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A proline-rich peptide of 2733 Da, isolated from pig parotid granule preparations was tested against different
pathogenic fungi. It showed interesting antifungal activity towards a clinical isolate of Cryptococcus neoformans,
with an ECso of 2.2 pM. Neither cytotoxic nor haemolytic effects were observed towards mammalian cells. Circu-
lar dichroism and infrared spectroscopic studies showed that the peptide adopted a combination of polyproline

type-II, B-turn and unordered conformations at physiological temperatures. Temperature dependent experi-
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damage.

ments evidenced a tendency to adopt a polyproline-II helix conformation. From experiments with lipid vesicles,
Neutral Red Uptake (NRU), haemolytic assays, and confocal microscopy studies, it could be hypothesized that the
peptide may exert its antifungal effect by interacting with an intracellular target rather than through membrane

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Cryptococcosis is a serious and potentially life-threatening disease
caused by environmental yeasts belonging to the genus Cryptococcus.
Only Cryptococcus neoformans together with C. gattii are considered,
among the many recognized species in the genus, the principal patho-
gens in humans. Previously, C. neoformans was defined as having two
varieties — var. neoformans and var. gattii. They differed on the basis of
antigenic specificity of the capsular polysaccharide: serotypes A, D and
AD were recognized in var. neoformans, and serotypes B and C in var.
gattii. Serotype A strains have been afterwards named C. neoformans
var. grubii [1]. However, based on the elucidation of the genomic se-
quences, C. gattii is now considered a distinct species. Infection begins
in the lung, following inhalation of environmental yeast cells. Initial
manifestations depend likely on the fungal burden and the immune
status of the host, and pulmonary cryptococcosis varies from a benign
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upper respiratory tract infection to a very severe bilateral pneumonia.
The infection can spread through hematogenous dissemination. Crypto-
cocci have a predilection to invade the central nervous system and
can cause a life-threatening meningoencephalitis with involvement of
motor and cognitive functions. Although cryptococcosis is mainly ob-
served in cases of immune deficiency, many reports highlight its occur-
rence in patients without recognizable immune defects, indicating that
the yeast can set up virulence mechanisms that provoke disease even
in healthy individuals [2,3]. HIV-infected individuals are particularly
prone to cryptococcal infection; cryptococcosis is an AIDS-defining ill-
ness and a major cause of mortality, particularly in sub-Saharan Africa
[4]. The treatment regimens for cryptococcal meningitis are focused on
amphotericin B, alone or in combination with flucytosine, for initial or
induction treatment. Azoles, as fluconazole or itraconazole, remain the
agents of choice for long-term maintenance therapy, to prevent relapses
or as available therapeutic alternative. As for many other infectious
diseases, treatment failures may occur because of antifungal drug resis-
tance [5,6], so the development of new drugs with different mechanisms
of action, including peptides endowed with antifungal activity [7,8], has
to be pursued in order to face more threatening fungal infections in the
future.

In this view, over the past decades a great interest has focused on an-
timicrobial peptides (AMPs) [9,10]. AMPs are a large and heterogeneous
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family of peptides widespread in plant and animal kingdoms as impor-
tant effectors of innate immunity. They have several common features,
including the presence of a basic character with a positive net charge
at physiological pH. AMPs are divided into sub-families depending on
secondary structural similarities: the alpha-helical conformation is
a common motif in the secondary structure of melittin, magainin, and
the cathelicidin LL-37 [11]; beta strands with one or more disulfide
bonds are common in defensins, cystatins, hepcidins, and thionins
[12-15], while apidaecins, indolicidins, and histatins share a linear
structure and are also characterized by the presence of specific amino-
acids (e.g. Arg, Pro, His) [16,17]. Penaeidins, isolated from crustaceans,
exhibit a peculiar structure being constituted by two distinct domains:
a linear proline-rich and a cysteine rich one [18]. AMPs show anti-
bacterial, antiviral and antifungal activities at a concentration ranging
from nano to micromolar, and some of them are under development
as new promising drugs [19]. Of particular interest is the fact that
each class may exert killing activity through mechanisms of action dif-
ferent with respect to conventional antimicrobial drugs. Depending on
experimental conditions, these mechanisms may be included in two
main schemes: a) microbe cell membrane perturbation or disruption;
b) interaction with intracellular targets [20].

A peculiar class of AMPs is represented by proline-rich peptides.
They are small linear peptides characterized by a high content (up
to 50%) of proline residues [21]. The most well known representative
members of this class are the mammalian cathelicidins Bac-5, Bac-7
and PR-39 [22-24], crustacean penaeidins and insect apidaecins, but
peptides derived from gastropods and earthworms were also described
[25,26].

Due to their structural arrangement, the modalities by which
proline-rich peptides exert their antimicrobial activity reside in the
ability to translocate across the target organism membrane and inter-
act with intracellular targets [27]. These are represented by DNA,
enzymes, or protein complexes. In the latter case, peptides can inter-
act with Proline-Rich Sequence Recognition Domains, such as Src Ho-
mology 3 (SH3) domains, being able to modulate different cellular
mechanisms and pathways [28-30]. Proline-rich peptides are present
in different body compartments and fluids in mammals, and saliva is
one of the richest sources of these peptides in the mammalian order.
Proteomic investigation of the pig saliva revealed the presence of in-
teresting proline-rich peptides among which the main component,
named SP-B peptide, showed to possess antifungal activity [31]. The
aim of this study was to investigate the biological activities against
pathogenic fungi of another minor component identified in swine sa-
liva [32] and recently patented as anti-viral agent [pat. n° PCT/IB2012/
050419].

2. Materials and methods
2.1. Peptide synthesis

SP-E peptide was assembled on an Applied Biosystem Peptide
Synthesizer 433A (Foster City, CA, USA) on a preloaded proline-2-
chlorotrityl resin (Novabiochem, Laufelfingen, CH) following the
Fmoc-(N“-9-Fluorenylmethyloxycarbonyl) protocol for stepwise
solid phase peptide synthesis [33,34]. Fmoc-amino acids were
from Novabiochem.

All couplings were carried out with 5 fold excess of activated
amino acid in the presence of 10 equivalents of N-ethyldiisopropyl
amine, using N-[(dimethylamino)-1-H-1,2,3-triazole-[4,5-3]pyridine-
1-ylmethylene]-N-methylmethanaminium hexafluorophosphate N-
oxide (HATU, PE Biosystems, Inc., Warrington, UK) as activating agent
for the carboxy group. The fluoresceinated peptide was obtained by
extending the N-termini of an aliquot (15%) of the assembled peptide-
resin, with 8-(9-Fluorenyloxycarbonyl-amino)-3,6-dioxaoctanoic
acid, removal of the Fmoc protecting group and coupling of 5-
Carboxyfluorescein (FAM), mediated with 1-Hydroxybenzotriazole

and N, N'’-Diisopropylcarbodiimide. The fluoresceinated peptide
was released from the resin and purified by the same procedures
adopted for the free-peptide. At the end of peptide chain assembly,
the peptide was cleaved from the resin by treatment with a mixture
of 80% trifluoroacetic acid, 5% water, 5% phenol, 5% thioanisole, 2.5%
ethandithiol and 2.5% triisopropylsilane for 3 h at room temperature,
with concomitant side chain deprotection. The resin was filtered and
the peptide was precipitated in cold tert-butylmethyl ether. After
centrifugation and washing with tert-butylmethyl ether the peptide
was suspended in 5% aqueous acetic acid and freeze-dried. Analytical
and semipreparative Reversed Phase High Performance Liquid Chroma-
tography (RP-HPLC) was carried out on a Tri Rotar-VI HPLC system
equipped with a MD-910 multichannel detector for analytical purposes
or with a Uvidec-100-VI variable UV detector for preparative purposes
(all from JASCO, Tokyo, Japan). Analytical RP-HPLC was performed on
a Jupiter 5 1 C18 300 A column (150 % 4.6 mm, Phenomenex, Torrance,
CA, USA). Semipreparative RP-HPLC was performed on a Jupiter 10 n
C18 300 A column (250x21.2 mm, Phenomenex). Linear gradients of
acetonitrile in aqueous 0.1% TFA (v/v) were used to elute bound pep-
tide. MALDI-TOF mass spectrometry analysis was performed on a
Autoflex workstation (Bruker Daltonics, Bremen, DE). Observed exper-
imental values for peptide masses were in agreement with theoretical
calculated values.

2.2. CD and ATR/FT-IR measurements

CD spectra were obtained on a Jasco J-600 spectrophotometer
equipped with a thermostatic temperature controller. CD spectra were
recorded in quartz cell of 0.1 cm path length at 25 °C between 190 and
250 nm, using a 2.0 nm bandwidth and a scanning rate of 20 nm/min
with a wavelength step of 0.1 nm and a time constant of 0.1 s. SP-E pep-
tide was dissolved in 10 mM sodium phosphate buffer at pH 7.4. A TFE
30% (v/v) aqueous solution was also employed. CD band intensities are
expressed as molar ellipticities, ([6]y in deg cm? dmol ~!x1073).

ATR/FT-IR spectra were recorded on a Spectrum One (Perkin-
Elmer) spectrophotometer equipped with an ATR accessory with a
ZnSe reflection element. Prior to analysis, SP-E synthetic peptide
was dissolved in 20 mM HCl and subsequently freeze-dried twice in
order to remove the residual TFA derived from peptide purification.
Spectra were recorded after 40 scans at a 1 cm ™' of resolution. The
samples were dissolved in 10 mM sodium phosphate buffer, pH 7.4.
An open beam background spectrum of clean crystal was recorded.
Subsequently the buffer solution spectrum was recorded followed
by the peptide spectrum measurement. The spectra of buffers alone
were hence subtracted from the peptide ones. During measurements
performed at 25 °C, the crystal was continually flushed with nitrogen
to eliminate residual water vapors. Usually 1 pL of a 1 mg/mL (w/v)
solution of SP-E peptide was employed for any measurement.

2.3. Spectroscopic data treatment

ATR FT/IR spectra were used to obtain second derivative spectra
with Peak Fit 4.12 software (Sea Solve Software, Inc., San Jose, CA,
USA). A 20% smoothing process, employing the Savitzky-Golay algo-
rithm, was performed and the resulting peaks were used as a refer-
ence for the subsequent peak fitting analysis performed with the
same program. A linear baseline was employed and Gaussian peaks
were produced after an iterative adjustment of data until the SSE sta-
tistical parameter was under 1x 10~4, indicating a good fitting analy-
sis. The resulting peak areas of Amide [ were used to determine the
contribution of each secondary structure motif.

Circular dichroism spectra were analyzed employing Selcon3 pro-
gram available on Dichroweb web site (http://dichroweb.cryst.bbk.
ac.uk/html/home.shtml) [35]. The data were inserted as requested
by the web site manager in the range between 190 and 250 nm.
The obtained results satisfied the three basic selection rules: sum of
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secondary structure fractions was > 1, each fraction was > 0.025, the
RMS deviation between the reconstructed and experimental CD was
<0.25 Ag, according to software recommendation.

2.4. In vitro evaluation of fungicidal activity

The fungicidal activity in vitro was assessed by colony forming
unit (CFU) assays as previously described [31,36]. Fungi to be tested
(Candida albicans UP10, C. neoformans AIDS 25, and Aspergillus
fumigatus UP1) were grown in Sabouraud dextrose agar plates at
30 °C for 24-48 h (yeasts) or 4-5 days (A. fumigatus). Yeast cells and
conidia were suspended in sterile distilled water (3-5x 10 cells/mL)
and 10 pL of suspensions were added to 90 pL of H,O containing
the synthetic peptide at different concentrations (36.5 uM to
1.1 uM). H,0 alone served as a control. After incubation for 6 h (yeasts)
or 18 h (A. fumigatus) at 37 °C with the respective reagents, the fungal
cells were dispensed and streaked on the surface of Sabouraud agar
plates. After incubation for 48-72 h at 30 °C, colonies were enumerat-
ed. Each experiment was performed in triplicate. Peptide fungicidal
activity was determined as the percentage of CFU inhibition, according
to the formula 100 — (CFU experimental group/CFU control)x 100.
Peptide half maximal effective concentration (ECsg), was calculated by
nonlinear regression analysis using Graph Pad Prism 4.01 software. In
preliminary experiments, the previously described proline-rich peptide
SP-B, endowed with antifungal activity [31], was used as a positive
control.

2.5. Cells and treatments

Mouse 3T3-fibroblasts (Swiss albino mouse cell line) (Istituto
Zooprofilattico, Brescia, Italy) and HL-60 cells were grown in a 5% CO,
atmosphere at 37 °C in DMEM (Dulbecco's Modified Eagle Medium)
with Hepes (10 mM), glucose (1.0 g/L), NaHCOs (3.7 g/L), penicillin
(100 units/mL), streptomycin (100 pg/mL) and 10% FCS (fetal calf
serum). Human oral squamous carcinoma keratinocytes (PE/CA PJ15,
ECACC, UK), were grown in the above reported conditions, but employing
IDMEM as basal medium.

2.6. Cytotoxicity tests

The possible cytotoxic effects of the SP-E peptide were studied on
3T3-Swiss, HL-60 and PE/CA PJ15 cell lines using Neutral Red Uptake
(NRU) and thiazolyl blue tetrazolium bromide (MTT) tests. In order to
evaluate the cytotoxic effects of SP-E, the freeze-dried peptide was
prepared at different final concentrations (2.5, 5, 10, 20 and 50 uM)
dissolved in basal medium (2.2 mL) checking for final pH. Cells
(1x10%) in basal medium (200 pL) were seeded in individual wells
of a 96-well tissue culture plate and cultured to sub-confluent mono-
layer for 24 h. Cellular viability was evaluated by NRU and MTT tests,
after 24 h, 48 h, and 72 h after addition of the peptide at 37 °C at
different concentrations (2.5, 5, 10, 20 and 50 pM). NRU assay was
performed according to Borenfreund [37]: a Neutral Red aqueous so-
lution (0.4 %) was added to each well to obtain a final concentration
of 50 pg/mL and, after incubation for 4 h at 37 °C, the supernatant
was discharged. The intracellular Neutral Red was revealed by adding
a solution of 50% ethanol with 1% acetic acid (200 pL). The optical
density (OD) of the solution was determined using an automatic
microplate photometer (Packard Spectracount™, Packard BioScience
Company, Meriden, CT, USA) at a wavelength of 540 nm. MTT test
was performed according to Wataha et al. [38]: 20 pL of a 5 mg/mL
solution of MTT in PBS were added to the medium (200 pL) and,
after incubation for 4 h at 37 °C, the intracellular formazan crystals
produced were solubilized with a solution of HCI in isopropanol
(4x1072 M, 200 pL). Absorbance was measured at 570 nm. Each
experiment was performed in sextuplicate and the cell cytotoxicity
was calculated according to Hashieh et al. [39].

2.7. PDA-phospholipid colorimetric vesicle assay

Dimiristoyl-phosphatidyl glicerol (DMPG), phosphatidylcholine
(PC) and 10,12-Tricosadiynoic acid (polydiacetylene, PDA), were all
purchased from Sigma-Aldrich (St. Louis, MO, USA). Phospholipid
vesicles were prepared as described in [40] with slight modifications.
Briefly, DMPG and PC were combined with PDA in a 2:1:2 DMPG/PC/
PDA ratio obtaining a final concentration of total lipids of 1 mM. After
solubilization in a chloroform:methanol 2:1 solution and drying
under rotary evaporation, the mixtures were resuspended in ultra-
pure water, warmed at 70 °C and sonicated. The resulting opalescent
solution was cooled at 4 °C overnight. Before each experiment the
vesicle preparations were centrifuged at 2000 rpm for 15 minutes
at 25 °C and the suspension used for subsequent polymerization
achieved using UV irradiation at 220 nm for a few seconds. The
resulting mixtures exhibited an intense blue colour. The experiments
were performed with a spectrophotometer (Agilent 8453, Santa Clara,
CA, USA) following the signals at 500 and 640 nm in the time. In
order to quantitatively evaluate the colorimetric response the extent
of blue-to-red color transition was calculated by the colorimetric
response (%CR), which is defined as

%CR = [(PB,—PB;)/PB,] x 100

where PB= Ag40/(Asa0 + Asoo), A is the absorbance either at 640 nm
(blue colour) or at 500 nm (red component) in the UV-vis spectrum,
PBy is the red/blue ratio of the control sample (before induction of
color change), and PB; is the value obtained for the vesicle solution
after addition of peptides. Melittin, an antimicrobial peptide character-
ized by an alpha helical conformation and known for its pore forming
activity, was employed as a positive control [41].

2.8. Haemolytic and stability assays

Haemolytic activity was tested on human erythrocytes (group
0 Rh+) (RBCs) collected from a healthy donor in tubes containing
heparin (20 U/ml). RBCs were harvested by centrifugation for
12 min at 2000 g (room temperature), washed twice with PBS
(9 mM sodium phosphate, pH 7.4, 150 mM NaCl), and resuspended
in PBS. Serial dilutions of SP-E peptide in PBS were then prepared
and added to the RBC solution to a final concentration of 25, 125,
and 250 pM in the volume of 200 pl (final erythrocyte concentration,
2.5% v/v), the same concentration was in triplicate. After 1 h of incu-
bation at 37 °C the plates were centrifuged for 5 min at 1500 g. The
supernatants were hence transferred in a microplate and release
of hemoglobin was monitored by measuring the absorbance at
540 nm. Controls for zero hemolysis (blank) and 100% hemolysis
consisted of RBCs suspended in PBS and Triton X-100 0.5%, respec-
tively. Melittin at a concentration of 5 UM served as a further positive
control.

Stability assays were performed incubating SP-E peptide for 48 h
in human serum. At intervals, aliquots of the mixture were taken
and centrifuged for 3 min at 12,000 rpm. The supernatant was
mixed with 0,2% aqueous TFA and injected in a RP-HPLC-ESI-MS ap-
paratus (Surveyor HPLC system - ThermoFisher, San Jose, CA, USA)
connected by a T splitter to a photodiode array detector and to a
LCQ Deca XP Plus mass spectrometer (ThermoFisher). The chromato-
graphic column was a Vydac (Hesperia, CA, USA) C8 with 5 um parti-
cle diameter (column dimensions 150 mmx 2.1 mm). The following
solutions were utilized: (eluent A) 0.056% (v/v) aqueous TFA and
(eluent B) 0.05% (v/v) TFA in acetonitrile:water 80/20. Peptide was
eluted using a linear gradient from 0 to 55% of B for 40 min, at a
flow rate of 0.30 mL/min. The T splitter permitted 0.20 mL/min to
flow toward the diode array detector and 0.10 mL/min to flow toward
the ESI source. Mass spectra were collected every 3 ms in the positive
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ion mode. The MS spray voltage was 4.50 kV, and the capillary tem-
perature was 220 °C.

2.9. Confocal microscopy studies

Interaction between yeast cells and 5-carboxyfluorescein (FAM)-
labelled SP-E was followed in time lapse with confocal microscopy
(LSM 510 Meta scan head integrated with the Axiovert 200 M inverted
microscope, Carl Zeiss, Jena, Germany). Analysis was performed on
living C. neoformans AIDS 25 cells seeded on coverslips mounted in a
special flow chamber [42] and placed in a commercially available incu-
bation system (Kit Cell Observer, Carl Zeiss). A selected field was kept
and observed along the time lapse experiment. Images were taken
every 15 min up to 3 h. At the beginning propidium iodide (PI)
(Invitrogen, Milan, Italy), a non-vital nuclear stain commonly used for
identifying dead cells, was used (22 pM). After 20 min, FAM-peptide
was added (final concentration 60 pg/mL).

Samples were observed through a 63 x NA 1.4 plan apo oil objective.
PI and FAM were excited with 543 nm He-Ne and 488 nm argon laser
lines, respectively. Acquisition was carried out in a multitrack mode
(namely through consecutive and independent optical pathways).

3. Results and discussion

In a previous study a series of proline-rich peptides were isolated
from secretory granules of pig parotid glands and characterized by
means of LC-MS-MS and Edman degradation [32]. Among them, a pep-
tide named SP-E (2733 Da, sequence: NH,-DKPKKKPPPPAGPPPPPPPPP
GPPPPGP-28, F1SQ50-UniProtKB/TrEMBL) resulted to be the most
promising from a preliminary antimicrobial screening. The same pep-
tide has been recently patented as an anti-viral agent [PCT/IB2012/
050419]. Due to the low amount obtainable from parotid granules ex-
tracts (nanomolar range [32]) a synthetic form of SP-E was produced
and used for all the experimental purposes. The synthesis of SP-E was
almost easily achieved, due to the presence of the non hindered
amino acids glycine and proline: 3 glycine residues and 19 proline res-
idues over 28 residues. After assembly via SPPS, the peptide was recov-
ered in high yield and homogeneously from the resin. The final peptide
purification, carried out by RP-HPLC, gave rise to a high-purity prepara-
tion as assessed by MALDI-TOF mass spectrometry analysis (Fig. 1).

3.1. Structural studies

Porcine peptide SP-E was studied by means of CD and FTIR spec-
troscopy. SP-E shows structural peculiar features such as a polar
head conferring to the peptide a highly basic character (theoretical
pl=10.0), followed by a non polar tail in which a nonamer of prolines
is found. The far UV-CD spectrum of SP-E in 10 mM phosphate buffer
at pH 7.4 and at 30 °C, showed a broad negative band around 202 nm
and a slightly positive band at 222 nm (Fig. 2, top, curve b), resem-
bling spectra of other proline-rich peptides in similar conditions [43].
In order to evidence the presence of “hidden” structures, different
spectra were taken in the temperature range between 0 °C to 65 °C.
At 65 °C, a decrease of the negative band was observed together
with the disappearing of the weak positive band at 222 nm (Fig. 2,
top, curve a). Conversely, by decreasing the temperature until 0 °C
an increase of the negative band at 200 nm and an increase of the
positive band at 220 nm were observed (Fig. 2, top, curve c). An
isodichroic point was visible at 208 nm indicating an equilibrium
among the intermediate structures during the thermal transitions. A
typical profile of an all trans left handed polyproline II (PP-II) helix
is characterized by a strong signal at 202 nm and by a positive band
at 224 nm [44-47]. The fact that SP-E shows such a feature at low
temperatures may indicate an intrinsic propensity to adopt this kind
of secondary structure in favourable circumstances. This may be the
case for example of an interaction with a ligand surface where the
structural constraints, consequence of the binding, “freeze” the struc-
ture in a PP-II helix. Experiments performed in a 30% trifluorethanol
solution at 30 °C did not evidence any conformational change (data
not shown).

Consistently with the CD results, the FTIR-ATR spectrum of SP-E
was characterized by two major bands: the Amide [ centered at
1622 cm~ !, and a band at 1439 cm ™! (Fig. 2, bottom). The band at
1622 cm ™! could be ascribed to a PP-II helix [43] while the strong
band at 1439 cm~! was assigned to the proline side-chain signals
[48]. The analysis of the Amide I (Table 1) gave as a result four main com-
ponents: at 1627 cm ™! (38.9%), at 1644 cm™~! (22.7%), at 1613 cm ™!
(30.6 %), and at 1661 cm™! (7.67 %). These data indicate a confor-
mational propensity of SP-E to adopt a mixture of PP-II, unordered and
turn motifs.

The movements around the dihedral angles are very close be-
tween an unordered and a PP-II helix structure and hence may be

LUL N 'R
§

220 nm
B

2733.101 [M+H]#

Fig. 1. RP-HPLC chromatogram related to SP-E peptide purification after SPPS synthesis. The chromatogram has been recorded at 220 nm. The arrow indicates the peak correspond-
ing to SP-E. Inset: MALDI-TOF spectrum of collected peak indicating the purity of the preparation.
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Fig. 2. Far UV-CD (top) and ATR/FT-IR (bottom) spectra of SP-E. (top) The peptide (10 pM) was dissolved in a 10 mM phosphate buffer at pH 7.4. The spectra were taken at different
temperatures, for clarity in the scheme are shown only three curves: line a, 65 °C, line b 30 °C, and line c 0 °C. (bottom) The ATR/FT-IR spectrum was taken as reported in Materials
and methods section. Arrows indicate the Amide I band centered at 1622 cm ™! attributable to a polyproline-II helix conformation and the peak at 1439 cm ™' ascribed to the pro-

line residues.

temperature-modulated. Similarly the transition between unordered
and turn motifs may also be easily driven by temperature. This overall
view suggests for SP-E a flexible structure, consistently with recent
descriptions of proline-rich peptides described as flexible structures
covering different conformational landscapes, in contrast with the
classical “rigid rod” vision [49].

Such a feature may be important for the expression of SP-E fungicid-
al activity, and the presence of proline stretches may be of relevance for
potential interactions with Proline-Rich Sequence Recognition Domains
[50]. If so, many metabolic points crucial for cell viability (e.g. cytoskel-
eton modelling, motility, transduction pathways etc.), may be targeted
by the peptide which may act as a modulatory agent.

Table 1
Areas of residuals obtained after deconvolution of Amide-I band of SP-E. Deconvolution
was performed with Peak-Fit software (see Materials and methods section for details).

Peak Residuals area (%) Centroid Assignements
1 30.6 1613.1 p-turn

2 38.9 1627.2 Polyproline-II
3 22.7 1644.1 Unordered

4 7.67 1661.2 -turn

Total 100.0

3.2. Biological activity

The SP-E peptide was tested for antifungal activity against the clini-
cal isolates C. neoformans AIDS 25, A. fumigatus UP1 and C. albicans UP10.
The highest growth inhibition was obtained against C. neoformans
(Scheme 1) with an ECso value of 2.2 uM (95% confidence intervals
3.02-4.78). ECs values towards C. albicans UP10 and A. fumigatus UP1
were 34.7 and 58.68 UM, respectively (95% confidence intervals 31.3-
38.4 and 43.6-78.8). A negligible antibacterial activity was detected
against Pseudomonas aeruginosa and Staphylococcus aureus strains, at
concentrations above 100 pM, while SP-E proved to be active against
Salmonella typhimurium and Escherichia coli at micromolar concentra-
tions (data not shown). Future work will be devoted to the investigation
of SP-E antibacterial activity. These preliminary results are consistent
with previous reports on antibacterial activity of proline-rich peptides
[27]. The short PRPs derived from insects and the longer mammalian
relatives, such as PR-39, bactenecins and prophenins, are mostly active
against Gram-negative bacteria [51]. Some of these peptides were also
reported to exert antifungal activity; in particular a bactenecin-7 frag-
ment proved to be significantly active against C. neoformans clinical
isolates and collection strains [52], and bactenecin-5 fragments showed
a candidacidal activity similar to that of the entire molecule [53]. The
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Scheme 1. In vitro fungicidal activity of SP-E peptide. The estimated ECsq for the activ-
ity of SP-E against Cryptococcus neoformans AIDS 25 was 2.2 uUM.

peculiar primary sequence of SP-E is almost new in the proline-rich pep-
tides panorama. SP-E and Bac-5 share a PP-II conformational arrange-
ment and a positive charge (in Bac-5 due to Arg residues); these two
characteristics were in fact found to be essential for the exploitation of
the antifungal activity in Bac-5. Moreover, Bac-5 and SP-E showed com-
parable antifungal activities in terms of fungal growth inhibition [53].
In order to examine possible modulatory, cytotoxic or pro-
apoptotic effects, SP-E was tested on some mammalian cell lines.
Cytotoxicity was evaluated on the murine 3T3 fibroblast cell line,
HL60 monocytes and the oral squamous carcinoma cell line PECA/
PJ15. In all the tests performed SP-E did not show particular toxicity
even at concentration of 50 uM, as evidenced by MTT test (data not
shown). NRU assay also indicated an absence of membrane damage
deriving from an interaction with the peptide. Finally, the haemolytic
activity was tested on human red blood cells. SP-E showed no hemolytic
activity at the concentrations and time investigated, as demonstrated
by the mean absorbance values of released hemoglobin (SP-E 25 pM,
0.0244+0.002; SP-E 125 uM, 0.02140.002; SP-E 250 pM, 0.026 +
0.006) that did not differ from the ones of the negative control (PBS,
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Scheme 2. Phospholipid/Polydiacetylene colorimetric vesicle assay. Colorimetric
response (%CR) induced by different concentrations of melittin or SP-E peptide on
PC/DMPG/PDA vesiscles at pH 7.4 was determined. % CR represents the percentage of
colour transition from blue (integer vesicles) to pink-red (perturbed vesicles) spectro-
photometrically monitored at 640 nm and 500 nm, respectively.

0.027 £0.002) in comparison to the positive control (Triton X-100
0.5%, 2.309 4 0.012; melittin 5 pV], 2.122 £ 0.083).

3.3. Effects on phospholipid vesicles and confocal microscopy studies

The majority of the antimicrobial peptides exert their activity
through a perturbation of the outer membrane with different mecha-
nisms [54]. Several proline-rich peptides are also known to be able to
translocate across the cell membranes behaving as cell-penetrating
peptides (CPPs), indicating with this term the ability to enter the
cell without damaging its outer membrane [55]. In order to investigate
this aspect, we performed the test reported in [40]. Briefly, a vesicle
preparation was obtained by sonicating a solution of polydiacetylene
(PDA) and an appropriate phospholipid mixture (phosphatidylcholine
or dimiristoyl phosphatidylglycerol, 1 mM total lipids) and then expos-
ing it to UV light at 220 nm. Polymerization of PDA was assessed by the

MERGE

Fig. 3. Internalization of SP-E into Cryptococcus neoformans cells. Confocal images of living yeast cells incubated in the presence of FAM-labelled peptide (22 puM) for 30 min (A) and
90 min (B). The same field is shown. Bar =20 pm. SP-E is efficiently internalized by yeast cells that, after 90 min of treatment are no longer viable (arrow heads). Non-viable yeast
cells in the inoculum do not internalize SP-E (arrows). In the inset, one cell at larger magnification is shown to highlight the lack of peptide penetration in the cell vacuole.
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transition to blue colour of the solution. Increasing amounts of peptide
were mixed with the vesicles so obtained and the transition from blue
(640 nm) to pinkish colour (500 nm) was monitored. The resulting con-
version rates (CR) value gave the entity of the perturbation. Melittin, an
antimicrobial peptide characterized by an alpha helical conformation
and known for its pore forming activity, was employed as a positive con-
trol [41]. Melittin provoked a rapid conversion of the colour from blue to
pink already at 5 uM (10% CR), whereas SP-E did not, even at higher
concentrations (100 pM, Scheme 2), indicating an absence of perturba-
tion of the lipid vesicles. These results are in fairly agreement with the
data obtained from NRU tests, and suggest that the mechanism of action
of SP-E is not based on the membrane perturbation, but more likely on
the interaction with a target inside the cell [21].

To demonstrate SP-E penetration into yeast cells, confocal micros-
copy studies were performed with FAM-labelled peptide. Viable

C. neoformans cells were treated with PI, and incubated for 3 h in the
presence of SP-E-FAM. Confocal images were taken every 15 min. As
shown in Fig. 3, panel A, after 30 min of incubation SP-E binds to the
surface of all yeast cells, while internalization was seen in some of
them. SP-E did not penetrate in non-viable yeast cells of the inoculum,
suggesting an active process of internalization. After 90 min of treat-
ment with SP-E (Fig. 3, panel B), internalization was seen in most of
the cells, some of which were already killed, as shown by PI penetration.

3.4. Peptide stability experiments

In order to establish the stability of the peptide in a blood-like
environment, SP-E peptide was incubated for 24 h in human serum.
After 8 and 24 h aliquots of the solution were collected, precipitated
with 0.1% TFA and analyzed by HPLC-ESI-MS. No proteolytic fragment
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Fig. 4. Stability experiments of SP-E proline-rich peptide. A, TIC chromatogram showing peptide (17.66 min, R.T.) after 8 h of incubation in human serum; B, TIC chromatogram
showing SP-E (17.42 min, R.T.) after 24 h of incubation in serum. The relative abundances are very similar indicating an overall stability of the peptide. In the third frame are
reported the m/z values of the main peak, the [M -+ 2H]?>* (1367.20) and [M+ 3H]** (911.87). Their deconvolution gives the value of 2733.55 amu.
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could be detected neither at 8 h (Fig. 4, A), or after 24 h (Fig. 4, B).
This result indicates a high degree of stability of the peptide, despite
the high presence of lysine residues which may be targets for trypsin-
like enzymes. Conversely, the presence of many proline residues may
be at the basis of the resistence to proteolysis events.

4. Conclusions

SP-E peptide is an interesting member of proline-rich peptides
family, showing an antifungal activity especially towards C. neoformans,
in the ECso micromolar range.

The absence of cytotoxic effects versus mammalian cells, even at
concentrations well above those able to inhibit fungal growth, and the
high degree of stability suggest that this peptide may be candidate as
a promising antifungal agent. The lack of damage to cell membranes
and phospholipid vesicles, together with the results of confocal micros-
copy studies suggest an intracellular target for this peptide.
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