Kinematics of a Trinar Branch Space Robotic Manipulator with Redundancy

JIA Qing－xuan ${ }^{1,2}$ ，YE Ping ${ }^{1}$ ，SUN Harrxu ${ }^{2}$ ，SONG Jing－zhou ${ }^{1}$
（1．Institute of Robotic Research，Beïing University of A eronautics and A stronautics， Beijing 100083，China）
（2．Automation School，Beïing University of Posts and Telecommunications， Beijing 100876，China）

Abstract

This paper presents a trinat branch space robotic manipulator with redundancy，due to hash application environments，such as in the station．One end effector of the manipulator can be attached to the base，and other two be controlled to accomplish tasks．The manipulator permits operation of science payload，during periods when astronauts may not be present．In order to provide theoret ic basis for kine－ matics optimization，dynamics optimization and fault－tolerant control，its inverse kinematics is analyzed by using screw theory，and its unified formulation is established．Base on closed form resolution of spher ical wrist，a simplified inverse kinematics is proposed．Computer simulation results demonstrat ethe va lidity of the proposed inverse kinematics．

Key words：space robot ic manipulators；redundancy；screw theory；inverse kinematics
具有冗余度的三分支空间机器人的运动学分析．贾庆轩，叶平，孙汉旭，宋荆洲．中国航空学报 （英文版），2005，18（4）：378－384．
摘 要：基于例如空间站等恶劣的应用环境，研制了一种具有冗余度的三分支空间机器人。该机器人的一个分支的末端可以和基座固联，另外两个分支可以进行控制来完成各种作业。在宇航员不在的情况下，该机器人可以代替宇航员对科学实验载荷进行操作。利用旋量理论对机器人的逆运动学进行了分析，并建立了统一的数学模型给出了其运动学优化，动力学优化以及容错控制的理论基础。基于球腕的封闭解，提出了一个简单的逆运动学模型。最后，通过计算机结果演示验证了所提出逆运动学模型的有效性。
关键词：空间机器人；冗余度；旋量理论；逆运动学
文章编号： $1000-9361$（2005） 04037807 中图分类号：V260．6；TP242 文献标识码：A

The earliest space robotic manipulators were mostly serialtyped with fixed base，such as Ger many＇s ROT EX ${ }^{[1]}$ ，Japan＇s JEMRMS ${ }^{[2]}$ ，and so on．This kinds of space robotic manipulators have many similarities with traditional industrial robotic manipulators，and all of them have inherent defects that manipulation space is limited．

In order to increase the flexibility，versatility and work space，many mobile space robotic manip－ ulators w ere proposed by researchers，such as Self－ Mobile Space Manipulator（SM）by $\mathrm{Xu}^{[3]}$ and Canada’ s M obile Servicing System（MSS）．The IVA Servicer which has two arms like a man was proposed in NASA＇s telerobotics program plan．

This manipulat or can off－load the requirements of intensive astronaut maintenance of science pay－ loads，and permit operation of the payloads during periods when astronauts may not be present ${ }^{[4]}$ ．

Ren ${ }^{[5]}$ int roduced an space robotic manipulator with three branches，which is refered in this paper as trinal branch space robotic manipulator here， and deduced its inverse kinematics．Besides having the capability of accomplishing all the tasks that the serial－typed robotic manipulators can，the trinal－ branch space robotic manipulator can accomplish cooperative manipulation that can not be accom－ plished with seriaf typed robotic manipulators and walk inside or outside the station．Any two

[^0]branches of the trinat branch robotic manipulat or can buildup a serial ty ped robotic manipulat or with redundancy. How ever, when the cooperative ma nipulation is performed, it acts like a norr redur dant robotic manipulator. Therefore, it is ir evitable for the trinal branch robotic manipulat or having the defects inherent in norr redundant robotic manipulators which kinem at ics and dynamics performances can not be optimized, when cooperative manipurlation is performed.

This paper aims at introducing a trinat branch space robotic manipulator with redundancy which is flexible and versatile enough to accomplish many complicated tasks in the station. Based on the re dundancy, not only its kinematics and dynamics optimizations can be performed, but also the fault tolerant control controller can be designed to err hance the reliability. This paper also presents the inverse kinematics of the manipulator. Since the configuration of the manipulator is different from those of the traditional seriat typed robotic manipur lators, the inverse kinem at ics is also different.

In the next section, the configuration of the manipulator is presented. Its inverse kinematics is discussed in Section 2. In Section 3, a simplified inverse kinematics model of the manipulat or is pro posed. Computer simulation and results are pre sented in Section 4. Section 5 is the conclusion.

1 Configuration of the Trinal-Branch

Space Robotic Manipulator

Space robotic manipulat ors that work in harsh environments are subject to actuator and sensor failures. Repairing the broken actuators and serr sors is impossible. Therefore the space robotic ma nipulators need fault-tolerance ability.

It has long been known that the kinematically redundant robotic m anipulators are inherently more dextrous than traditional norr redundant manipula tors due to the extra deg rees of freedom. This re dundancy can be utilized to compensate for one or more failure jo ints. When some actuator and sensor failures occur, the manipulators still can accom plish tasks if they are properly designed and corr
trolled ${ }^{[6]}$.
This redundancy also can be utilized to optimize the joint torque and joint velocity to reduce the system energy consumation as well as other various perform ance criterion, including singularity avoidance and obstacle avoidance.

Config uration of the trinar branch space robotic manipulat or with redundancy is shown in Fig. 1.

Fig. 1 Configurations of the trinat branch space robotic manipulator

The manipulator has three branches, which are named first branch, second branch and third branch with n_{1}, n_{2} and n_{3} individually. The degree of freedom is $n=n_{1}+n_{2}+n_{3}$, and the axis of each revolute joint is shown in Fig. 1.

One end effector of the three branchs is attached to the station, and the other two are controlled to accomplish various tasks. Therefore, in order to obtain extra degrees of freedom, the manipulat or must have at least 13 joints.

2 Kinematics of the Trinat Branch Space Robotic Manipulators

Previous researches on modeling robotic manipulators' kinematics were mainly based on De^{-} navit Hartenberg($\mathrm{D}-\mathrm{H}$) param eterization method ${ }^{[7]}$. How ever, this method works in a relat ively strictly defined coordinate system which increases the complexity of kinematics analysis of robotic manipula-
tor. In this section, the kinematics of the trinalbranch space robotic manipulat or is developed based on the Product of Exponentials (POE) formula. The POE approach requires only two coordinate frames, one is attached to the base and the other is at tached to the end effector.

2. 1 Forward kinematics

The coordinate system of the trinal branch space robotic manipulator is shown in Fig. 1. Frame S is attached to the base. Frames T_{2} and $T 3$ are attached to the ent effectors of the second branch and the third branch respectively. As shown in Fig. 1, the first branch is attached to the base. $\dot{\xi}_{i}$ represents the i th joint tw ist of instanta neous motion, which is a 3×3 skew $^{-}$symmetric matrix relative to $S . \hat{\xi}_{i}$ can also be written as $\hat{\xi}_{j}=$ $\left(\omega_{i}, v_{i}\right) \in \mathbf{R}^{6}$, named a twist coordinate.

The first and the second branches buildup a seriaf typed manipulator, so do the first branch and the third branch, which are named manipulator M_{2} and M_{3} respectively.

Let $\boldsymbol{g}_{\text {st }, 2}(0)$ and $\boldsymbol{g}_{\text {st, } 3(0)} \in \mathbf{R}^{4 \times 4}$ represent the initial poses of end effetor of M_{2} and M_{3} relative to S respectively. The POE forward kinematics of M_{2} and that of M_{3} can be ex pressed as

$$
\left.\begin{array}{l}
\boldsymbol{g}_{\mathrm{st}, 2}(\theta)=\prod_{i=1}^{n_{1}} \mathrm{e}^{\xi_{i} \theta_{i}}{ }_{j=n_{1+1}}^{n_{1}^{+n_{2}}} \prod_{2}^{1} \mathrm{e}^{\xi_{j} \theta_{j}} \boldsymbol{g}_{\mathrm{st}, 2(0)} \\
\boldsymbol{g}_{\mathrm{st}, 3}(\theta)=\prod_{i=1}^{n_{1}} \mathrm{e}_{i}^{\xi_{i} \theta_{t}} \prod_{j=n_{1}+n_{2}+1}^{n} \mathrm{e}^{\xi_{j} \theta_{j}} \boldsymbol{g}_{\mathrm{st}, 3(0)} \tag{1}
\end{array}\right\}
$$

where $\boldsymbol{g}_{\text {st }, 2}(\theta) \in \mathbf{R}^{4 \times 4}$ and $\boldsymbol{g}_{\text {st }, 3}(\theta) \in \mathbf{R}^{4 \times 4}$ are the final poses of the end effector of M_{2} and M_{3} rela tive to $S ; \mathrm{e}^{\hat{\xi}_{i} \theta_{i}} \in \mathbf{R}^{4 \times 4}$ and $\mathrm{e}^{\hat{\xi}_{j}} \in \mathbf{R}^{4 \times 4}$ are exponerr tial joint tw ists $\hat{\zeta}_{i}$ and $\hat{\xi}_{j}$ and respectively, and they represent the rigid motion.

2. 2 Inverse kinematics

Based on screw theory and configuration of manipulator, relationship between the joint velocity and the end effector spatial velocity of M_{2} can be described as ${ }^{[8]}$

$$
\begin{equation*}
\boldsymbol{x}_{2}=\boldsymbol{J}_{\mathrm{st}, 2}^{\mathrm{s}} \theta_{2} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
\boldsymbol{x}_{2} & =\left(\begin{array}{llllll}
x_{1,2} & x_{2,2} & x_{3,2} & x_{4,2} & x_{5,2} & x_{6,2}
\end{array}\right)^{\mathrm{T}} \in \mathbf{R}^{6} \\
\boldsymbol{J}_{\mathrm{st}, 2}^{\mathrm{s}} & =\left(\begin{array}{llll}
J_{1,2} \ldots J_{n_{1}, 2} & J_{n_{1}+1,2} \ldots J_{n_{1}+n_{\dot{z}}}
\end{array}\right) \in \mathbf{R}^{6 \times\left(n_{1}+n_{2}\right)}
\end{aligned}
$$

$$
\theta_{2}=\left(\begin{array}{ll}
\theta_{1} \ldots \theta_{n_{1}} & \theta_{n_{1}+1} \ldots \theta_{n_{1}+n_{2}}
\end{array}\right)^{\mathrm{T}} \in \mathbf{R}_{1+n_{2}}^{n_{1}}
$$

\dot{x}_{2} is the spatial velocity of end effector of M_{2} relative to $S ; \boldsymbol{J}_{\mathrm{st}, 2}^{\mathrm{s}}$ is the spatial Jacobian of M_{2}; and θ_{2} is the joint velocity of M_{2}.

Similar to Eq. (2), the relationship between the joint velocity and the end effector spatial velocity of M_{3} can be described as

$$
\begin{equation*}
\boldsymbol{x}_{3}=\boldsymbol{J}_{\mathrm{st}, 3}^{\mathrm{s}} \theta_{3} \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
\boldsymbol{x}_{3}= & \left(\begin{array}{llllll}
x_{1,3} & x_{2,3} & x_{3,3} & x_{4,3} & \dot{x} 5,3 & x_{6,3}
\end{array}\right)^{\mathrm{T}} \in \mathbf{R}^{6} \\
\boldsymbol{J}_{\mathrm{st}, 3}^{\mathrm{s}}= & \left(\begin{array}{lllllll}
J_{1,3} & \ldots & J_{n_{1}, 3} & J_{n_{1}+n_{2}+1,3} & \ldots & J_{n, 3}
\end{array}\right) \in \\
& \mathbf{R}^{6 \times\left(n_{1}+n_{3}\right)}
\end{aligned}
$$

\boldsymbol{x}_{3} is the spatial velocity of end effector of M_{3} relative to $S ; \boldsymbol{J}_{\mathrm{st}, 3}^{\mathrm{s}}$ is the spatial Jacobian of $M_{3} ; \theta_{3}$ is the joint velocity of M_{3}.

Eqs. (2) and (3) describe the relationship betw een the joint velocity and the end effect or spatial velocity of M_{2} and M_{3} respectively. When only M_{2} or M_{3} performs tasks, Eq. (2) or Eq. (3) can be used to solve the inverse kinematics problem. When M_{2} and M_{3} perform tasks simultaneously, the inverse kinematics of the manipulator is not simply the sum of the inverse kinematics of M_{2} and M_{3}. Because the first branch is shared by M_{2} and M_{3}, so it is impossible to obtain the correct solutions from the inverse kinematic problem of the manipulator, just simply by summing the solutions of the inverse kinematics problem of M_{2} and M_{3}.

Eq. (2) can be rewritten as

$$
\begin{equation*}
\dot{x}_{i, 2}=\sum_{j=1}^{n} J_{i j, 2} \theta_{j}+\sum_{j=n_{1}+1}^{n+n_{2}} J_{i j, 2} \theta_{j} \tag{4}
\end{equation*}
$$

where $\dot{x}_{i, 2}$ is the i th element of $\boldsymbol{x}_{2} ; \theta_{j}$ is the joint velocity of the j th joint; and $J_{i j, 2}$ is the i th element of the j th column of $\boldsymbol{J}_{\mathrm{st}, 2}^{\mathrm{s}}$.

Similarly, Eq. (3) can be rew ritten as

$$
\begin{equation*}
\dot{x}_{i, 3}=\sum_{j=1}^{n_{1}} J_{i j, 3} \theta_{j}+\sum_{j=n_{1}+n_{2}+1}^{n} J_{i j, 3} \theta_{j} \tag{5}
\end{equation*}
$$

where $\dot{x}_{i, 3}$ is the i th element of $\dot{x}_{3} ; \theta_{j}$ is the joint velocity of the j th joint; and $J_{i j, 3}$ is the i th element of the j th column of $\boldsymbol{J}_{\mathrm{st}, 3}^{\mathrm{s}}$.

Combining Eqs. (4) and (5), a matrix form equation can be obtained,

$$
\boldsymbol{x}=\boldsymbol{J} \theta=\left[\begin{array}{cc}
\boldsymbol{J}_{\mathrm{st}, 2}^{\mathrm{s}} & \mathbf{0}_{6 \times n_{3}} \tag{6}\\
\boldsymbol{J}_{1} & \boldsymbol{J}_{2}
\end{array}\right] \theta
$$

where

$$
\begin{aligned}
& \boldsymbol{x}=\left(\begin{array}{llllll}
x_{1,2} & \ldots & x_{6,2} & x_{1,3} & \ldots & x_{6,3}
\end{array}\right)^{\mathrm{T}} \in \mathbf{R}^{12} \\
& \theta
\end{aligned}=\left(\begin{array}{lllll}
\theta_{1} & \theta_{2} & \ldots & \theta_{n-1} & \theta_{n}
\end{array}\right)^{\mathrm{T}} \in \mathbf{R}^{n} .
$$

Eq. (6) can be viewed as the relationship be tw een the joint velocity and the endeffector veloci ty of serial typed manipulators. \boldsymbol{x} is the end effec tor velocity; \boldsymbol{J} is the Jacobian; θ is the joint veloc ity.

Based on the relationship betw een the self-mo tion and Jacobian null space vector ${ }^{[9]}$, the inverse kinematics can be ex pressed as

$$
\left.\begin{array}{lll}
\theta=\boldsymbol{J}^{+}(\theta) \boldsymbol{x}+\boldsymbol{J}_{\mathrm{s}} \theta_{\mathrm{s}} \tag{7}\\
\boldsymbol{J}_{\mathrm{s}}=\left(\begin{array}{lll}
\boldsymbol{V}_{1}(\theta) & \ldots & \boldsymbol{V}_{r}(\theta)
\end{array}\right.
\end{array}\right\}
$$

where $\boldsymbol{J}^{+} \in \mathbf{R}^{n \times 12}$ is the Moore Penrose inverse Ja cobian; $\theta_{\mathrm{s}} \in \mathbf{R}^{r}$ is the self motion velocity; and \boldsymbol{V}_{i} ($\theta) \in \mathbf{R}^{n}$ is the Jacobian null space vector.

Eq. (7) represents a unified formulation of the trinat branch space robotic manipulator, which is available for the cooperative manipulation of M_{2} and M_{3}, and the separate manipulation of M_{2} or M_{3}. The former 6 elements of \boldsymbol{x} are the end effec tor velocities of M_{2} and the latter 6 elements are the ent effector velocities of M_{3}.

3 Simplified Inverse Kinem atics of the T rir nat Branch Space Robotic M an ipulator

The unified inverse kinematics of the trinalbranch space robotic manipulat or is expressed in Eq. (7). Since the dimension of Jacobian is $12 \times n$ ($n>12$), the computation of the Moore Penrose inverse of Jacobian is very complicated. For many reat time applications, Eq. (7) is inapplicable. If each branch features a spherical group of joints at the wrist, a simplified inverse kinematics of the manipulator can be obtained. In this section, the simlified inverse kinematics is discussed.

3. 1 Computing the position of the wrist from the pose of end effector

For the serial typed manipulator M_{2}, the pose of the end effector can be ex pressed as a $4 \times 4 \mathrm{ma}^{-}$ trix

$$
\left[\begin{array}{cccc}
n & o & a & p_{\text {end, }} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

where $p_{\text {end, } 2} \in \mathbf{R}^{3}$ is the position of the end effector; $n, o, a \in \mathbf{R}^{3}$ are normal, orientation and approach vectors of the end effect or respectively.

Let $\boldsymbol{P}_{\text {end, } 2}=\left(\begin{array}{lll}p_{x, 2} & p_{y, 2} & p_{z, 2}\end{array}\right)^{\mathrm{T}}$ be the position of the endeffector of M_{2} with respect to S; Let $\boldsymbol{P}_{2 \mathrm{w}}=\left(\begin{array}{lll}p_{x, 2 \mathrm{w}} & p_{y, 2 \mathrm{w}} & p_{z, 2 \mathrm{w}}\end{array}\right)^{\mathrm{T}}$ represents the position of the w rist of M_{2} relative to S.

By the definition of the pose of the end effector, the position of the wrist from the pose of the end effector can be obtained,

$$
\left.\begin{array}{l}
p_{x, 2 \mathrm{w}}=p_{x, 2}-L_{2} \cos \alpha^{\prime} \tag{8}\\
p_{y, 2 \mathrm{w}}=p_{y, 2}-L_{2} \cos \beta \\
p_{z, 2 \mathrm{w}}=p_{z, 2}-L_{2} \cos \gamma^{\prime}
\end{array}\right\}
$$

where L_{2} is the length of vector $\boldsymbol{P}_{2 \mathrm{w}} \boldsymbol{P}_{\text {end }, 2}$, which is determined by the configuration of the manipulator; $\gamma^{\prime}, \beta^{\prime}$ and α^{\prime} are the direction angles of vector $\boldsymbol{P}_{2 \mathrm{w}} \boldsymbol{P}_{\text {end }, 2}$ with respect to S.

Similarly, the position of the wrist can be obtained from the pose of the end effector of M_{3}.

3. 2 Simplified inverse kinematics based on the position control of wrist

Based on the method for Jacobian with screw theory and vector product ${ }^{[9]}$, the relationship between the linear velocity of wrist position and the joint velocity of M_{2} can be described as the following map

$$
\left[\begin{array}{c}
\dot{p}_{x, 2 \mathrm{w}} \tag{9}\\
\dot{p}_{y, 2 \mathrm{w}} \\
\dot{p}_{z, 2 \mathrm{w}}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{J}_{2 \mathrm{w}}^{\prime} & \boldsymbol{J}^{\prime \prime}{ }_{2 \mathrm{w}}
\end{array}\right] \dot{\theta}_{2 \mathrm{w}}
$$

where,
$\boldsymbol{J}^{\prime}{ }_{2 \mathrm{w}}=\left(\begin{array}{lll}J_{1,2 \mathrm{w}} & \cdots & J_{n_{1}, 2 \mathrm{w}}\end{array}\right) \in \mathbf{R}^{3 \times n_{1}}$
$\boldsymbol{J}^{\prime \prime}{ }_{2 \mathrm{w}}=\left(\begin{array}{lll}J_{n_{1}+1,2 \mathrm{w}} & \cdots & J_{n_{1}+n_{2}-3,2 \mathrm{w}}\end{array}\right) \in \mathbf{R}^{3 \times\left(n_{2}-3\right)}$
and

$$
\begin{aligned}
\theta_{2 \mathrm{w}}= & \left(\begin{array}{llllll}
\theta_{1} & \ldots & \theta_{n_{1}} & \theta_{n_{1}+1} & \ldots & \theta_{n_{1}+n_{2}-3}
\end{array}\right)^{\mathrm{T}} \in \\
& \mathbf{R}^{n_{1}+n_{2}-3}
\end{aligned}
$$

Similarly, the relationship of the linear veloci ty of the wrist position and the joint velocity of M_{3} can be described as the following map

$$
\left[\begin{array}{l}
\dot{p}_{x, 3 \mathrm{w}} \tag{10}\\
\dot{p}_{y, 3 \mathrm{w}} \\
\dot{p}_{z, 3 \mathrm{w}}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{J}_{3 \mathrm{w}} & \boldsymbol{J}_{3 \mathrm{w}}^{\prime \prime}
\end{array}\right] \theta_{3 \mathrm{w}}
$$

where

$$
\begin{aligned}
\boldsymbol{J}_{3 \mathrm{w}}= & \left(\begin{array}{lll}
J_{1,3 \mathrm{w}} & \cdots & J_{n_{1}, 3 \mathrm{w}}
\end{array}\right) \in \mathbf{R}^{3 \times n_{1}} \\
\boldsymbol{J}_{3 \mathrm{w}}^{\prime \prime}= & \left(\begin{array}{lll}
J_{n_{1}+n_{2}+1,3 \mathrm{w}} & \cdots & J_{n_{1}+n_{2}+n_{3}-3,3 \mathrm{w}}
\end{array}\right) \in \\
& \mathbf{R}^{3 \times\left(n_{3}-3\right)}
\end{aligned}
$$

and

$$
\begin{aligned}
\theta_{3 \mathrm{w}}= & \left(\begin{array}{llllll}
\theta_{1} & \ldots & \theta_{n_{1}} & \theta_{n_{1}+n_{2}+1} & \ldots & \theta_{n-3}
\end{array}\right)^{\mathrm{T}} \in \\
& \mathbf{R}_{1}^{n_{1}+n_{3}-3}
\end{aligned}
$$

Combining Eqs. (9) and (10), a matrix form equation can be obtained
$\boldsymbol{x}_{\mathrm{w}}=\boldsymbol{J}_{\mathrm{w}} \theta_{\mathrm{w}}=\left[\begin{array}{ccc}\boldsymbol{J}_{2 \mathrm{w}} & \boldsymbol{J}_{2 \mathrm{w}}^{\prime \prime} & \boldsymbol{0}_{3 \times\left(n_{3}-3\right)} \\ \boldsymbol{J}_{3 \mathrm{w}} & \boldsymbol{0}_{3 \times\left(n_{2}-3\right)} & \boldsymbol{J}_{3 \mathrm{w}}^{\prime \prime}\end{array}\right] \theta_{\mathrm{w}}(11)$ where
$\dot{\boldsymbol{x}}_{\mathrm{w}}=\left(\dot{p}_{x, 2 \mathrm{w}} \dot{p}_{y, 2 \mathrm{w}} \dot{p}_{z, 2 \mathrm{w}} \dot{p}_{x, 3 \mathrm{w}} \dot{p}_{y, 3 \mathrm{w}} \dot{p}_{z, 3 \mathrm{w}}\right)^{\mathrm{T}} \in \mathbf{R}^{6}$
$\boldsymbol{J}_{\mathrm{w}} \in \mathbf{R}^{6 \times(n-6)}$
and
$\theta_{\mathrm{w}}=\left(\begin{array}{llll}\theta_{1} & \ldots & \theta_{n_{1}+n_{2}-3} & \theta_{n_{1}+n_{2}+1}\end{array} \ldots \theta_{n-3}\right)^{\mathrm{T}} \in \mathbf{R}^{n-6}$
Eq. (11) can be view ed as the relationship be tw een the joint velocity and the endeffector veloci ty of serial- typed manipulator in which the dimerr sions of w ork space and joint space are 6 and $n-6$ respectively. $\boldsymbol{x}_{\mathrm{w}}$ is the end effector velocity; $\boldsymbol{J}_{\mathrm{w}}$ is the Jacobian; and θ_{w} is the jo int velocity.

Based on the relationship betw een the self-mo tion and the Jacobian null space vector, the inverse kinematics of the position of w rist can be ex pressed as the follow ing map

$$
\left.\begin{array}{l}
\theta_{\mathrm{w}}=\boldsymbol{J}_{\mathrm{w}}^{+} \boldsymbol{x}_{\mathrm{w}}+\boldsymbol{J}_{\mathrm{s}, \mathrm{w}} \theta_{\mathrm{s}, \mathrm{w}} \tag{12}\\
\boldsymbol{J}_{\mathrm{s}, \mathrm{w}}=\left(\boldsymbol{V}_{\mathbf{l}}\left(\theta_{\mathrm{w}}\right) \ldots \boldsymbol{V}_{r}\left(\theta_{\mathrm{w}}\right)\right) \in \mathbf{R}^{(n-6) \times r}
\end{array}\right\}
$$

where $\boldsymbol{J}_{\mathrm{w}}^{+} \in \mathbf{R}^{(n-6) \times 6}$ is the Moore Penrose inverse of Jacobian; $\theta_{\mathrm{s}, \mathrm{w}} \in \mathbf{R}^{r}$ is the self-motion velocity; and $\boldsymbol{V}_{i}\left(\theta_{\mathrm{w}}\right) \in \mathbf{R}^{n-6}$ is the Jacobian null space vec tor.

3.3 Orientation kinematics of end effector

Based on Eq. (12), ex cept for joints of wrists of the trinal branch space robotic manipulator, all the jo int velocities can be obtained, and then the
joint angles can be obtained by integration.
For M_{2}, let $\boldsymbol{R}_{\text {end, } 2}$ be the desired orientation of the end effector. Let $\boldsymbol{R}_{2 \mathrm{w}}$ represent the final orientat ion of the wrist which can be calculated by using forw ard kinematics. One can be obtained
$\boldsymbol{R}_{2 \mathrm{w}} \times \operatorname{Euler}\left(\theta_{n_{1}+n_{2}-2} \quad \theta_{n_{1}+n_{2}-1} \quad \theta_{n_{1}+n_{2}}\right)=\boldsymbol{R}_{\text {end }, 2}$
where $\operatorname{Euler}\left(\begin{array}{lll}\theta_{n_{1}+n_{2}-2} & \theta_{n_{1}+n_{2}-1} & \left.\theta_{n_{1}+n_{2}}\right)\end{array}\right.$ is the Euler transformation of the last three joints in the wrist of M_{2}.

Then, the following can be gotten:
$\operatorname{Euler}\left(\theta_{n_{1}+n_{2}-2} \quad \theta_{n_{1}+n_{2}-1} \quad \theta_{n_{1}+n_{2}}\right)=(\boldsymbol{R} 2 \mathrm{w})^{-1} \boldsymbol{R}$ end, 2

By solving Eq. (14), $\theta_{n_{1}+n_{2}-2}, \theta_{n_{1}+n_{2}-1}$ and $\theta_{n_{1}+n_{2}}$ can be obtained.

Similarly, for M_{3}, one can be obtained
$\operatorname{Euler}\left(\begin{array}{ccc}\theta_{n-2} & \theta_{n-1} & \theta_{n}\end{array}\right)=\left(\boldsymbol{R}_{3 \mathrm{w}}\right)^{-1} \boldsymbol{R}_{\text {end, } 3}$
where $\boldsymbol{R}_{\text {end, } 3}$ is the desired orientation of the ent effector of M_{3}; and $\boldsymbol{R}_{3 \mathrm{w}}$ is the final orientation of the wrist which can be calculated by using forw ard kinematics.

Therefore, using Eqs. (11), (14) and (15), the solutions of the inverse kinematics problem of the trinal-branch space robotic manipulat or can be obtained. The kinem at ics algorithm reduces the dimension of the Moore Penrose inverse Jacobian from $n \times 6$ to $(n-6) \times 6$. Thus, it reduces the computation of solv ing the inverse kinematics problem.

4 Simulation

To illustrate the inverse kinematics proposed by this paper, a trinal branch space robotic manipulator will be discussed in this section, as show n in Fig. 2. Each branch has 5 revolute joint and features a spherical group of joints at the wrist, and the configuration and dimension of each branch are shown in Fig. 2(b). The trinar branch manipulat or is mounted on a guide track with one degree, as shown in Fig. 2(a). Thus, there are 16 degrees of freedom totally in this system.

Fig. 3 shows the trinat branch space robotic manipulator in its zero reference position. The co ${ }^{-}$
ordinate system is shown in Fig. 4 in its zero- refer ence position, and the twist coordinates of each joint are given by

$$
\begin{aligned}
& \xi_{0}=\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right)^{\mathrm{T}} \\
& \xi_{1}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)^{\mathrm{T}} \\
& \xi_{2}=\left(\begin{array}{llllll}
0 & 0.2 & 0 & 1 & 0 & 0
\end{array}\right)^{\mathrm{T}} \\
& \xi_{3}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)^{\mathrm{T}} \\
& \xi_{4}=(-0.59 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0)^{\mathrm{T}} \\
& \xi_{5}=\left(\begin{array}{llllll}
0 & 0.83 & 0.1 & 1 & 0 & 0
\end{array}\right)^{\mathrm{T}} \\
& \xi_{6}=\left(\begin{array}{llllll}
0 & 1.21 & 0.1 & 1 & 0 & 0
\end{array}\right)^{\mathrm{T}} \\
& \xi_{7}=(-1.45 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0)^{\mathrm{T}} \\
& \xi_{8}=(-0.2 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1)^{\mathrm{T}} \\
& \xi_{9}=\left(\begin{array}{llllll}
0 & 1.84 & 0.2 & 1 & 0 & 0
\end{array}\right)^{\mathrm{T}} \\
& \left.\xi_{1 F(-0.2} \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1\right)^{\mathrm{T}} \\
& \xi_{1 \mp\left(\begin{array}{llllll}
0 & 1.02 & 0.43 & 1 & 0 & 0
\end{array}\right)^{\mathrm{T}}, ~}^{\text {1 }} \\
& \xi_{1 E(-0.67} 00 \\
& \xi_{1=(0.92} 00 \\
& \xi_{1 \mp(-1.06} 00 \\
& \xi_{15}(0.92 \quad 0 \quad 0 \quad 0 \quad-100)^{\mathrm{T}}
\end{aligned}
$$

(a) configuration

(b) dimension

Fig. 2 A trinat branch space robotic manipulator

Fig. 3 Zero reference position

Fig. 5(a) shows the initial state of the manipulator at the beginning of the simulation. At this time, the poses of the ent effectors of M_{2} and M_{3} are given by

$$
\begin{gathered}
\boldsymbol{g}_{\mathrm{st}, 2}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 / 2 & \sqrt{3} / 2 & 0.76 \\
0 & -\sqrt{3} / 2 & 1 / 2 & 1.66 \\
0 & 0 & 0 & 1
\end{array}\right] \\
\boldsymbol{g}_{\mathrm{st}, 3}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 / 2 & -\sqrt{3} / 2 & -1.06 \\
0 & \sqrt{3} / 2 & 1 / 2 & 1.49 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

First, M_{2} is driven to open the door of the cabinet; and then M_{3} is operated to take a bolt out the cabinet simultaneously; finally M_{2} is manipulated to close the door of cabinet.

Fig. 4 Coordinate system

The simulation time is 20 s . Fig. 5(b), 5(c), $5(\mathrm{~d}), 5(\mathrm{e})$ and $5(\mathrm{f})$ show the configuration of the manipulator in $t=4.0 \mathrm{~s}, 8.0 \mathrm{~s}, 12.0 \mathrm{~s}, 16.0 \mathrm{~s}$ and 20.0 s respectively.

Fig. 5 Movements of the trinat arm manipulator

5 Conclusions

A trinal branch space robotic manipulator with redundancy due to the harsh application envirorr ments is introduced. The inverse kinem at ics problem of the trinat branch space robotic manipulator is investigated, and its unified formulation is established. That simplified inverse kinematics for each
branch features a spherical group of joints is proposed. The inverse kinematic algorithm reduces the dimension of Moore Penrose inverse of Jacobian from $n \times 6$ to $(n-6) \times 6$. Thus, it reduces the computation through solving the inverse kinematics problem. Finally, its feasibility is demonstrated by the computer simulation results.

References

[1] Hirzinger G, Brunner B, Dietrich J, et al. ROTEX- the first remotely controlled robot in space [A]. Proc of IEEE Int Conf on Robotics and Automation[C]. CA USA, 1994. 2604 - 2611.
[2] Matsueda T, Kuraoka K, Goma K, et al. JEMRMS system design and developm ent status[A]. Proc of T elesystems Corr ference[C]. GA USA, 1991. 391- 395.
[3] Xu Y S, Brown H B. Control system of the self motion spa ce manipulator [J]. IEEE Transaction on Control Systems T echnology, 1994, 2(3):207-219.
[4] http: / / ranier. hq. nasa. gov/telerobotics_page/ FY 96Plan/ G hap2h. html
[5] Ren J Y. Technology research on mulì axis, multiarm space robot[D]. Beijing: Beijing U niversity of Aeronautics and As tronautics, 2001.
[6] Lew is L, Maciejew ski A. Fault tolerant operation of kine matically redundant manipulators for lock ed joint failures [J]. IEEE Transaction on Robotics and Automation, 1997, 13 (4): 621-629.
[7] Denavit J, Hartenberg R S. A kinemtic notation for lower pair mechanisms based on matrice[J]. Applied Mechan ics, 1995, 22: 215-221.
[8] Murray R, Li Z, Sastry S S. A mathematical introduction to robotic manipulation [M]. Boca Raton, FL: CRC Press, 1994.
[9] Zhou D H. On the mechan ism study of redundant robots[D]. Beijing: Beijing University of Aeronautics and A stronautics, 1994.

Biographies:

JIA Qing xuan (1964) male, born in Shandong. He is a doctoral candidate in Beijing University of Aeronautics and As tronautics And he is a professor in the auto mation school at Beijing U niversity. of Posts and Telecommunications. His esearch interests include the mechanical design, robot and virtual reality.
Tel:01062286776,Email: sdjqx@ sohu.com

[^0]: Received dat e： 200503 －10；Revision received dat e： 20050922
 Foundation item：＂863＂Item：National High Technology Foundation in Astronautics（ 2002AA 742030）

