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Abstract

We study compact spaces which are obtained from metric compacta by iterating the operation of inverse limit of continuous
sequences of retractions. This class, denoted by R, has been introduced in [M. Burke, W. Kubis, S. Todoréevi¢, Kadec norms on
spaces of continuous functions, http://arxiv.org/abs/math.FA/0312013]. Allowing continuous images in the definition of class R,
one obtains a strictly larger class, which we denote by RC. We show that every space in class RC is either Corson compact or else
contains a copy of the ordinal segment w; + 1. This improves a result of Kalenda from [O. Kalenda, Embedding of the ordinal
segment [0, w1] into continuous images of Valdivia compacta, Comment. Math. Univ. Carolin. 40 (4) (1999) 777-783], where the
same was proved for the class of continuous images of Valdivia compacta. We prove that spaces in class R do not contain cutting
P-points (see the definition below), which provides a tool for finding spaces in RC \ R. Finally, we study linearly ordered spaces
in class RC. We prove that scattered linearly ordered compacta belong to RC and we characterize those ones which belong to R.
We show that there are only 5 types (up to order isomorphism) of connected linearly ordered spaces in class R and all of them are
Valdivia compact. Finally, we find a universal pre-image for the class of all linearly ordered Valdivia compacta.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Denote by R the smallest class of compact spaces containing all metric compacta and closed under limits of
continuous inverse sequences whose bonding maps are retractions. This class has been introduced in [7], motivated
by new results on locally uniformly convex renormings of Banach spaces and by new examples of compacta whose
spaces of continuous functions have such a renorming. It has been proved in [7] that C(X) has an equivalent locally
uniformly convex norm for every X € R. Actually, the argument given in [7] shows that the same is true for spaces in
a larger class, namely the smallest class that contains all metric compacta and which is closed both under continuous
images and under limits of inverse sequences of retractions. We denote this class by RC. We prove that countably
tight spaces in class RC are Corson compact. More precisely, we show that if X € RC is not Corson then the ordinal
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w1 + 1 embeds into X. This generalizes the result of Kalenda from [11], which deals with continuous images of
Valdivia compacta.

Recall that a space X is Valdivia compact [2,8] if for some « there exists an embedding X C [0, 1] such that X =
cl(X N X (k)), where X (k) = {x € [0, 1]“: |suppt(x)| < Rp} is the X -product of « copies of [0, 1] and suppt(x) =
{a: x(a) # 0}. Let us mention that one of the important functional-analytic properties of Valdivia compacta is the
existence of an equivalent locally uniformly convex norm on their spaces of continuous functions, see Chapter VII
of [9]. For other results on Valdivia compacta we refer to Kalenda’s survey article [12] and to the recent papers [13,14].

An important result from [2] says that given a Valdivia compact X suitably embedded in [0, 1]¢, for every infinite
set S C k there exists T 2 S such that | S| = |T'| and the map r7: X — [0, 1]%, defined by r7 (x) (@) = x(a) fora € T
and r7(x)(e) =0 for a € k \ T, is an internal retraction, i.e. rr (rr(x)) = rr(x) € X for every x € X. This implies
that every Valdivia compact space is the limit of a continuous inverse sequence of smaller Valdivia compacta whose
bonding maps are retractions. In particular, Valdivia compacta belong to R. It is an open question whether the class
of Valdivia compacta is stable under retractions. We show that retracts of Valdivia compacta belong to class R.

The study of classes R and RC can also be motivated by the following result from [13]:

Theorem 0. (Cf. [13, Corollary 4.3].) Valdivia compacta of weight < R are precisely those spaces which can be
obtained as limits of continuous inverse sequences of metric compacta with right-invertible bonding maps.

Class R contains spaces which are not continuous images of Valdivia compacta. Perhaps the simplest example is
the Alexandrov duplication of a countable dense set in the Cantor cube 2%, which is a non-metrizable compactification
of the natural numbers, see [13, Example 4.6(b)]. Another, non-trivial, example is a compact linearly fibered ccc non-
separable space K constructed by Todorcevié (see the proof of Theorem 8.4 in [16]). It has been proved in [7] that
K € R and, assuming that the additivity of the Lebesgue measure is > R, K is not an image of any Valdivia compact
(see Remark 4.16 in [7]).

Given a compact space X, we shall say that p is a cutting P-point in X if X = A U B, where A, B are closed
sets such that AN B = {p} and p is a P-point both in A and B. Recall that p is a P-point in a space Y if p is not
isolated in Y and p is not in the closure of any sequence of closed sets contained in Y \ {p}. We prove that no space
in class R contains cutting P-points. This immediately gives examples of spaces in RC \ R. For instance, the space
o)+ 1+ a)l_l, obtained from two copies of w; + 1 by identifying the two points of uncountable character, does not
belong to R. On the other hand, the space w; + 1 + w~!, obtained from the disjoint union of w; + 1 and @ + 1 by
identifying the maximal elements, does belong to R (it can be obtained from w; + 1 by using a countable sequence
of retractions). Let us mention here that class R is not stable under open maps. An example is described in [14], it is
a compact connected Abelian group of weight K. Every compact group is an epimorphic (and therefore open) image
of a product of metric compact groups (i.e. of a Valdivia compact space).

The last section of this work is devoted to linearly ordered spaces. We use the result on cutting P-points for
characterizing scattered linearly ordered compacta in class R and we show that all of them belong to RC. Denote
by R™ + 1 the one-point compactification of the long ray R~ = [0, 1) - w; endowed with the lexicographic order.
It turns out that the only non-metrizable connected linearly ordered spaces in class R are, up to order isomorphism,
R™ + 1, the inverse of R~ + 1 and the long interval <17, i.e. the space obtained by “gluing” R™ + 1 together with
its inverse in a suitable way. We also notice that all of these three spaces are Valdivia compact.

We finish with a study of Valdivia compact linearly ordered spaces. We observe that all of them have weight < 8
and we find a universal order preserving pre-image for this class. It is a 0-dimensional dense-in-itself space K whose
all nonempty clopen subsets are order isomorphic to K. Moreover, every infinite interval contains both a strictly
increasing and a strictly decreasing sequence of length w;. The natural two-to-one order preserving quotient of K
gives a connected linearly ordered space in class RC which is nowhere separable.

2. Preliminaries

All spaces are assumed to be completely regular. A “map” means a “continuous map” unless otherwise indicated.
A retraction or a right-invertible map is amap f : X — Y such that there exists g: Y — X with fg =idy; g is called
aright inverse of f.In this case f is a quotient map and g is an embedding. If Y C X and g is the inclusion map, then
we say that f is a retraction into X or that f is an internal retraction and Y is a retract of X.
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Given a linearly ordered set (X, <), we shall consider its order topology, which is the one generated by open
intervals of X. Recall that (X, <) is compact if and only if every subset of X has the least upper bound (the supremum
of the empty set is the minimal element of X). We denote by 1 the singleton {0} treated as a linearly ordered set. Given
two disjoint linearly ordered sets X, Y, we denote by X + Y the linearly ordered set whose universe is X U Y and the
order < is defined by extending the union of the orders of X and Y and adding the relation x < y for every x € X and
y € Y. When the sets X, Y are not disjoint, we define X 4 Y in a similar way, using an isomorphic copy of ¥ which
is disjoint from X. The sum defined above is a special case of the lexicographic sum ) _; co Pi of {Pi}icg along Q,
where P;’s and Q are posets. The universe of ) ; co Pi is ;e o(Pi x {i}) and the order is defined as follows:

(x,i)<(y,j) & i<jor(i=jandx <yin F).

In case where P; = P for every i, the above lexicographic sum is denoted by P - Q and it is called the lexicographic
product of P by Q. Given a linearly ordered set X with the order <, we denote by X —1 the set X with the reversed
ordering >. A linearly ordered set is scattered if it does not contain an isomorphic copy of the rationals Q. In general,
this is stronger than being topologically scattered in the order topology (Q - N is an example), however in the case of
compact linearly ordered spaces both notions coincide.

Hausdorff’s Theorem says that the class of all scattered linear orderings is the smallest class that contains ordinals
and which is closed under reversing the order and under lexicographic sums along ordinals.

The class of all ordinals is denoted by t0. The first infinite and the first uncountable ordinal are denoted, as usual,
by w and w; respectively.

2.1. Inverse systems

LetS = (X;, pﬁ,, X’') be an inverse system, i.e. X' is a directed partially ordered set, pﬁ, : X; — X foreverys,t € X,
s <t and p! =idy,, pip/ = p; whenever s <t < r. Mappings p! are called bonding maps. We denote by p; the
projection from lim S onto X;. In the language of category theory, imS is a pair consisting of a topological space X
and a family of projections {ps: s € X'} with the property that for every topological space Y and for every collection
of maps {gs: s € X'} such that g;: Y — X, and plg, = g; whenever s < ¢, there exists a unique map g:Y — X such
that psg = g holds for every s € X In case where the projections are obviously defined, we shall denote by lim S the
space itself. A typical description of imS is

limS = {x € 1_[ Xyt (Vs, 1€ X) s <t = pi(x (1)) :x(s)}
seX

and the topology is inherited from the product. Given a cofinal set T C ¥, the family {p,"'[U]: s € T, U C
X is open} is an open base for imS; thus imS = lim(S | 7), where S [ T := (Xj, pi, T). An inverse system of
the form S = (X¢, pg, A), where A is an ordinal with the natural order, is called an inverse sequence. The sequence
S is continuous, if for every limit ordinal § < X the space X; together with projections { pg }& <5 1s homeomorphic to

lim(S [ ), where S | § = (X, pg , §). We shall use the fact that every inverse sequence can be refined to a (cofinal)
subsequence of a regular length. In this work, we consider mostly continuous inverse sequences of compact spaces
with surjections.

We say that S = (X, rl, X) is an inverse system of retractions or a retractive inverse system if S is an inverse
system in which each bonding map r is a retraction. We say that (il: s <1t) is a right inverse of S if rli{ =idx,,
i§ =idy, and i'il =", whenever s <t < u.

The following simple properties of retractive sequences were proved in [13] and also in [7].

Lemma 2.1. (See [13, Lemma 3.1].) Assume X = LiI_nS, where S = (X, rg/, X)) is an inverse system with a right
inverse (ié: s < t). Then there exist mappings iy : Xy — X such that rgiy = idy and itié =i, whenevers <t, s,t € X.

It is clear that maps i; in the above lemma are uniquely determined by the right inverse of S. So, whenever
S = (X,, rl, X) is an inverse system with a right inverse (i’: s < ), we shall use mappings is : X; — X referring to
Lemma 2.1 implicitly.
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Lemma 2.2. (See [13, Lemma 3.2].) Let « be an ordinal, let X =1im§, where S = (X, rg, K) is a continuous inverse

sequence such that ré*!

“*' is a retraction for every a < k. Then S has a right inverse.

Lemma 2.3. (See [13, Lemma 3.3].) Let S = (X,, r!, X) be an inverse system with a right inverse (il: s <t) and
define Ry = izr for every s € X. Then

(@) s <t= R;R; =Ry = R/R;.
(b) x =limyex Ry(x) for every x € limS.

Lemma 2.4. (See [13, Lemma 3.4].) Assume (Rs: s € X') is a family of retractions of a compact space X into itself
such that X is a directed partially ordered set and conditions (a), (b) of Lemma 2.3 hold. Then X = lim(X, R‘i, X)),
where X = Rg[X] and Rl = Ry | X;.

Given an ordinal §, by an inverse sequence of internal retractions of a space X we mean a sequence {ry: o < §} of
internal retractions of X such that rqrg =rq =rgry forevery o < f <6 and x = limy 57 (x) for every x € X. By
the above lemmas, such a sequence describes uniquely a retractive inverse sequence with limit X. Continuity of this
sequence is equivalent to saying that r), (x) = limy , 74 (x) for every limit ordinal y < § and for every x € X.

Let us note that every 0-dimensional compact space is the limit of an inverse system of finite spaces and such
a system always has a right inverse:

Proposition 2.5. Assume S = (X, rl, X') is an inverse system of finite metric spaces such that each bonding map r!
is a surjection. Then S has a right inverse.

Proof. Fix a well ordering < on X = limS. Each projection r;: X — X induces a partition of X into clopen sets.
Let is(rs(x)) be defined as the <-minimal element of r - Lro(x). If s < ¢ then the partition induced by r; refines the
one induced by rg. More precisely, rt_lrt x)Cry r¢(x), whenever s < t and x € X. Thus, setting i(p) = ry (is(x))
we obtain a map i’ : X, — X, which is a right inverse of r!. Finally, if s <7 <u then ¥ =i%!. O

2.2. Elementary substructures and quotients

Given a regular cardinal x, we denote by H(x) the class of all sets which are hereditarily of cardinality < .
We shall consider elementary substructures of the structure (H(x), €), where x is an uncountable (regular) cardi-
nal. An important fact is that all countable elementary substructures of (H(x), €) form a closed and cofinal set in
([H(x ) Ro, C). More specifically, the union of a chain of elementary substructures is an elementary substructure and,
by the Lowenheim—Skolem Theorem, every countable subset of H () is contained in a countable elementary sub-
structure of H (). The fact that M is an elementary substructure of (H (x), €) will be denoted by M < (H(x), €) or
just M < H(x). For sample applications of elementary substructures in topology we refer to [10] and, in the context
of Valdivia compacta, to [13].

Let K be a compact space and let C (K) denote its space of all real-valued continuous functions. Let y > R be such
that K € H(x) and fix an elementary substructure M of (H (), €) such that K € M. By elementarity, C(K)NM # ¢
and one can define an equivalence relation ~; by

x~yy < (Ve C(K)NM) p(x)=¢(y).

Let K /M denote the quotient K /~ s and let g IA(’I denote the quotient map. This construction has been first considered
by Bandlow [3,4,6] and used for studying some classes of compacta and related Banach spaces. We shall use a
characterization of Corson compacta in terms of countable elementary substructures, proved by Bandlow in [4].

The following statement is a consequence of [4, Lemma 5] and [13, Lemma 2.4].

Lemma 2.6. Let X be Valdivia compact suitably embedded in [0, 1%, i.e. X =cl(X (k) N X). Let x > k and let M be
an elementary substructure of H () such that X € M. Further, let S =k N M. Then
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(a) ~ s is the same as the equivalence relation induced by the map rs: X — [0, 11° defined by rs(x) = x - x5, where
xs € [0, 11 denotes the characteristic function of S.
(b) rs is an internal retraction, i.e. rs[X] C X and rs[X] is Valdivia compact.

3. Classes RC and R

As mentioned before, class RC is defined to be the smallest class that contains all metric compacta and which is
closed under continuous images and inverse limits of transfinite sequences of retractions. Class RC can also be defined
recursively as RC = Ugeoro RCE, where RC? is the class of all metric compacta and RC? consists of all compact

spaces X = f[limS], where S = (X,, rf ,k) 1s a continuous inverse sequence such that each rg”‘l is a retraction
(see Lemma 2.2) and each X, belongs to Us <8 RCE. Given X € RC denote by rkrc(X) the minimal 8 such that

X € RCP. We call tkpc(X) the RC-rank of X .

Class R has been defined in [7] as the smallest class of spaces which contains all metric compacta and which
is closed under limits of continuous inverse sequences of retractions. There is a natural hierarchy on R. Denote by
RO the class of metric compacta and define RP as the class of all spaces of the form LiLnS, where S = (Xg, r K)

is a continuous inverse system such that each rSf 1 is a retraction and each X¢ belongs to J, . R*. Then R =

Useoro RE. Given X € R define rkjg (X) as the minimal 8 such that X € Rf. We call rk (X) the R-rank of X.
Clearly R € RC and kg C(X) < rkr(X), whenever X € R. Every Valdivia compact space belongs to class R,
since it can be decomposed into a retractive sequence of Valdivia compacta of smaller weight (see [2]). We shall prove
more, namely that retracts of Valdivia compacta belong to R (see Theorem 4.1 below).
Both classes RC and R are closed under typical operations. A covariant functor on topological spaces is continuous
if it preserves limits of arbitrary inverse sequences.

Proposition 3.1. Assume F is a continuous covariant functor on compact spaces.

(a) If F(X) € R for every compact metric space X then F preserves class R.
(b) If F(X) € RC for every compact metric space X and F(f) is a surjection whenever f is a surjection, then F
preserves class RC.

Proof. (a) Define K ={X € R: F(X) € R}. By assumption, X contains all metric compacta. By the continuity of F,
K is closed under inverse limits of retractions (note that F () is a retraction whenever r is a retraction). Thus K = R.

(b) Define £ = {X € RC: F(X) € RC}. Then L contains all metric compacta and is closed both under limits of
continuous retractive inverse sequences and under continuous images. The latter follows from the fact that F' preserves
surjections. Thus L=RC. O

Proposition 3.2. Classes R and RC are stable under arbitrary products and one-point compactifications of disjoint
topological sums.

Proof. We give the proof for class R; the case of class RC is the same, because the functors considered below
preserve surjections.

An infinite product is the limit of an inverse sequence of smaller products, where the bonding mappings are projec-
tions. Thus, it is enough to show that X x ¥ € R whenever X, Y € R. Given a compact space Y, define Fy(X) =X xY
and Fy(f) = f x idy. Then Fy is a continuous covariant functor on compact spaces. Fix ¥ € R. If Y is compact
metric, then Fy (X) is compact metric for every compact metric space X. Thus, by Proposition 3.1, Fy(X) € R for
every X € R. Now, if Y is any space in R, then Fy(X) = Fx(Y) € R whenever X is compact metric, so again by
Proposition 3.1, Fy(X) € R for every X e R.

Now let X be the one-point compactification of the disjoint sum P, _, X, i.e. X = {00} U g, X¢, where
Xe N X, = whenever & # n. Assume first that « is infinite. For each o < k define 74 : X — X by ry(x) = x if
X € Ug <o X& and 74 (x) = oo otherwise. It is straight to check that {ry: o < «} is a continuous inverse sequence of

internal retractions of X. By Lemma 2.4, X = lim(Y,, rf , k), where Y, = ry[X] is the one-point compactification of
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@5 <o Xg and rg =7 [ Yg. By induction, it remains to prove that X @ ¥ € R whenever X, Y € R. Given a compact
space Y define Gy(X) =X @Y and G(f) = f @idy. Then Gy is a continuous covariant functor on compact spaces.
The same argument as above shows that Gy (X) € R forevery X,Y e R. O

It has been already mentioned that class R is not stable under open maps, see [14]. We do not know whether class
R is stable under retractions. We also do not know whether every space in class RC is a continuous image of some
space from class R. Let us finish this section with a model-theoretic type of stability.

Let X be a compact space in a ZFC model M and let L = Closed™ (X), the lattice of closed subsets of X defined in
M. Then X is naturally homeomorphic to the space of all ultrafilters over LL (in fact all ultrafilters are principal). Now
let N © M be another model of ZFC and let X" denote the space of all ultrafilters over L, defined in N (L is still a
lattice of sets in N). In many cases, there are new ultrafilters, therefore usually X" # X, although always X € XV,
We call XV the interpretation of X in N. It can be shown easily that we obtain the same space, taking any sublattice
of I which forms a closed base of X in M. Given a continuous map of compact spaces f:X — Y in M, there is a
unique map ¥ : XV = YN which extends £, i.e. such that (fV) '[a] = f~![a] for every a € Closed™ (Y). Since
(fe)N = fNg", this defines a functor from the class of compact spaces in M into the class of compact spaces in N.

Given a class of compact spaces K, we say that KC is absolute if for every two ZFC models M C N and X € M
such that M = “X € K”, we also have N = “X" e K, where X"V denotes the interpretation of X in N. To be formal,
this defines upward absoluteness, however no class containing all metric compacta is downward absolute, unless it
consists of all compact spaces (take a space K not in the class and extend the universe by collapsing the weight of
K to Rp; then the interpretation of K in the extension is a second countable compact space). Absoluteness of some
classes of compacta with respect to forcing extensions has been studied by Bandlow in [5].

Proposition 3.3. Class R is absolute. More precisely: if M C N are models of ZFC, « is an ordinal in M and X is
a compact space in M such that M = “rkr (X) < a” then we also have N = “tkr(XN) < a”. The same statement
holds for class RC.

Proof. Induction on « (ordinals in M). The statement is true if & = O since being second countable is absolute. Fix
X € M such that M = “rkg (X) = «” and let X =1im S, where S = (X¢, r{, k) € M is a retractive continuous inverse
sequence and M = “rkr (X¢) < o” for every & < k. By inductive hypothesis, rki (X év ) <« in N. Now observe that,
setting ¥z = X év and Rg = (rg )N, we obtain a retractive inverse sequence SV = (Y, Rg ,k) in N. To see that SV is
continuous, notice that the functor f > fV preserves inverse limits. Indeed, any inverse system of quotient maps can
be translated to a dual inductive system of lattices (the lattices of closed sets) and its inverse limit translates to the
inductive limit. Now, the inductive limit is the same in any extension of the universe and the inverse limit is uniquely
determined by the inductive limit of the dual system of lattices. It follows that XV = LiLnSN in N and therefore N =

“rkr(XV) <a”.
It is clear that the above arguments can be adapted to show the absoluteness of class RC. 0O

4. Main results
In this section we prove the announced results on classes R and RC.
4.1. Retracts of Valdivia compacta
Theorem 4.1. Retracts of Valdivia compact spaces belong to class R.
Proof. Induction on the weight of the retract. Assume « > R is such that X € R whenever X is a retract of a Valdivia
compact and w(X) < k. Fix aretraction f:Y — X such that Y is Valdivia and w(X) = «.
Fix a cardinal x > «,sothat f € H(x) and fix N < H () which contains a fixed base of X and such that f € N and

[IN|=«.Then X/N = X. Let {My}q <« be a continuous chain of elementary substructures of N with Uoz</( M,=N,
f € Mp and |M,| < « for every @ < k. Let g, denote the quotient map X — X/M,,. Further, let X, = go[X] and
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for every o < B let qo’? be the unique map such that g, = qg gp holds. Then S = (X, qf , k) is a continuous inverse
sequence with limit X. It suffices to show that {X,: o < «} € R and that each g, is a retraction.
Fix o < k. Let r, denote the quotient map ¥ — Y /M, and let f, be the unique map such that the diagram

f

Yy——X

ral \an
Jfa

Y/M, —1*~ X,

commutes. By Lemma 2.6, r,, is a retraction and Y /M, is Valdivia compact. We claim that f,, is a retraction.

We may assume that f is an internal retraction, i.e. X €Y and f [ X =idy. Let Z = rq[X] € Y/M,. Given
x € X, we have g, (x) = qo f (x) = fore(x). Observe that r, and g, induce the same equivalence relation ~ s, on X.
This shows that f, [ Z is one-to-one. Clearly f,[Z] = qq f[Y]= Xq. Thus f, is right-invertible. By the induction
hypothesis, X, = fo[Y/My] € R. Finally, the composition g, f = fyrq is a retraction, hence so is g,. O

4.2. The dichotomy

We start with an auxiliary result on retractive inverse sequences. Recall that given an inverse sequence of internal
retractions, we may represent its limit as the closure of the union of all the spaces from the sequence, where the
projections are internal retractions (see Lemma 2.3).

Lemma 4.2. Let S = (X, r)', @) be an inverse sequence of internal retractions of compact spaces with X = lim§,
represented in such a way that all projections r,, : X — X, are internal retractions. Let f: X — Y be a surjection and
let, for each n € w, B,, be an open base for f[X,] which is closed under finite unions. Then the family

C={Y\ f[X\(fr)"'[B]]: n€w, BeB,}
is an open base for Y. In particular, w(Y) = sup, ., W(f[X,]).

Proof. Fix y € Y and its neighborhood U . Find m € w and an open set W C X, such that

o) crm Wi c U (1)

Let F = f[X\ rm Y [W1]. Then y ¢ F, therefore Uy =Y \ F is a neighborhood of y, contained in U. Now find n > m
and an open set Wi C X, such that

oy iwi < o

Thus r,[ f -1 (]S Wy and Wy C f —1[U;]. The latter inclusion follows from the fact that W; C r,~![W;]. Thus
fralf -1 (y)] € U;. Using compactness and the fact that 5, is closed under finite unions, we can find B € 5, such
that

fra[f '] € B UL
We have

[ ] FBIS T WL
where the latter inclusion follows from the equality U; = Y \ f[X \ 7, "' [W]]. Thus

oy en B ST T W S Gur) T Wl =10 WL )
Hence, using (1) and (2), we obtain f~'(y) € r,~'[f~'[B]]1 € f~'[U]. Finally, set V =Y \ f[X \ (frn)"'[B]].
ThenV eCandyeV CU. O

Let us recall a model-theoretic characterization of Corson compacta, due to Bandlow [4]. A compact space X
is Corson compact if and only if for a big enough cardinal y there exists a closed and unbounded family M C
[H (x)]™ of elementary substructures of H(x) such that for every M € M the quotient map ¢ys: X — X/M is one-
to-one on cl(X N M). Here, closed and unbounded means: closed under the unions of countable chains and cofinal in
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([H())1®, ©). In fact, if X is Corson, then the above property holds for every countable elementary substructure of
H (x) which “knows” an embedding of X into a ¥'-product. See [4] for more details.

Theorem 4.3. Let X € RC. Then either X is Corson compact or else X contains a copy of the linearly ordered space
wi + 1.

Proof. Every second countable compact space is Corson, therefore the above dichotomy holds for spaces of
RC-rank 0. Fix an ordinal 8 > 0 and assume that the above statement is true for spaces of RC-rank < 8. Fix X € RC
such that rkrc(X) = 8. Let S = (Ye, rg , k) be a continuous inverse system of internal retractions such that X = f[Y]
for some map f:Y — X, where ¥ =1imS and rkg¢(Yz) < B for every & < . We assume that « is a regular cardinal.
Let X¢ = f[Y:] for & <« and let X, = X. If X¢ contains a copy of w; + 1 for some & < «, then there is nothing to
prove, so assume that X¢ is Corson compact for each § < «. Suppose first that

(*) k€ >Ry andX;«éUg«Xg.

Then Y # U§<K Ye. Fix y € Y so that f(y) ¢ U§<K Xe. Recall that y = limg_,, r£(y). Also rs(y) = limg 57 (y),
by the continuity of the sequence S. Thus the map ¢:k + 1 — Y, defined by ¢ (§) = fre(y) and ¢ (k) = f(y), is
continuous. By assumption, ¢ (§) # f(y) for every & < k, therefore the sequence {¢(§)}¢ <, does not stabilize. Find
a closed cofinal set C C k such that ¢ | C is one-to-one. Then Z = ¢[C U {k}] € X is homeomorphic to the linearly
ordered space k + 1. Since k > R, this shows that X contains w; + 1.

Now suppose that () does not hold. We claim that X is Corson. For this aim we use Bandlow’s characterization.
Fix a big enough cardinal x and a countable M < H(x) such that f,S € M.

Let § = sup(k N M) (if k = R then of course § = w € M and X5 = X). Define Xé” =cl(Xg N M) and YgM =
cl(Ye N M) for & < k. Let gy : X — X/M denote the quotient map induced by M. In order to show that g is
one-to-one on XM := cl(X N M), it suffices to find a base for X which is contained in M.

Notice that X N M C X;. Indeed, if x = R then X5 = X; otherwise X = Us</< X¢ and therefore by elementarity
XNM S Useenm Xe S Xs.

Now observe that f [YéM 1=X é” for every § € « N M. Indeed, if x € X¢ N M and § € M then by elementarity
x = f(y) for some y € Y N M, which shows that Xs "M C f[Y: N M]. Clearly f[Y: "M]C Xe N M.

Note that f[YM] = XM because f € M. On the other hand, YM = YSM = Cl(UsemM YSM). Let {§,: n e w} C
8 N M be an increasing sequence such that § = sup, ., &,. Let So = (Z,, p}', ), where Z, = Yg"f s Pn=Tg, | Z,. We

apply Lemma 4.2 to find a suitable base for X™. Fix n € w. Then X g € M and by assumption it is Corson compact.
Thus M induces a quotient map which is one-to-one on X é‘f . In particular, the family

B, ={U € M: Uis an open subset of X¢ }

forms a base for X é‘;’ (more precisely: {U N X é‘;’ : U € B,} is an open base for X é"’l’ ). Clearly, 53, is closed under finite
unions. Lemma 4.2 says that

C={x"\ f[Y"\(fpn)"'[Bl]: n€w, BeB,}

is an open base for XM = f[YM]. LetC' = {X\ f[Y\(fp.) ' [B]l: n € w, B€B,}.ThenC' € M and {CNXM: C €
C’} = C. Thus we have shown that M contains a family which forms an open base for X™. Since M was arbitrary,
this implies that X is Corson compact. O

Corollary 4.4. Countably tight spaces in class RC are Corson compact.

Theorem 4.3 gives immediately simple examples of compact spaces which do not belong to class RC. For example,
Mréwka’s space, which can be defined as the Stone space of the Boolean algebra generated by [w]<® U A C P(w),
where A is an uncountable almost disjoint family, is a scattered space of height 2 and it is countably tight, separable
and not metrizable. Thus, it is not Corson and therefore not a member of class RC.
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4.3. Cutting P-points

Recall that a point p € X is called a P-point if it is not isolated in X and for every sequence {u,: n € w} of
neighborhoods of p it holds that p € int(("),,c,, #n). We shall say that p € X is a cutting P-point if there exist closed
subspaces A, B of X suchthat AUB =X, AN B ={p}and p is a P-point both in A and B.

A tylpical example of a cutting P-point is the complete accumulation point of the linearly ordered space w; +
4w .

Theorem 4.5. No space in class 'R contains cutting P-points.

Proof. Suppose the above statement is not a theorem and fix a model of ZFC which contains a counterexample K,
witnessed by closed sets A, B € K with AN B ={p}. Let « = w(K)™ and extend the universe by using the natural
forcing which collapses « to 81. Then the interpretation of K in the extension is still a counterexample, because it
belongs to R and there are no “new” countable sequences, so p remains a P-point both in A and B. Thus, working in
a suitable model of ZFC, we may assume that w(K) = RX1. We may also assume that rk (K) is minimal possible.

Let {uy: a < w1} denote a basis of p in K such that o < 8 = clug C uy. Such a sequence exists, because p is
a P-point in K and x(p, K) = X1. The assumptions on A, B mean in particular that both sets u, \ B, uy \ A are
nonempty for every o < wj.

Now suppose {ry: o <k} is a sequence of internal retractions in K, such that K, = r,[K] has R-rank < rkg (K)
for every o < k. Assuming « is regular, we deduce that « € {X¢, 81}. Recall that Uoz<l( K, is dense in K.

Suppose k = Ry. For each o < w find n(a) < w with ug N AN Ky) # 9 # uq N B N Ky(q). This is possible,
because p is an accumulation point of both A and B and therefore u, \ B and u, \ A are nonempty open sets. Now
there is n € w such that {& < w1: n(a) = n} is uncountable. Then p is an accumulation point of both A N K, and
B N K,, which implies that K,, is a counterexample to the theorem. This contradicts the minimality of rkg (K). It
follows that k = Ny.

The same argument as above, using the minimality of rk (K'), shows that either

Vo <w))@B<w) KeNug\B=0 (D
or the same holds for A in place of B. Clearly, we may assume that either
(Ya <wi) ro(p) € B 2)

or the same holds for A in place of B. Thus, without loss of generality, we may assume that both (1) and (2) hold
(interchanging the roles of A and B, if necessary). Indeed, if p ¢ |, - w Ko then (1) holds both for A and B and if
p € K, for some a < w; then rg(p) = p € AN B for B > «, therefore (2) holds for both A and B.

Define iy, = ﬂ.§<a clugy1. Then uy C ity and ma<w1 ity = {p}, thus every neighborhood of p contains some i .
Moreover, for a limit ordinal § < w; we have ifs = [ _sug =g 5 clue.

Fix o < w1. Observe that by (1) and (2) the set B N K, is a neighborhood of r,(p) in K. By the continuity of 7,
there is £(a) < w; such that

rolitg@)] € B. 3)
On the other hand, the set u, \ B is open and nonempty, therefore there is () > « such that
Ky Nug \ B#P. “)

Fix a limit ordinal § < w; such that £(x) < § and n(«) < & whenever @ < §. Then, by (3), we have ry[iis] € B for
every o < § and hence rslis] C B, because rg(x) = limy<s 7o (x) for every x € K.

Now for each o < 6 fix g4 € Ks Nug \ B, which exists by (4). Let g be an accumulation point of the sequence
{ga: @ <8}.Theng € KsN A and g € (), _s o = its. Furthermore, g # p, because p is a P-point in A. Hence ¢ ¢ B
and rs(q) = g, which contradicts the fact that rs[us] € B. O

An immediate consequence of the above result is that w; + 1+ wl_l ¢ R, where a)l_1 denotes w; with the reversed
ordering.
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Corollary 4.6. Assume K € R is 0-dimensional and contains at least two P-points. Then there is a two-to-one map
f:K — L onto L suchthat L ¢ R.

Proof. Let p, g be two distinct P-points in K. Let A C K be clopen such that p € A and ¢ € K \ A. Let L be the
quotient of K induced by identifying points p, g. Then L contains a cutting P-point (the image of p). Thus L ¢ R, by
Theorem 4.5. O

5. Linearly ordered spaces

In this section we discuss linearly ordered spaces in classes RC and R and we prove the results announced in the
introduction. Recall that, by Nakhmanson’s Theorem, every linearly ordered Corson compact is metrizable, see The-
orem IV.10.1 on page 181 in [1]. Thus, Theorem 4.3 implies that spaces like a double arrow or a compact Aronszajn
line do not belong to class RC.

5.1. Connected spaces

Recall that the long ray is the linearly ordered space R~ = wq - [0, 1) (where P - Q denotes the lexicographic prod-
uct of P by Q). Note that R™ + 1 is a connected linearly ordered compact space with exactly one point of uncountable
character (namely, the maximal point). Moreover, each proper interval which does not contain the maximal point is
separable. Denote by 1™ the unique linearly ordered space K = [a, b] such that for every internal point p € (a, b)
the interval [ p, b] is order isomorphic to R™ + 1 and the interval [a, p] is order isomorphic to the inverse of R™ + 1.
1

Proposition 5.1. The spaces R~ + 1 and are Valdivia compact.

Proof. Let K, =6 -[0,1) + 1 and define r, :R™ + 1 — K, by setting ry (x) = x if x € K, and ry(x) = max(Ky)
otherwise. Then {ry: @ < w1} is a continuous inverse sequence of internal retractions in R™ 4 1 and each K, is
second countable. By Theorem 0, this shows that R™ + 1 is Valdivia compact. The case of <17 is similar. O

Theorem 5.2. Let K € R be a connected linearly ordered space. Then K is order isomorphic to one of the following
spaces: 1,[0,1, R” + 1, R~ + 1)L, <I7. In particular, K is Valdivia compact.

Proof. Suppose the statement is false and let K be a counterexample of a minimal possible R-rank. Fix an inverse
sequence of internal retractions {ry: @ < k} in K such that rkr (Ky) <tk (K) for every o < k, where Ky = ry[K].
We assume that « is a regular cardinal. Since K is connected, each K, is an interval of the form [ay, by ]. Further, the
sequence {aq }y < 1S non-increasing and the sequence {by }y <, is non-decreasing. Taking a cofinal set of indices and
reversing the order of K if necessary, we may assume that {by }y <, is strictly increasing. Pick p € (ag, bp). By the
minimality of rk (K), each of the intervals [ay, by] is order isomorphic to one of the spaces listed in the theorem.
It follows that [p, by] € (ay+1, ba+1) is order isomorphic to [0, 1]. Hence, « € {8¢, N1}. Let K = [a, b]. Then [p, b]
is order isomorphic either to [0, 1] (if x = Rg) or to R™ 4 1 (if ¥k = 8y). By the same argument, [a, p] is order
isomorphic either to [0, 1] or to the reversed R~ + 1. This shows that K is not a counterexample, a contradiction. O

5.2. Scattered spaces

We already know that the space w1+ 1+ a)l_1 is not in R, while w; + 14w ~! € R. Below we characterize scattered
linearly ordered spaces which are in R. Let K be a linearly ordered compact space. It is not hard to check that p € K
is a cutting P-point in K if and only if p is a P-point both in (<—, p] and [p, —).

Theorem 5.3. Let K be a scattered linearly ordered compact space. Then K € R if and only if K has no cutting
P-points.

Proof. The necessity follows from Theorem 4.5. Fix a compact scattered linearly ordered space K with no cutting
P-points. We use the idea from the proof of Hausdorff theorem on the structure of scattered linearly ordered sets.
Define the following relation on K.

x~y < (VYa,belx,y])[a,bleR.
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We check that ~ is an equivalence relation. Only transitivity requires an argument. So assume x <y <z and x ~ y,
y~z. Fixa €[x,y), b e (y,z]. If y is isolated from, say, right-hand side, then (y, b] =[y’,b] € R, [a, y] € R and
hence [a, b] = [a, y]® [y, b] € R, by Proposition 3.2. Otherwise, reversing the order if necessary, we may assume that
y =inf{y,: n € o}, where {y,: n € w} is strictly decreasing. Assume yp = b. Since K is compact and 0-dimensional,
we may also assume that each y, has an immediate successor z,—1, i.e. y, < z,—1 and (y,, z,—1) = 4. Now

[y, 1= {3} U [ Jlzn, yal
new
and the intervals [z, y,] are pairwise disjoint. Further, by assumption [a, y] € R and hence, setting K,, = [a, y] U
Ui <nlzi» ¥i1, we have that K,, € R, by Proposition 3.2. Define r,, : [a, b] - K, by r, | K, =idk, and r,(x) = y for
x € [a,b]\ K,. Then {r,: n € w} is an inverse sequence of internal retractions in [a, b]. This shows that [a, b] € R
and completes the proof of the transitivity of ~.

By definition, the equivalence classes of ~ are convex. We show that they are closed. Fix C € K/~ and let b =
supC. Fix a € C. Let {by: @ <k} C [a, b) be strictly increasing, continuous and such that b = sup,_, by. Then
[a, by] € R, because a, by € C. Define ry : [a, b] — [a, by] by rq(x) = min{x, by}. Then {r,: @ < «} is a continuous
inverse sequence of internal retractions of [a, b]. Hence [a, b] € R. This shows that x ~ b forevery x € C,i.e. b e C.
By the same argument, inf C € C, i.e. C is a closed interval.

Finally, it remains to show that there is only one ~-equivalence class. Suppose not, and fix C, D € K /~, maxC =
¢ <d =minD. Then ¢ ~ d and in particular (c, d) # {. Thus, there exists E € K/~ such that C < E < D, where
A < B means sup A < inf B. It follows that the quotient ordering of K/~ is dense, i.e. K/~ is dense-in-itself with the
order topology. Note that the order topology of K /~, induced by the quotient ordering, coincides with the quotient
topology. Thus K/~ is a dense-in-itself continuous image of K, which contradicts the fact that K is scattered. O

Corollary 5.4. Let K be a scattered compact linearly ordered space. Then there exists a scattered compact linearly
ordered space L € R which has a two-to-one continuous order preserving map onto K. In particular K € RC.

Proof. Let L = K - 2, the lexicographic product of K by {0, 1}. Then L is scattered, compact and it has no cutting P-
points (every point of L is isolated from at least one side). Thus L € R and of course the natural projection f:L — K
is two-to-one and continuous. O

5.3. Valdivia compacta
Proposition 5.5. Valdivia compact linearly ordered spaces have weight at most R1.

Proof. Suppose the above statement is not a ZFC theorem and fix a countable transitive model M of ZFC which
contains a counterexample K. Let P € M be the standard forcing notion which collapses R to Rg. Let G be a PP-
generic filter over M and let K G denote the interpretation of K in M[G]. Then M[G] = “w(K Gy > R|”, because
w(K) > 8 in M. In order to get a contradiction, it suffices to show that M[G] = “x (K %) < Ro”, because then K¢
is a non-metrizable Corson compact linearly ordered space in M[G] (being linearly ordered is absolute).

We suppose that M[G] &= “x(K Gy > Ro”. Since K9 is linearly ordered and K is a dense subset of K G| there
is in M[G] a strictly increasing or a strictly decreasing function f : Ng’l — K (recall that Rg’l = N?’I[G]). Since M =
“IP| = 817, there is S € ([82]%2)M such that f | S € M. It follows that M = “K contains a monotone sequence of
length X, and consequently x (K) > 8 in M.

We now work in M, showing that x (K) < 81, which gives a contradiction. The argument is very similar to the one
which shows that w; 4 1 is not Valdivia.

Suppose {pe: @ < wz} € K is strictly increasing and continuous, p = sup, _, Pe- Assume K C [0, 1] so that
D = X (k)N K isdense in K. For each o < w choose g4 € (py, pa+2) N D. Then p =limy <4, g and p is not in the
closure of any countable subset of {g,: @ < w>}. Thus p ¢ D, because D has a countable tightness. Let S = suppt(p).
Then |S| > Rg. Since p = limy <y, g, for each s € S there is a(s) < wy such that go(s) > 0 for o > a(s). Fix
T € [SI™ and let B = sup,.7 a(s). Then qp+1(s) >0 forevery s € T,i.e. gg+1 ¢ D. This is a contradiction. O

We say that a space is nowhere first countable if its first countable subsets have empty interior. Note that given a
linearly ordered space X € RC, the property of being nowhere first countable is equivalent to being nowhere separable.
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Indeed, if J C X is a closed interval then J € RC; thus, if J is first countable then, by Corollary 4.4, it is a linearly
ordered Corson compact, hence second countable. On the other hand, if p € J does not have a countable base in J then
there exists a monotone sequence of length w; in J; the closure of such a sequence is, by compactness, homeomorphic
tow; + 1.

The following two statements concerning linearly ordered compacta are well known. We give the proofs for the sake
of completeness. Recall that, for compact linearly ordered spaces, every order preserving epimorphism is continuous.
In particular, every order isomorphism is a homeomorphism.

Proposition 5.6. Every metrizable 0-dimensional dense-in-itself linearly ordered compact space is order isomorphic
to the Cantor set 2%, endowed with the lexicographic ordering <ix defined by x <ix y iff x(n) < y(n), where n =
min{k: x (k) # y(k)}.

Proof. It is clear that the Cantor set satisfies the above assumptions. Let (X, <) and (Y, <) be two spaces satisfying
the above assumptions. Let Q(X) denote the set of all points x € X such that [x’, x] = {x/, x} for some x" < x. Then
0 (X) is countable, because X is metrizable. Observe that (Q(X), <) is a dense ordering, since X is dense-in-itself and
0-dimensional. The same is true for (Q(Y), <), therefore both Q(X), Q(Y) are order isomorphic to the rationals (by
Cantor’s theorem). Finally, any order isomorphism of Q(X) onto Q(Y) can be, by compactness, uniquely extended
to an order isomorphismof X and Y. O

Proposition 5.7. Let (X, <) be a compact linearly ordered space of weight R1. Then X is the limit of a continuous
inverse sequence of metric linearly ordered compacta, where all the bonding maps, as well as all the projections, are
order preserving surjections.

Proof. Fix a family U/ of open intervals of X which forms a base for X and so that [/| = 8. Given U, V € U with
disjoint closures, choose a continuous order preserving function f = fyy y which separates U from V. The existence
of such a function f is a consequence of the Urysohn Lemma. Indeed, given a continuous function #: X — [0, 1]
such that U € h~! ),V C h! (1) and assuming supU = a < b =inf V, the conditions

f1(<,al=0, fllb,—-)=1 and f(x)=maxhla,x] fora<x<b,

define a continuous order preserving function f satisfying f(supU) =0< 1= f(inf V).

Let F consist of all the functions fy v, where U, V € U have disjoint closures. Then | F| = & and for every x < y
in X there exists f € F with f(x) < f(y). Let F = Ua<w1 Fa, where {Fy}q<w, is a continuous chain of sets such
that |Fy| = Ro for every o < w;. Let ~, be the following relation:

Xr~qy &= (VfeFy) f(x)=fO).
It is clear that ~ is an equivalence relation and all equivalence classes of ~, are closed. Since J, consists of order
preserving functions, the ~4-equivalence classes are convex.

Let Xo = X/~ and let g4 : X — X, be the quotient map. Then X = [imS, where S = (X, qg, 1) and qg is the
unique map satisfying g, = qg qp- Since {Fy}q<w, is continuous (i.e. Fs = U§< s Fe for every limit ordinal § < wy),
we infer that the inverse sequence S is continuous.

Finally, for every o < w1, the relation ~ induces a linear order <, on X, defined by

Ga(X) <a qu(y) &= x <y.

This is well defined, because the ~-equivalence classes are convex. The order topology induced by <, coincides with
the quotient topology. Clearly, each qg is order preserving with respect to <g and <. This completes the proof. O

Theorem 5.8. There exists a 0-dimensional linearly ordered Valdivia compact space K with the following properties:

(1) K is nowhere first countable; in fact every nonempty open interval contains both a copy of w1 + 1 and a copy of
1+

(2) Every nonempty clopen subset of K is order isomorphic to K.

(3) Every linearly ordered Valdivia compact is an order preserving image of K .
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Proof. Let C = (2, <ix) be the Cantor set, endowed with the lexicographic order. Denote by Q the setof all p € C
which are isolated either from the left or from the right (in particular 0, 1 € Q). Define D = (C x {0}) U (Q x C),
endowed with the lexicographic order, and let 7 : D — C be the projection. Observe that D is order isomorphic
to C and 7 is an order preserving retraction. A possible right inverse i : C — D to mw can be defined by setting
i(p) =minz~!(p), in case where p is isolated from the right, i (p) = max 7~ (p), in case where p is isolated from
the leftand i(p) =pif pe C\ Q.

LetS = (Cs, ng’ , 1) be the unique continuous inverse sequence satisfying Co = C and 715 1 — 7 for every £ < wi,
where each C is identified with C by using an order preserving isomorphism. The case of a limit stage § < w; makes
no trouble, because Cs is a 0-dimensional, dense-in-itself linearly ordered metric compact, therefore order isomorphic
to C.

Define K = 1imS. Since 7 is an order preserving retraction, K is a linearly ordered Valdivia compact (by Theo-
rem 0).

We show (2). Fix a nonempty clopen set J C K. Observe that K 4+ K is isomorphic to K, therefore we may
assume that J is a clopen interval [a, b]. We have that J = 7o~ U] for some clopen set U € C,,. For convenience,
we assume that o« = 0. Since 7 is order preserving, necessarily U is an interval. Thus U = [c, d], where ¢ = mp(a)

|
and d = mo(b). Let Jg = (TL’g) [U] and let pg = ng | Jy. Then S; = (Jg, pg, w1) is a continuous inverse sequence

with limit J. Finally, observe that p§+l is isomorphic to . Indeed, if x € J¢ is isolated from one of the sides in J¢

then it is also isolated from the same side in C¢. Further, ( ng)_l (x) =71 (x). Since Jg is order isomorphic to Cg,

this shows that pEJrl is isomorphic to 7.

Observe that (1) follows from (2) and (3), so it remains to show (3). Fix a linearly ordered Valdivia compact X. By
Proposition 5.5, we may assume that w(X) = R and therefore X = lim(X¢, rg , w1), where the sequence is continu-
ous, retractive and each X¢ is a metrizable 0-dimensional compact space. Since X has another representation as the
limit of a sequence of linearly ordered metric compacta with order preserving surjections, by the spectral theorem of
S&epin (see [15, Theorem 2] or [13, Section 2.2]), we may assume (replacing w; by a closed cofinal set) that each X £
is linearly ordered and that each rg is order preserving.

We construct inductively a sequence { f }¢ <, of order preserving surjections fg : C¢ — X¢ such that f¢ ng = rg fa
holds for every £ < 1 < wj. Clearly, the limit of such a sequence is the desired order preserving surjection from K
onto X.

We start with any order preserving surjection fy:Co — Xg. For a limit ordinal §, we define f; as the limit of
{fs: & < 8}, using the continuity of both inverse sequences. Fix « < w; and assume that f: have been constructed
for & < a. We construct fy41 in such a way that fgné”l = r§‘+1.fa+1 holds for & = «. Then, using the inductive

hypothesis, we deduce that this equality holds for every £ < «. Recall that 75 +1 = 7. Thus, up to order isomorphism,
wehave C =Cy, D =Cqy1. Weset Z := Xo, W= Xgq1, 7 1= rg“ and g := fy. In order to complete the proof, we

need to find an order preserving surjection i : D — W such that rh = gm, i.e. so that the following diagram commutes:

D—>w

lgi

C——Z

Given z € Z define F, = 7~ '[¢g7!(z)]. Note that F, is a closed interval and hence, since D is dense-in-itself, F, is
either order isomorphic to the Cantor set or else | F;| < 2. Now observe that the required map & must satisfy

h[F;]= r_l(z) forevery z € Z. ()

Conversely, if h: D — W satisfies (x) then it is an order preserving surjection such that r2 = gz holds. Thus, it
suffices to show that F, has an order preserving map onto r~!(z) for every z € Z.

Fix z € Z. Then r~!(z) is a closed metrizable interval in W containing z (recall that Z € W and r | Z =idz). If
r ()= {z} then there is nothing to prove, so assume r~1(2) = [a, b], where a < b. Note that ZN[a, b] = {z}. Thus, if
z # b then z is isolated from the right in Z and consequently max g~!(z) € Q. Similarly, if z # a then ming~'(z) € Q.
In both cases, g~!(z) N Q # ¥ and hence F, = 7 ~'[g~!(z)] is isomorphic to the Cantor set, therefore it has an order
preserving map onto every linearly ordered metric compact, in particular onto 7! (z). This completes the proof. O
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Let L = {x € Q®!: |suppt(x)| < Rp} be endowed with the lexicographic ordering. The above space K may also
be described as the Stone space of the interval algebra over L. In fact, the set L’ C K consisting of all points which
are isolated from the left-hand side is order isomorphic to L. In contrast to Theorem 5.2, observe that the natural two-
to-one order preserving quotient of K produces a connected linearly ordered space in class RC, which is nowhere
separable.

We do not know whether every linearly ordered continuous image of a Valdivia compact is an order preserving
(or even just continuous) image of the space K from the above theorem. It can be shown that every linearly ordered
continuous image of a Valdivia compact space has weight < Ry, by adapting the proof of Proposition 5.5 and using
the fact that wy + 1 is not an image of any Valdivia compact. Below are other two open questions, which have been
already mentioned in the text.

Question 1. Is class R stable under retractions?
Question 2. Is every space from RC a continuous image of a space from class R?
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