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Abstract:  This paper pr esents a trinal�branch space r obotic manipulator with redundancy, due to hash

application environments, such as in t he station. One end�effector of the manipulator can be attached to

t he base, and other two be controlled to accomplish tasks. The manipulato r permits operation o f science

payload, during periods when astr onauts may not be present. In order to provide theoret ic basis for kine�

matics optimization, dynamics optimization and fault�toler ant control, its inverse kinematics is analyzed

by using screw theor y, and its unified formulation is established. Base on closed�form resolution of spher�

ical wr ist, a simplified inverse kinematics is proposed. Computer simulation results demonst rat e t he va�

lidity of the proposed inverse kinematics.
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具有冗余度的三分支空间机器人的运动学分析. 贾庆轩, 叶平, 孙汉旭, 宋荆洲. 中国航空学报

(英文版) , 2005, 18( 4) : 378- 384.

摘 要: 基于例如空间站等恶劣的应用环境, 研制了一种具有冗余度的三分支空间机器人。该机

器人的一个分支的末端可以和基座固联,另外两个分支可以进行控制来完成各种作业。在宇航员

不在的情况下,该机器人可以代替宇航员对科学实验载荷进行操作。利用旋量理论对机器人的逆

运动学进行了分析,并建立了统一的数学模型给出了其运动学优化、动力学优化以及容错控制的

理论基础。基于球腕的封闭解,提出了一个简单的逆运动学模型。最后, 通过计算机结果演示验

证了所提出逆运动学模型的有效性。
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  T he earliest space robotic manipulators w ere

most ly serial�typed w ith fixed base, such as Ger�
many! s ROT EX[ 1] , Japan! s JEMRMS [ 2] , and so

on. T his kinds of space robotic manipulators have

many similarit ies w ith t radit ional indust rial robot ic

manipulators, and all of them have inherent defects

that manipulation space is limited.

In order to increase the f lexibility, versat ility

and w ork space, many mobile space robotic manip�
ulators w ere proposed by researchers, such as Self�
Mobile Space Manipulator ( SM ) by Xu[ 3] and

Canada! s M obile Serv icing System ( MSS) . T he

IVA Servicer w hich has two arms like a man was

proposed in NASA ! s telerobot ics program plan.

This manipulator can off�load the requirements of

intensive astronaut maintenance of science pay�
loads, and perm it operat ion of the payloads during

periods w hen ast ronauts may not be present
[ 4]
.

Ren[ 5] int roduced an space robot ic manipulator

with three branches, which is refered in this paper

as trinal�branch space robot ic manipulator here,

and deduced its inverse kinemat ics. Besides hav ing

the capability of accomplishing all the tasks that

the serial�typed robotic manipulators can, the t rinal�
branch space robotic manipulator can accomplish

cooperat ive manipulat ion that can not be accom�
plished w ith serial�typed robot ic manipulators and

walk inside or outside the station. Any tw o
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branches of the trinal�branch robot ic manipulator

can buildup a serial�ty ped robotic manipulator w ith

redundancy. How ever, w hen the cooperative ma�
nipulat ion is performed, it acts like a non�redun�
dant robotic manipulator. Therefore, it is in�
evitable for the t rinal�branch robotic manipulator

hav ing the defects inherent in non�redundant
robot ic manipulators w hich kinemat ics and dynam�
ics performances can not be opt imized, w hen coop�
erat ive manipu�lat ion is performed.

T his paper aims at int roducing a trinal�branch
space robot ic manipulator w ith redundancy w hich is

flex ible and versat ile enough to accomplish many

complicated tasks in the stat ion. Based on the re�
dundancy, not only its kinematics and dynamics

optimizat ions can be performed, but also the fault�
tolerant control controller can be designed to en�
hance the reliability. This paper also presents the

inverse kinematics of the manipulator. Since the

conf igurat ion of the manipulator is dif ferent f rom

those of the t radit ional serial�typed robotic manipu�
lators, the inverse kinemat ics is also dif ferent .

In the next sect ion, the conf igurat ion of the

manipulator is presented. It s inverse kinemat ics is

discussed in Sect ion 2. In Sect ion 3, a simplified

inverse kinemat ics model of the manipulator is pro�
posed. Computer simulation and results are pre�
sented in Section 4. Section 5 is the conclusion.

1  Configuration of the T rinal�Branch
Space Robotic Manipulator

Space robotic manipulators that w ork in harsh

environments are subject to actuator and sensor

failures. Repairing the broken actuators and sen�
sors is impossible. Therefore the space robotic ma�
nipulators need fault�tolerance ability.

It has long been known that the kinemat ically

redundant robotic manipulators are inherently more

dex trous than tradit ional non�redundant manipula�
tors due to the ext ra deg rees of f reedom . This re�
dundancy can be ut ilized to compensate for one or

more failure jo ints. When some actuator and sensor

failures occur, the manipulators st ill can accomplish

tasks if they are properly designed and con�

t rolled [ 6] .

T his redundancy also can be ut ilized to opt i�
mize the joint torque and joint velocity to reduce

the system energy consumat ion as well as other

various performance criterion, including singularity

avoidance and obstacle avoidance.

Conf igurat ion of the trinal�branch space robot�
ic manipulator w ith redundancy is show n in Fig. 1.

Fig . 1  Configurations of the trinal�branch space robo tic

manipulator

  The manipulator has three branches, w hich

are named f irst branch, second branch and third

branch w ith n1, n2 and n3 individually. The de�

g ree of freedom is n = n1+ n2+ n3, and the axis

of each revolute joint is shown in Fig. 1.

One end�ef fector of the three branchs is at�
tached to the station, and the other tw o are con�
t rolled to accomplish various tasks. Therefore, in

order to obtain ext ra degrees of freedom, the ma�
nipulator must have at least 13 joints.

2  Kinematics of t he Trinal�Branch Space

Robotic Manipulators

Previous researches on modeling robot ic ma�
nipulators! kinemat ics were mainly based on De�
navit�Hartenberg( D�H) parameterizat ion method[ 7] .

How ever, this method works in a relat ively strict ly

def ined coordinate system which increases the com�
plexity of kinemat ics analysis of robot ic manipula�
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tor. In this section, the kinemat ics of the t rinal�
branch space robot ic manipulator is developed based

on the Product�of�Exponent ials ( POE ) formula.

T he POE approach requires only two coordinate

frames, one is at tached to the base and the other is

at tached to the end�ef fector.
2. 1  Forward kinematics

T he coordinate system of the trinal�branch
space robotic manipulator is shown in Fig. 1.

Frame S is at tached to the base. Frames T 2 and

T 3 are attached to the end�ef fectors of the second

branch and the third branch respect ively. As

shown in Fig. 1, the f irst branch is at tached to the

base. �
∀

i represents the i th joint tw ist of instanta�
neous motion, w hich is a 3 # 3 skew� symmetric

matrix relative to S . �
^

i can also be w rit ten as �
^

i=

( �i , v i ) ∃ R
6, named a tw ist coordinate.

T he first and the second branches buildup a

serial�typed manipulator, so do the f irst branch and

the third branch, w hich are named manipulator

M 2 and M 3 respectively.

Let gst, 2( 0) and gst, 3( 0) ∃ R
4# 4 represent the

init ial poses of end�ef fetor of M 2 and M 3 relative to

S respectively. The POE forward kinemat ics of

M 2 and that of M 3 can be expressed as

gst, 2(  ) = !
n
1

i= 1
e
�^
i
 
i !

n
1
+ n

2

j= n
1
+ 1
e
�^
j
 
jgst, 2(0)

gst, 3(  ) = !
n
1

i= 1
e
�^
i
 
t !

n

j = n
1
+ n

2
+ 1
e
�^

j
 
jgst , 3(0)

(1)

where gst, 2(  ) ∃ R
4 # 4and gst, 3 (  ) ∃ R

4# 4 are the

final poses of the end�ef fector of M 2 and M 3 rela�

t ive to S ; e�
^

i
 
i ∃ R

4# 4 and e�
^

j
 
j ∃ R

4 # 4 are exponen�
t ial joint tw ists �

^

i and �
^

j and respect ively, and

they represent the rigid mot ion.

2. 2  Inverse kinematics

Based on screw theory and conf igurat ion of

manipulator, relat ionship between the joint velocity

and the end�ef fector spat ial velocity of M 2 can be

described as[ 8]

�x2 = J
s
st , 2� 2 (2)

where

�x2= (�x 1, 2  �x 2, 2  �x 3, 2  �x 4, 2  �x 5, 2  �x 6, 2)
T ∃ R

6

J
s
st, 2= ( J1, 2 %Jn

1
, 2  Jn

1
+ 1, 2 %Jn

1
+ n

2
, 2) ∃ R

6# ( n
1
+ n

2
)

� 2= (� 1%� n
1

 � n
1
+ 1 %� n

1
+ n

2
)
T ∃ R

n
1
+ n

2

�x 2 is the spat ial velocity of end�effector of M 2 rela�

t ive to S ; J
s
st, 2 is the spat ial Jacobian of M 2; and

� 2 is the joint velocity of M 2.

Similar to Eq. ( 2) , the relationship between

the joint velocity and the end�ef fector spat ial veloci�
ty of M 3 can be described as

�x3 = J
s
st , 3� 3 ( 3)

where

�x3= (�x 1, 3  �x 2, 3  �x 3, 3  �x 4, 3  �x 5, 3  �x 6, 3)
T ∃ R

6

J
s
st, 3= ( J1, 3  % Jn

1
, 3  Jn

1
+ n

2
+ 1, 3  % J n, 3) ∃

 R
6# ( n

1
+ n

3
)

� 3= (� 1  % � n
1
 � n

1
+ n

2
+ 1  % � n)

T ∃ R
n
1
+ n

3

�x 3 is the spat ial velocity of end�ef fector of M 3 rela�

t ive to S ; J
s
st, 3 is the spat ial Jacobian of M 3; � 3 is

the joint velocity of M 3.

Eqs. ( 2) and ( 3) describe the relat ionship be�
tw een the joint velocity and the end�effector spat ial
velocity of M 2 and M 3 respectively. When only

M 2 or M 3 performs tasks, Eq. ( 2) or Eq. ( 3) can

be used to solve the inverse kinematics problem.

When M 2 and M 3 perform tasks simultaneously,

the inverse kinemat ics of the manipulator is not

simply the sum of the inverse kinematics of M 2 and

M 3. Because the first branch is shared by M 2 and

M 3, so it is impossible to obtain the correct solu�

t ions f rom the inverse kinemat ic problem of the

manipulator, just simply by summing the solut ions

of the inverse kinemat ics problem of M 2 and M 3.

Eq. ( 2) can be rewrit ten as

�x i, 2 = &
n
1

j= 1
J ij , 2� j + &

n
1
+ n

2

j= n
1
+ 1

Jij , 2� j (4)

where �x i , 2 is the i th element of �x 2; � j is the joint

velocity of the j th joint ; and J ij , 2 is the i th ele�

ment of the j th column of J
s
st, 2.

Similarly, Eq. ( 3) can be rew rit ten as

�x i, 3 = &
n
1

j= 1
J ij , 3� j + &

n

j= n
1
+ n

2
+ 1

J ij , 3� j (5)

where �x i , 3 is the i th element of �x 3; � j is the joint

velocity of the j th joint ; and Jij , 3 is the i th element

of the j th column of Jsst, 3.
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Combining Eqs. ( 4) and ( 5) , a matrix form

equation can be obtained,

�x = J� =
J
s
st, 2 06# n

3

J1 J2
� (6)

where

�x= (�x 1, 2  %  �x 6, 2  �x 1, 3  % �x 6, 3)
T ∃ R

12

� = (� 1  � 2  %  � n- 1  � n )
T ∃ R

n

J1= ( J 1, 3  % J n
1
, 3  06# n

2
) ∃ R

6# ( n
1
+ n

2
)

and
J2= ( J n

1
+ n

2
+ 1, 3  J n

1
+ n

2
+ 2, 3  % Jn, 3) ∃ R

6# n
3

  Eq. ( 6) can be viewed as the relat ionship be�
tw een the joint velocity and the end�effector veloci�
ty of serial�typed manipulators. �x is the end�ef fec�
tor velocity; J is the Jacobian; � is the joint veloc�
ity.

Based on the relat ionship betw een the self�mo�
t ion and Jacobian null space vector[ 9] , the inverse

kinemat ics can be expressed as

� = J
+

(  )�x + J s� s
Js = ( V1(  )  %  Vr (  ) )

(7)

where J+ ∃ R
n # 12 is the Moore�Penrose inverse Ja�

cobian; � s ∃ R
r
is the self�motion velocity; and Vi

(  ) ∃ R
n
is the Jacobian null space vector.

Eq. ( 7) represents a unified formulat ion of the

trinal�branch space robot ic manipulator, w hich is

available for the cooperat ive manipulation of M 2

and M 3, and the separate manipulation of M 2 or

M 3. T he former 6 elements of �x are the end�ef fec�

tor velocit ies of M 2 and the lat ter 6 elements are

the end�ef fector velocit ies of M 3.

3  Simplified Inverse Kinematics of the T ri�
nal�Branch Space Robotic Manipulator

T he unif ied inverse kinemat ics of the t rinal�
branch space robotic manipulator is expressed in

Eq. ( 7) . Since the dimension of Jacobian is 12 # n

( n> 12) , the computat ion of the Moore�Penrose
inverse of Jacobian is very complicated. For many

real�t ime applicat ions, Eq. ( 7) is inapplicable. If

each branch features a spherical group of joints at

the w rist , a simplified inverse kinematics of the

manipulator can be obtained. In this section, the

simlified inverse kinematics is discussed.

3. 1  Computing the position of the wrist from the

pose of end�effector
For the serial�typed manipulator M 2, the pose

of the end�effector can be expressed as a 4 # 4 ma�
t rix

n o a p end, 2

0 0 0 1

where p end, 2 ∃ R
3 is the position of the end�effec�

tor; n , o, a ∃ R
3 are normal, orientat ion and ap�

proach vectors of the end�effector respect ively.
Let Pend, 2= ( p x , 2  p y , 2  p z , 2)

T be the posi�
t ion of the end�effector of M 2 w ith respect to S ;

Let P2w = ( p x , 2w  p y , 2w  p z , 2w)
T
represents the

posit ion of the w rist of M 2 relat ive to S .

By the definit ion of the pose of the end�ef fec�
tor, the posit ion of the w rist from the pose of the

end�effector can be obtained,

p x , 2w = p x , 2 - L 2cos∀∋

p y , 2w = p y , 2- L 2cos#∋

p z , 2w = p z , 2 - L 2cos∃∋

(8)

where L 2 is the leng th of vector P 2w Pend, 2, w hich

is determ ined by the configuration of the manipula�
tor; ∃∋, #∋ and ∀∋are the direct ion angles of vector

P2w Pend, 2 w ith respect to S .

Similarly, the posit ion of the wrist can be ob�
tained from the pose of the end�effector of M 3.

3. 2  Simplified inverse kinematics based on the

position control of wrist

Based on the method for Jacobian w ith screw

theory and vector product
[ 9]
, the relat ionship be�

tw een the linear velocity of w rist posit ion and the

joint velocity of M 2 can be described as the follow�
ing map

�p x , 2w

�p y , 2w

�p z , 2w

= [ J∋2w  J(2w ]� 2w (9)

where,

J∋2w = ( J 1, 2w  %  J n
1
, 2w) ∃ R

3# n
1

J(2w = ( J n
1
+ 1, 2w  %  J n

1
+ n

2
- 3, 2w ) ∃ R

3# ( n
2
- 3)

and

� 2w = (� 1  % � n
1

 � n
1
+ 1  %  � n

1
+ n

2
- 3)

T ∃

 R
n
1
+ n

2
- 3
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  Similarly, the relationship of the linear veloci�
ty of the w rist posit ion and the joint velocity of M 3

can be described as the follow ing map

�p x , 3w

�p y , 3w

�p z , 3w

= [ J∋3w  J(3w]� 3w (10)

where

J∋3w= ( J 1, 3w  % Jn
1
, 3w ) ∃ R

3# n
1

J(3w= ( J n
1
+ n

2
+ 1, 3w  % Jn

1
+ n

2
+ n

3
- 3, 3w) ∃

 R
3# ( n

3
- 3)

and

� 3w= (� 1  % � n
1
 � n

1
+ n

2
+ 1  % � n- 3)

T ∃

 R
n
1
+ n

3
- 3

  Combining Eqs. ( 9) and ( 10) , a matrix form

equation can be obtained

�x w = Jw� w =
J∋2w J(2w 03# ( n

3
- 3)

J∋3w 03# ( n
2
- 3) J(3w

� w(11)

where

�xw = (�p x , 2w �p y , 2w �p z , 2w �p x , 3w �p y , 3w �p z , 3w)
T ∃ R

6

Jw ∃ R
6# ( n- 6)

and

� w = (� 1 % � n
1
+ n

2
- 3 � n

1
+ n

2
+ 1 % � n- 3)

T ∃ R
n- 6

  Eq. ( 11) can be view ed as the relat ionship be�
tw een the joint velocity and the end�effector veloci�
ty of serial�typed manipulator in which the dimen�
sions of w ork space and joint space are 6 and n- 6

respectively. �x w is the end�ef fector velocity; Jw is

the Jacobian; and � w is the jo int velocity.
Based on the relat ionship betw een the self�mo�

t ion and the Jacobian null space vector, the inverse

kinemat ics of the posit ion of w rist can be expressed

as the follow ing map

� w = J
+
w�xw + J s, w� s, w

Js, w = ( V1(  w ) %Vr (  w ) ) ∃ R
( n- 6) # r  (12)

where J +
w ∃ R

( n- 6) # 6 is the Moore�Penrose inverse

of Jacobian; � s, w ∃ R
r is the self�motion velocity;

and Vi (  w ) ∃ R
n- 6 is the Jacobian null space vec�

tor.

3. 3  Orientation kinematics of end�effector
Based on Eq. ( 12) , ex cept for joints of w rists

of the t rinal�branch space robot ic manipulator, all

the jo int velocities can be obtained, and then the

joint angles can be obtained by integrat ion.

For M 2, let R end, 2 be the desired orientat ion

of the end�ef fector. Let R2w represent the final ori�
entat ion of the w rist which can be calculated by us�
ing forw ard kinematics. One can be obtained

R2w # Euler(  n
1
+ n

2
- 2  n

1
+ n

2
- 1  n

1
+ n

2
) = R end, 2

(13)

where  Euler (  n
1
+ n

2
- 2   n

1
+ n

2
- 1   n

1
+ n

2
) is

the Euler t ransformat ion of the last three joints in

the wrist of M 2.

T hen, the follow ing can be got ten:

Euler(  n
1
+ n

2
- 2   n

1
+ n

2
- 1  n

1
+ n

2
) = ( R2w )

- 1
R end, 2

(14)

  By solving Eq. ( 14) ,  n
1
+ n

2
- 2,  n

1
+ n

2
- 1 and

 n
1
+ n

2
can be obtained.

Similarly, for M 3, one can be obtained

Euler(  n- 2   n- 1   n ) = ( R3w)
- 1
R end, 3  ( 15)

where R end, 3 is the desired orientat ion of the end�
effector of M 3; and R3w is the final orientat ion of

the wrist w hich can be calculated by using forw ard

kinemat ics.

T herefore, using Eqs. ( 11) , ( 14) and ( 15) ,

the solut ions of the inverse kinematics problem of

the t rinal�branch space robot ic manipulator can be

obtained. The kinemat ics algorithm reduces the di�
mension of the Moore�Penrose inverse Jacobian

from n # 6 to ( n - 6) # 6. Thus, it reduces the

computat ion of solv ing the inverse kinemat ics prob�
lem .

4  Simulation

T o illust rate the inverse kinemat ics proposed

by this paper, a trinal�branch space robotic manip�
ulator w ill be discussed in this sect ion, as show n in

Fig. 2. Each branch has 5 revolute joint and fea�
tures a spherical group of joints at the w rist , and

the conf igurat ion and dimension of each branch are

shown in Fig. 2( b) . T he trinal�branch manipulator

is mounted on a guide track w ith one deg ree, as

shown in Fig. 2( a) . Thus, there are 16 degrees of

freedom totally in this system .

F ig. 3 show s the t rinal�branch space robot ic

manipulator in its zero�reference�posit ion. T he co�
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ordinate system is show n in Fig. 4 in its zero�refer�
ence�posit ion, and the tw ist coordinates of each

joint are g iven by

�0= ( 0  1  0  0  0  0)
T

�1= ( 0  0  0  0  0  1) T

�2= ( 0  0�2  0  1  0  0) T

�3= ( 0  0  0  0  0  1) T

�4= ( - 0�59  0  0  0  1  0)
T

�5= ( 0  0�83  0�1  1  0  0)
T

�6= ( 0  1�21  0�1  1  0  0)
T

�7= ( - 1�45  0  0  0  1  0)
T

�8= ( - 0�2  0  0  0  0  1) T

�9= ( 0  1�84  0�2  1  0  0)
T

�10= (- 0�2  0  0  0  0  1) T

�11= (0  1�02  0�43  1  0  0)
T

�12= (- 0�67  0  0  0  0  1) T

�13= (0�92  0  0  0  - 1  0)
T

�14= (- 1�06  0  0  1  0  0) T

�15= (0�92  0  0  0  - 1  0) T

Fig . 2  A trinal�branch space robotic manipulator

Fig . 3  Zero�r eference�position

  Fig. 5( a) show s the init ial state of the manip�
ulator at the beginning of the simulat ion. At this

time, the poses of the end�ef fectors of M 2 and M 3

are given by

gst, 2=

1 0 0 0

0 1/ 2 3/ 2 0. 76

0 - 3/ 2 1/ 2 1�66
0 0 0 1

gst , 3 =

1 0 0 0

0 1/ 2 - 3/ 2 - 1�06

0 3/ 2 1/ 2 1�49
0 0 0 1

  First, M 2 is driven to open the door of the

cabinet ; and then M 3 is operated to take a bolt out

the cabinet simultaneously; f inally M 2 is manipu�
lated to close the door of cabinet.

Fig . 4  Coordinate system
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  The simulat ion time is 20 s. Fig. 5( b) , 5( c) ,

5( d) , 5( e) and 5( f) show the conf igurat ion of the

manipulator in t = 4. 0 s, 8. 0 s, 12. 0 s, 16. 0 s and

20. 0 s respectively.

Fig . 5  Movements of the trinal�arm manipulator

5  Conclusions

A trinal�branch space robot ic manipulator w ith
redundancy due to the harsh applicat ion environ�
ments is int roduced. The inverse kinemat ics prob�
lem of the t rinal�branch space robot ic manipulator

is invest igated, and its unif ied formulation is estab�
lished. T hat simplified inverse kinemat ics for each

branch features a spherical group of joints is pro�
posed. The inverse kinemat ic algorithm reduces the

dimension of Moore�Penrose inverse of Jacobian

from n # 6 to ( n - 6) # 6 . Thus, it reduces the

computat ion through solving the inverse kinemat ics

problem. Finally, its feasibility is demonst rated by

the computer simulation results.
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