1. Data acquisition and preprocessing module

This module involves entering the patient data. Preprocessing is
then applied to the data at backend. The refined data is saved in the
database and a unique patient ID is generated for each patient.
Each patient is identified by a unique patient’s ID which is gener-
ated when its information is entered into the system. Fig. 5 shows
the form that is used to enter a new patient’s data and preprocess
it. The form that we have generated is dynamic in nature and attri-
butes can be edited for each disease, thus providing complete
customization.

After entering the patient information, the admin staff member
will click on “Add New Patient” button. The information will be

Patient Details

Please enter values for each of the following fields

Resting Blood Pressure [mm Ha)
Resting EC6  Abnomal v
0ld Peak
o

Gender () Male (® Female

Cholesterol (ma/d)
Mx e Rt
Sore

Chest Pain Type ATypical Anging v
Fasting Blood Sugar 40 | (mg/d)

Exercise Angina () Yes () No

Colored Vessels D

Add New Patient

Fig. 5. Add patient’s detail screen.
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Training Data File | C:\U: arhan\D p\p d .csv ‘

Age Sex cp trestbps chol fos restecg thalach exang oldpeak slope ca thal ~
» 1 1 145 233 1 2 150 0 23 0 6

67 1 4 160 286 0 2 108 1 15 2 3 3

67 1 4 120 229 0 2 129 1 26 2 2 7

37 |1 3 130 250 0 0 187 0 35 3 0 3

41 0 2 130 204 0 2 172 0 14 1 0 3

56 |1 2 120 236 0 0 178 0 08 1 0 3

62 0 4 140 268 0 2 160 0 36 3 2 3

57 |O 4 120 354 0 0 163 1 06 1 0 3

63 1 4 130 254 0 2 147 0 14 2 1 7

53 |1 4 140 203 1 2 155 1 31 3 0 Z

57 1 4 140 192 0 0 148 0 04 2 0 6

56 |O 2 140 294 0 2 153 0 13 2 0 3

56 1 3 130 256 1 2 142 1 06 2 1 6

44 |‘I 2 120 263 0 0 173 0 0 1 0 7/

52 1 3 172 199 1 0 162 0 05 1 0 7

57 |'I 2 150 168 0 0 174 0 16 1 0 3

48 1 2 110 229 0 0 168 0 1 =) 0 7

54 I 4 140 239 0 0 160 0 12 1 0 3

48 0 3 130 275 0 0 139 0 02 1 0 3

49 |1 2 130 266 0 0 m 0 06 1 0 2

64 I 1 1 110 21 0 2 144 1 18 2 0 3 .
< >

Fig. 6. Load training set and generate model screen.

Please enter values for each of the following fields

Patient ID Load Details
Age
Resting Blood Pressure (mm Hg)

Gender

(®) Male () Female

Chest Pain Type Typical Angina v
Fasting Blood Sugar (mg/dl)

Resting ECG m

Old Peak 23

o

Cholesterol | 233 (ma/d)
Max Heart Rate 150
Slope Upsloping v

Exercise Angina (®) Yes () No

Colore Vsl

Diagnose Patient

Fig. 7. Diagnose patient screen displayed to doctor.

added into the database. The patient detail along with disease
diagnosis can be added into the training set on doctor’s alert.

2. Classifier training and model generation

The second module of IntelliHealth application is classifier
training and model generation. After entering patient’s data, classi-
fier training is performed based on historical/previous data. After
classifier training, a model is generated at the backend using the
HM-BagMoov ensemble. The model training is performed using
“Train model” tab. Fig. 6 shows the screen that will be displayed
when model training is performed.

3. Disease prediction module

The third module of proposed application is disease prediction.
The disease prediction module screens will be accessible to only
the doctor. When the doctor enters the patient’s ID then its rele-
vant information will be generated. The doctor can then make dis-
ease prediction based on training model and personal knowledge.
Fig. 7 shows the screen that will be displayed for disease prediction
to the doctor. The doctor will enter the unique patient’s ID and

click on “Load Details” button. The respective information entered
by the admin staff member will be displayed in each field. The
doctor will then click on “Diagnose Patient” button. A message will
be generated if the patient has a possibility of a disease and further
tests should be carried out or patient is healthy.

4. Report generation

The report generation module will generate medical report for
each patient. Both the doctor and the patient will have access to
report generation module. The doctor can handover the report to
patient in printed form or can email the patient. The patient can
also generate the reports itself by login to the system. Currently
the report generation is limited to displaying the patient informa-
tion and wherever the patient has been diagnosed with a specific
disease or not.

4.2. Users of proposed IntelliHealth application

There are three main users of IntelliHealth application. Each
user has its login ID and password that will use for interaction with
the system.
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1. Admin/LT. Staff: The Admin staff member will have access to
following two modules:
e Data acquisition and preprocessing module.
e (lassifier training and model generation module.
2. Doctor: Doctor will have access to the following modules:
e Disease prediction module.
e Report generation module.
3. Patient: The patient will have access to following module:
e Report generation module.

5. Conclusion

In this paper we have proposed an ensemble framework with
multi-layer classification using enhanced bagging and optimized
weighting. The framework was evaluated on five different heart
disease datasets, four breast cancer datasets, two diabetes datasets,
two liver disease datasets and one hepatitis dataset. The analysis of
the results indicates that HM-BagMoov ensemble framework
achieved the highest accuracy, sensitivity and F-Measure when
compared with individual classifiers for all the diseases. In addition
to this ensemble framework also achieved the highest accuracy
when compared with the state of the art techniques. Moreover,
an application named IntelliHealth application is also developed
based on proposed ensemble model that can help practitioners
and patients for disease classification and prediction based on dis-
ease symptoms. In future, a publically accessible web server can be
developed where people can have access to the application
through internet and can perform any query effectively and
efficiently.
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