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Abstract:

This paper presents a trinat branch space robotic manipulator with redundancy, due to hash

application environments, such as in the station. One end effector of the manipulator can be attached to

the base, and other two be controlled to accomplish tasks. The manipulator permits operation of science

payload, during periods when astronauts may not be present. In order to provide theoret ic basis for kine

matics optimization, dynamics optimization and fault-tolerant control, its inverse kinematics is analyzed

by using screw theory, and its unified formulation is established. Base on closed form resolution of spher

ical wrist, a simplified inverse kinematics is proposed. Computer simulation results demonstrate the va

lidity of the proposed inverse kinematics.
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T he earliest space robotic manipulators were
mostly seriat typed with fixed base, such as Ger
many’ s ROTEX!Y Japan’ s JEMRMS!, and so
on. T his kinds of space robotic manipulators have
many similarities with traditional industrial robotic
manipulators, and all of them have inherent defects
that manipulation space is limited.

In order to increase the flexibility, versatility
and work space, many mobile space robotic manip
ulators were proposed by researchers, such as Self-
M obile Space Manipulator ( SM) by Xu'*' and
Canadd s Mobile Servicing System ( MSS). The
IVA Servicer which has two arms like a man was

proposed in NASA’ s telerobotics program plan.
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This manipulator can off-load the requirements of
intensive astronaut maintenance of science pay-
loads, and permit operation of the payloads during
periods when astronauts may not be present[4].
Ren'”! introduced an space robotic manipulator
with three branches, which is refered in this paper
as trinakbranch space robotic manipulator here,
and deduced its inverse kinematics. Besides having
the capability of accomplishing all the tasks that
the serialtyped robotic manipulators can, the trinal
branch space robotic manipulator can accom plish
cooperative manipulation that can not be accom-

plished with seriaktyped robotic manipulators and

walk inside or outside the station. Any two
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branches of the trinakbranch robotic manipulator
can buildup a seriak ty ped robotic manipulator with
redundancy. However, when the cooperative ma
nipulation is performed, it acts like a norrredurr
dant robotic manipulator. Therefore, it is ar
evitable for the trinakbranch robotic manipulator
having the defects inherent in norrredundant
robotic manipulators which kinem atics and dynam-
ics performances can not be optimized, when coop
erative manipu lation is performed.

T his paper aims at introducing a trinalbranch
space robotic manipulator with redundancy which is
flexible and versatile enough to accomplish many
complicated tasks in the station. Based on the re
dundancy, not only its kinematics and dynamics
optimizations can be performed, but also the fault
tolerant control controller can be designed to er
hance the reliability. This paper also presents the
inverse kinematics of the manipulator. Since the
configuration of the manipulator is different from
those of the traditional seriat typed robotic manipu
lators, the inverse kinematics is also different.

In the next section, the configuration of the
manipulator is presented. Its inverse kinematics is
discussed in Section 2. In Section 3, a simplified
inverse kinematics model of the manipulator is pro
posed. Computer simulation and results are pre

sented in Section 4. Section 5 is the conclusion.

1 Configuration of the T rinakBranch
Space Robotic M anipulator

Space robotic manipulators that work in harsh
environments are subject to actuator and sensor
failures. Repairing the broken actuators and serr
sors is impossible. Therefore the space robotic ma
nipulators need fault-tolerance ability.

It has long been known that the kinematically
redundant robotic manipulators are inherently more
dextrous than traditional norr redundant manipula
tors due to the extra degrees of freedom. This re
dundancy can be utilized to compensate for one or
more failure joints. When some actuator and sensor
failures occur, the manipulators still can accom plish

tasks if they are properly designed and comr

trolled'®! .

T his redundancy also can be utilized to opti-
mize the joint torque and joint velocity to reduce
the system energy consumation as well as other
various perform ance criterion, including singularity
avoidance and obstacle avoidance.

Configuration of the trinat branch space robot-

ic manipulator with redundancy is shown in Fig. 1.
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Fig.1 Configurations of the trinat branch space robotic

manipulator

The manipulator has three branches, which
are named first branch, second branch and third
branch with ni, n2 and n3 individually. The de-
gree of freedom is n= ni+ n2+ n3, and the axis
of each revolute joint is shown in Fig. 1.

One endeffector of the three branchs is at-
tached to the station, and the other two are con-
trolled to accomplish various tasks. Therefore, in
order to obtain extra degrees of freedom, the ma-

nipulator must have at least 13 joints.

2 Kinematics of the Trinat Branch Space
Robotic M anipulators

Previous researches on modeling robotic ma-
nipulators’ kinematics were mainly based on De-
navit Hartenberg( D-H ) param eterization method' " .
However, this method works in a relatively strictly
defined coordinate system w hich increases the com-

plexity of kinematics analysis of robotic manipula
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tor. In this section, the kinematics of the trinal-
branch space robotic manipulator is developed based
on the Product of Exponentials ( POE) formula.
The POE approach requires only two coordinate
frames, one is attached to the base and the other is
attached to the end effector.
2.1 Forward kinematics

The coordinate system of the trinakbranch
space robotic manipulator is shown in Fig. 1.
Frame S is attached to the base. Frames T and
T 3 are attached to the endeffectors of the second
branch and the third branch respectively. As

shown in Fig. 1, the first branch is attached to the

base. &irepresents the ith joint twist of instante

neous motion, which is a 3 X 3 skew- symmetric

matrix relative to S. & can also be written as &=
6
(@, vi) ER,

The first and the second branches buildup a

named a twist coordinate.

seriak typed manipulator, so do the first branch and
the third branch, which are named manipulator
M7 and M 3 respectively.

Let gu.2(0) and g 3(0) € R¥*
initial poses of endeffetor of M2 and M 3 relative to

represent the

S respectively. The POE forward kinematics of
M2 and that of M3 can be expressed as

"ty
g 2(0) = Hegﬂ I—EHegfefgst,z(O)

(D

€0

g3(0) = Heitj n+"+ eglfgst 3(0)
1

where go.2( 0) ER* *and g..3(0) ER™? are the
final poses of the endeffector of M2 and M3 rele

tiveto S; % ERY*and ege ERY
tial joint twists @- and E, and respectively, and

* are exponerr

they represent the rigid motion.
2.2 Inverse kinematics
Based on screw theory and configuration of
manipulator, relationship between the joint velocity
and the end- effector spatial velocity of M 2 can be
described as!®! ‘
x2= Ji202 (2)
where
X2= (X1.2 X22 X32 X42 X52 Xe 2)T €ER

.I@tZ— (J12 ,]n 2 Jn+l2 ,]n+n 2) E

X(n+n)

62: ('61":6111 en+1 +n) E Rn+n

x 2 is the spatial velocity of end-effector of M rela-
tiveto S; Ju,2 is the spatial Jacobian of M»; and
02 1s the joint velocity of M.

Similar to Eq. (2),

the joint velocity and the end-effector spatial veloci-

the relationship between

ty of M3 can be described as
x3= Ji30;3 (3)
where

. . . . . . . T 6
X3= (¥13 x23 x33 x43 x53 x63) €R

Jos= (Jis o Juys Jupng1s Jn3) €
R6><(n,1+ n)
193: (91 oo len] 9n1+ n,2+1 ell)T ERHIJr "3

x3is the spatial velocity of endeffector of M3 rela
tiveto S; Ju. 3 is the spatial Jacobian of M 3; 03 is
the joint velocity of M 3.

Egs.(2) and (3) describe the relationship be-
tween the joint velocity and the end effector spatial
velocity of M > and M3 respectively. When only
M2or M 3 performs tasks, Eq.(2) or Eq. (3) can
be used to solve the inverse kinematics problem.
When M3 and M3 perform tasks simultaneously,
the inverse kinematics of the manipulator is not
simply the sum of the inverse kinematics of M, and
M 3. Because the first branch is shared by M ; and
M3, so it is impossible to obtain the correct solu-
tions from the inverse kinematic problem of the
manipulator, just simply by summing the solutions
of the inverse kinematics problem of M 2and M 3.

Eq.(2) can be rewritten as

r1+ /l

Xi 2= Z]y2@+ Z]yze (4)

Jj= n+]
where x; 2 is the ith element of x2; ; is the joint
velocity of the jth joint; and Jj.2 is the ith ele-
ment of the jth column of J&i.2.

Similarly, Eq. (3) can be rewritten as

s (5

Jj= n+n+l

”.1
xi3= Z]y",a'ej+
=

where x; 3 is the ith element of x3;  is the joint
velocity of thej th joint; and Jj, 3 is the ith element
of the jth column of J& 3.
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Combining Egs. (4) and (5), a matrix form

equation can be obtained,

. . J:12 0@<,13 )
x= Jo= 0 (6)
Ji J>
where
x= (x12 - x62 x13 .966,3)'[‘ER12
0= (0 0, ... 0,y en)T € R"
Jl: (]1’3 o ']nl’3 06Xllz) E R6X(n1+’7'2)
and

Jn, 3) E R6>< ny

J2: (Jll]+ nyt 1,3 Jn,l+ nyt 2,3

Eq. (6) can be viewed as the relationship be
tween the joint velocity and the endreffector velocr
ty of seriattyped manipulators. X is the end effec
tor velocity; J is the Jacobian; 0 is the joint veloc
ity.

Based on the relationship betw een the self mo

[9

tion and Jacobian null space vector!”, the inverse

kinematics can be expressed as
0= J (0)x+ J.bs
Jo= (Vi(0) Vi(0))

x12 . .
where J* €ER” is the Moore Penrose inverse Ja

(7)

cobian; 0<€R’ is the self motion velocity; and Vi
(0) €ER" is the Jacobian null space vector.

Eq. (7) represents a unified formulation of the
trinat branch space robotic manipulator, which is
available for the cooperative manipulation of M2
and M3, and the separate manipulation of M or
M 3. The former 6 elements of x are the endeffec
tor velocities of M> and the latter 6 elements are

the end effector velocities of M 3.

3 Simplified Inverse Kinematics of the T ri-

nal Branch Space Robotic M anipulator

The unified inverse kinematics of the trinal
branch space robotic manipulator is expressed in
Eq. (7). Since the dimension of Jacobian is 12X n
(n> 12), the computation of the Moore Penrose
inverse of Jacobian is very complicated. For many
reak time applications, Eq.(7) is inapplicable. If
each branch features a spherical group of joints at
the wrist, a simplified inverse kinematics of the
manipulator can be obtained. In this section, the

simlified inverse kinematics is discussed.

3.1 Computing the position of the wrist from the
pose of end effector
For the serial typed manipulator M 2, the pose

of the end effector can be expressed as a 4% 4 ma-

[n 0 apﬂ.dz]
0 0 0 1

where pend 2 € R is the position of the endeffec-

trix

tor; n, o, a ER} are normal, orientation and ap-
proach vectors of the end effector respectively.

Let Pend,2= (px,2 Py.2 Pz.2) The the posi-
tion of the endeffector of M2 with respect to S;

T
pz.2w) represents the

position of the wrist of M2relative to S.

Let Poaw= (px.2w  py.2w
By the definition of the pose of the endeffec
tor, the position of the wrist from the pose of the
end effector can be obtained,
Px,2w= px.2— L 2c0s o
Py.2w = Py 2— Lacos B (8)
P:2w= pz2— L zcosY/
where Ly is the length of vector Poy Pend,2, which
is determined by the configuration of the manipula-
tor; N , B and d are the direction angles of vector
P2y Pend,2 with respect to S.

Similarly, the position of the wrist can be ob-
tained from the pose of the end effector of M 3.
3.2 Simplified inverse kinematics based on the

position control of wrist

Based on the method for Jacobian with screw
theory and vector product[ 9], the relationship be-
tween the linear velocity of wrist position and the

joint velocity of M2 can be described as the follow-

ing map
P x. 2w
pr.oa| = [J o J 2] (9)
Pz 2w

where,

j2w: (JI,ZW ]nl,ZW) E RSX”I

4 3% (n-3)
2w = (.]nl+ 1, 2w Jnl+ n,- 3 2w) E R (112 /
and

Ba= (81 o By Do

Rn oy 3

enl+ ny- 3) ' E
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Similarly, the relationship of the linear velocr
ty of the wrist position and the joint velocity of M3
can be described as the following map
P, 3w
prav|= [Js T3] 05 (10)
Pz 3w

where

J 3= (J1,3w
4
j 3w= (.]nl+ nyt1,3w

3x
]111,3\,‘\’) E R "
]nl+ nt+ n3—3,3w) E

R3><( n- 3)
and
'93“: (e 1 e .enl enl+ nt 1 .en— 3) ! E
Rn]+ n.- 3

Combining Eqs. (9) and ( 10), a matrix form
equation can be obtained

j 2w j ’ZW

j 3w 03>< (112— 3)

035 (r-3)

.w: Jwew: /3 ew 11
* J,3w ( )

w here

. . . . . . . T 6
Xw = (px,Zw Py.2w Pz.2w Dx,3w Dy,3w pz,3w) E R
Jw E R6><(n— 6)

and
ew = (91
Eq. (11) can be viewed as the relationship be

‘en]Jr n273 'en,lJr n,2+1 e 9#3)’1‘ ERH76

tween the joint velocity and the endreffector velocr
ty of serial-typed manipulator in which the dimerr
sions of work space and joint space are 6 and n— 6
respectively. X is the end effector velocity; Jy is
the Jacobian; and Bw is the joint velocity.

Based on the relationship betw een the self- mo
tion and the Jacobian null space vector, the inverse
kinematics of the position of wrist can be ex pressed
as the follow ing map

By = Juxw+ Jouwbew
Jow= (Vi(0,) - Vi(0,)) €ER™ P

where J& € R 9 %% is the Moore Penrose inverse

(12)

of Jacobian; 0., € R is the selF motion velocity;

and Vi(0,) ER" % is the Jacobian null space vec

tor.

3.3 Orientation kinematics of end effector
Based on Eq. (12), except for joints of wrists

of the trinakbranch space robotic manipulator, all

the joint velocities can be obtained, and then the

joint angles can be obtained by integration.

For M», let Rend2 be the desired orientation
of the end-effector. Let Ry, represent the final ori-
entation of the wrist which can be calculated by us-
ing forward kinematics. One can be obtained

R, X Euler( 9n1+ nye2 9,11+ 1 9,114, ”2) = Reu2

(13)
9n1+ ”z) is
the Euler transformation of the last three joints in

the wrist of M ».

where Euler ( 6,11+ n-2 6"1+ n- 1

Then, the following can be gotten:
Euler( en,lJr n- 2 en,lJr n- 1 enl+ rz,z) = (RZW)7 1Rend,Z
(14)
By solving Eq. ( 14), 9”1* ny- 25 9n1+ ny- 1 and

9,1]+ n, can be obtained.

Similarly, for M3, one can be obtained
Euler(0,-2 01 6) = (Rs)” 'Rews (15)
where Renq,3 is the desired orientation of the end
effector of M3; and R3, is the final orientation of
the wrist which can be calculated by using forward
kinematics.

T herefore, using Egs. (11), (14) and (15),
the solutions of the inverse kinematics problem of
the trinal-branch space robotic manipulator can be
obtained. The kinematics algorithm reduces the dir
mension of the Moore Penrose inverse Jacobian
from n X 6 to (n— 6) X 6. Thus, it reduces the
computation of solving the inverse kinematics prob-

lem.

4  Simulation

To illustrate the inverse kinematics proposed
by this paper, a trinalbranch space robotic manip-
ulator will be discussed in this section, as shown in
Fig.2. Each branch has 5 revolute joint and fea-
tures a spherical group of joints at the wrist, and
the configuration and dimension of each branch are
shown in Fig.2(b). T he trinal branch manipulator
is mounted on a guide track with one degree, as
shown in Fig. 2(a) . Thus, there are 16 degrees of
freedom totally in this system.

Fig. 3 shows the trinatbranch space robotic

manipulator in its zero reference position. T he co-
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ordinate system is shown in Fig. 4 in its zero-refer

ence position, and the twist coordinates of each

joint are given by
&0 1 0 0 0 0)"
&=(0 0 0 0 0 1)"
&=(0 0.2 0 1 0 0)F
&=(0 0 0 0 0 1"
&=(-0.59 0 0 0 1 0)"

&=(0 0.83 01 1 0 0)
&=(0 1.21 01 1 0 0)"
&=(-1.45 0 0 0 1 0)"

&=(-0.2 0 0 0 0 1)"

&=(0 1.84 02 1 0 0)
&s(-02 0 0 0 0 1)°

E5(0 1.02 043 1 0 0)F
&=(-067 0 0 0 0 1)7
£x(0.92 0 0 0 -1 0
&x(-106 0 0 1 0 0"
50092 0 00 -1 07

4 Ly=200mm

L;=200mm

L,=190 mm

L3;=240 mm

el

/ ’ L=340 mm

(a) configuration (b) dimension

Fig.2 A trinak branch space robotic manipulator

Fig.3 Zero reference position

Fig. 5( a) shows the initial state of the manip-
ulator at the beginning of the simulation. At this
time, the poses of the end effectors of M2 and M3
are given by

1 0 0 0
0 172 J3/20.76

B0 32 172 1.66
o 0 0 1
1 0 0 0
0 1/2 -J3/2- 1.06
g«.3 =

0.J3/2 172 1.49
0 0 0 1

First, M2 is driven to open the door of the
cabinet; and then M3 is operated to take a bolt out
the cabinet simultaneously; finally M 7 is manipu-

lated to close the door of cabinet.

Fig.4 Coordinate system
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The simulation time is 20 s. Fig. 5(b), 5(¢),
5(d), 5(e) and 5(f) show the configuration of the
manipulator in t= 4. 0s, 8.0s, 12.0s, 16.0 s and
20. 0 s respectively.

() 160 (0 =20,

Fig.5 Movements of the trinat arm manipulator

5 Condusions

A trinakbranch space robotic manipulator with
redundancy due to the harsh application enviromr
ments is introduced. The inverse kinematics prob
lem of the trinat branch space robotic manipulator
is investigated, and its unified formulation is estabr

lished. T hat simplified inverse kinematics for each

branch features a spherical group of joints is pro-
posed. The inverse kinematic algorithm reduces the
dimension of Moore Penrose inverse of Jacobian
from n X 6 to (n— 6) x 6 . Thus, it reduces the
computation through solving the inverse kinematics
problem. Finally, its feasibility is demonstrated by

the computer simulation results.
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