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Abstract: For a complex manifoldX which has a holomorphic form$ of odd degreek, we endowEa =⊕
p>a3

(p,0)(X) with a Higgs bundle structureθ given byθ(Z)(φ) := {i (Z)$ } ∧ φ. The properties such
as curvature and stability of these and other Higgs bundles are examined. We prove (Theorem 2, Section 2,
for k > 1) Ea and additional classes of Higgs subbundles ofEa do not admit Higgs–Hermitian–Yang–Mills
metric in any one of the cases: (i) deg(X) < 0, (ii) deg(X) = 0 anda 6 n−k+1, or (iii) a 6 n−k+1 and
k > 1

2n + 1. We give examples of (noncompact) K¨ahler manifolds with the above Higgs structure which
admit Higgs–Hermitian–Yang–Mills metrics. We also examine vanishing theorems for(p,q)-forms with
values in Higgs bundles.
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1. Introduction

The purpose of this paper is to give new examples of Higgs bundles which arise in a rather
natural way, and to study their properties. Recall that aHiggs bundle[11] is a holomorphic
vector bundle,E → X over a complex manifoldX, together with a holomorphic section
θ ∈ ϑ0(Hom(E) ⊗ 31,0(X)) (the “Higgs” form), which satisfies the equationθ ∧ θ = 0.
This equation means that ifZ andW are holomorphic tangent vectors to X at a point, then
[θ(Z), θ(W)] = 0 as anendomorphism ofE at that point.

The examples consist of a complex manifoldX of complex dimensionn which is assumed
to possess a nontrivial holomorphick-form $ wherek is odd. The bundleE is given by
E := ⊕n

p=0

∧(p,0)
(X), and the Higgs formθ is given by the prescriptionθ(Z)(φ) :=

{i (Z)$ } ∧ φ, whereφ is a section ofE and Z is a holomorphic tangent vector. Defining
Ea by Ea := ⊕n

p=0

∧(p,0)
(X)(E = E0), the Ea form a Higgs filtration ofE (cf. 2.15). We

now give some examples of complex manifolds possessing such forms.
(i) X = any complex torus.

(ii) If X is the zero-locus inPn+1 of a homogeneous polynomial of large degree D, then
hn,0(X) = (D−1

n+1

)
so if n is odd these are examples of the types of complex manifolds required.

(iii) Calabi–Yau manifolds—compact K¨ahler Ricci flat complex 3-manifolds with a nowhere
vanishing holomorphic 3-form, i.e., trivial canonical bundle, and higher-dimensional analogs

1E-mail: walter-seaman@uiowa.edu; http://www.math.uiowa.edu/˜seaman

0926-2245/00/$ – see frontmatterc©2000 Elsevier Science B.V. All rights reserved
PI I S0926-2245(00)00018-8



292 W. Seaman

(cf. [2, pages 144–145]).
(iv) For any complex manifoldX, its holomorphic cotangent bundle3(1,0)X admits a canon-

ical holomorphic one-formφ ∈ ϑ0 3(1,0)(3(1,0)X) such that∂φ is a (holomorphic) symplec-
tic two-form. Thisφ can be given invariantly by the formulaφ(Zα) = α(π∗α(Zα)), Zα ∈
T (1,0)
α (3(1,0)X), α ∈ 3(1,0)X with π : 3(1,0)X → X the projection (cf. [2, pages 85–

86]). ReplacingX with the complex manifold3(1,0)X, one gets the corresponding holo-
morphic one-form8 ∈ ϑ0 (3(1,0)(3(1,0)(3(1,0)X))) and (symplectic) two-form∂8 ∈ ϑ0
(3(2,0)(3(1,0)(3(1,0)X))) on3(1,0)(3(1,0)X). Let p :3(1,0)(3(1,0)X)→ 3(1,0)X be the projec-
tion. Then for any holomorphic functionsa andb on3(1,0)(3(1,0)X), one gets a holomorphic
three-forma8 ∧ p∗∂φ + b∂8 ∧ p∗φ ∈ ϑ0 (3(3,0)(3(1,0)(3(1,0)X))). Computation of these
3-forms in local holomorphic coordinates (using coordinates on3(1,0)X given by “pulling
up” a holomorphic chart onX and then “pulling up” these coordinates on3(1,0)X via p to
3(1,0)(3(1,0)X)) shows that these forms are generally nonzero.

(v) If M is any of the above examples, then any complex manifoldM̃ from which there is a
holomorphic submersionp : M̃ → M ontoM , itself inherits nonzero holomorphic odd-degree
forms fromM by pull-back. For example, coverings or blowing up any of the above examples
at any number of points and/or taking products of those examples will serve as such anM̃ .

We investigate the curvature, stability and other properties of these Higgs bundles (and also
general Higgs Bundles) and prove the following :

Theorem. ([2, Sect. 2])Let X be a compact K̈ahler manifold with a nontrivial holomorphic
k-form$ where k> 1 is odd. Let the Higgs structure of E be as above and let P be any Higgs
subbundle of E of the form P= ⊕z

s=13
(ps,0)(X), 0 6 p1 < p2 < · · · < pz 6 n, (z > 2).

Then P does not admit any Higgs–Hermitian–Yang–Mills metric in any of the following cases:
(i) deg(X) < 0.

(ii) deg(X) = 0 and p1 6 n− k+ 1.
(iii) k > 1

2n+ 1, p1 6 n− k+ 1, and$ is a section of P.

Note that the degree statement in (ii) is sharp because the Higgs formθ acts trivially on
En−k+2. If X is compact Kähler with first Chern classc1(X) = 0, then the Yau resolution of the
Calabi conjecture [15], yields a Ricci-flat metricg on X. Extendingg in the usual way to the
complex exterior algebra ofX gives a Hermitian metric onEn−k+2 which is Higgs–Hermitian–
Yang–Mills in the “vacuous” sense thatg is Hermitian–Yang–Mills and the Higgs form vanishes.

We also examine Bochner-type vanishing results ([1, Sect. 2]) and Kodaira–Nakano-type
vanishing Theorems 3 and 4 in this setting.

The original study of Higgs bundles is due to Hitchin [4], where the case of rank 2 vector bun-
dles over curves is considered. Hitchin studies the Yang–Mills equations with “interaction term”
given by the Higgs field (cf. the discussion above (2.14)). Hitchin obtains a correspondence re-
lating irreducible rank 2 flat vector bundles and degree zero stable Higgs bundles over Riemann
surfaces. This correspondence has its genesis in the work of Narasimhan and Seshardi [6].

Higgs bundles also arise in the study of Variations of Hodge Structure. See, e.g., [7, Sect. 1
and 2], [3], [13, Ch. V, Sect. 6], [9, pp. 868–869], and [10, Sect. 1], for detailed information.
Generalizing the idea that Hitchin had introduced, Simpson [9,10,11] defined the notion of
Higgs bundles on higher-dimensional varieties, where the equationθ ∧ θ = 0 (automatically
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satisfied on a curve) is part of the definition. Simpson studied the moduli space of stable Higgs
bundles with vanishing Chern classes in work which leads up to the following striking result
(showing the “ubiquity” of VHS) among others:

If M is a smooth projective variety then any representation ofπ1(M) can be deformed to a
representation arising from a complex variation of Hodge structure.

This result, among other things, restricts the types of groups which can arise as the funda-
mental group for any suchM, cf. [1, Chapter 7].

The author would like to thank Aroldo Kaplan, Carlos Simpson and Olivier Debarre for their
help in various aspects of this work.

We now continue with the development of properties of Higgs bundles. Any Higgs bundle
has a naturally defined operatorD′′ : 0E→ 0(E ⊗31(X)) defined byD′′ = ∂̄ + θ where∂̄
is the complex structure onE. The three conditions:̄∂ is integrable (∂2 = 0), θ is holomorphic
andθ ∧ θ = 0 are simultaneously expressed in the single equation(D′′)2 = 0.

Let h be a Hermitian metric onE. The Hermitian connection of(E, h),∇, can be uniquely
written∇ = ∂h + ∂̄. Define the Hermitian adjoint ofθ, θh by the formula

h(θh(Y) s, t) = h(s, θ(Y) t), (1.1)

whereY is a complex tangent vector ands andt are sections ofE. DefineD′h by

D′h = ∂h + θh (1.2)

and
Dh = D′h + D′′. (1.3)

One checks that(D′h)
2 = 0, thatDh is a connection onE and that the curvature ofDh is

given by

Fh = (Dh)
2 = D′h D′′ + D′′D′h. (1.4)

Let2 = ∇2 be the curvature ofh. Although2 is a type (1,1) End(E)-valued form, in gen-
eralFh will have parts of type(2,0), (1,1) and(0,2). The relation between the components of
Fh,2, θ will now be described. Let{eα}rα=1 be a local holomorphic frame forE (r = rank ofE),
hαβ = h(eα,eβ), and (hβγ ) be the inverse matrix of(hαβ). Then∇eα =

∑r
β=1 eβ ⊗Cβ

α , where
C = h−1∂h and2 = ∂C. Also, θeα =

∑r
β=1 eβ ⊗ θβα whereθβα are the matrix representa-

tive (1,0)-forms of θ relative to{eα}. In this setting we also haveθheα =
∑r

β=1 eβ ⊗ θh
β
α ,

whereθh
β
α =

∑
γ,κ hβγ θκγ hακ . If the frame{eα}rα=1 is orthonormal at a point of evaluation, then

θh
β
α = θαβ at that point.

Now, writing Fheα =
∑

β{eβ⊗Fβ
hα}, and (Fheα)(a,b) =

∑
β{eβ⊗(Fβ

hα)
(a,b)}where(a,b) =

(2,0), (0,2) or (1,1) one computes (cf. [9, page 879, fourth line from the top], and also
Proposition 1 below)

F (2,0)
h = ∂θ + C ∧ θ + θ ∧ C, (1.5)

F (0,2)
h = ∂θh, (1.6)

F (1,1)
h = 2+ θ ∧ θh + θh ∧ θ. (1.7)
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In more detail

(Fheα)
(2,0) =

∑
β

{
eβ ⊗

{
∂θβα +

∑
γ

(
Cβ
γ ∧ θγα + θβγ ∧ Cγ

α

)}}
,

(Fheα)
(0,2) =

∑
β

{
eβ ⊗

{
∂θh

β
α

}}
,

(Fheα)
(1,1) =

∑
β

{
eβ ⊗

{
2β
α +

∑
γ

(
θβγ ∧ θh

γ
α + θh

β
γ ∧ θγα

)}}
.

In the course of proving (1.7) one must use the identity

∂θh + C ∧ θh + θh ∧ C = 0

which in turn follows from the identitiesC = h−1∂h andθh = h−1θh.
If M is any smooth manifold andV → M is any real or complex vector bundle with a

connection∇: C∞0V → C∞0(V ⊗31(V)) there is a “natural” extension of∇, d∇ : Vk →
Vk+1, whereVr := C∞0(V ⊗3r (V)). This implies the following (cf. [9, page 879]):

Proposition 1. F (2,0)
h = d∇θ and F(0,2)h = d∇θh.

At any point p we can always find a local holomorphic frame{eα}rα=1 adapted top, and
also∂θαβ = ∂θαβ so we concluded∇θ(p) = 0⇔ d∇θh(p) = 0. Now the above Proposition 1
implies

F (2,0)
h = 0 ⇔ F (0,2)

h = 0 ⇔ d∇θ = 0 ⇔ d∇θh = 0. (1.8)

We now examine the curvature terms appearing in (1.7). IfZ,W are holomorphic tangent
vectors at a point, then (1.7) implies

Fh(Z,W)s= 2(Z,W)s+ θ(Z)θh(W)s− θh(W)θ(Z)s

= 2(Z,W)s+ [θ(Z), θh(W)] s,
(1.9)

wheres is any section ofE. Relative to the local framing{eα}rα=1 of E, (1.9) can be written

Fh(Z,W)eα =
∑
β

{
eβ ⊗

{
2β
α(Z,W)+

∑
γ

(
θβγ (Z) θh

γ
α(W)− θh

β
γ (W)θγα (Z)

)}}
. (1.10)

One final identity we will use following from (1.9) is

h(Fh(Z, Z)s, s) = h(2(Z, Z)s, s)+ ‖θh(Z)s‖2h − ‖θ(Z)s‖2h. (1.11)

One can see an earliest version of this formula in [7, Sect. 7, Lemma 7.18, pp. 271–272]. In
the (VHS) context of that paper one would haveFh = 0.

If we now endowX with a Hermitian metricg, then useg to take the trace of the identity
of (1.11) in the “Z” variables we get

h(i3Fhs, s) = h(i32s, s)+
n∑

i=1

{‖θh(Zi )s‖2h − ‖θ(Zi )s‖2h
}

(1.12)
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where the{Zi }ni=1 forms an orthonormal basis forT1,0X at a point and also in (1.12) we have
used the termi3 as a shorthand for “trace with respect tog overT (1,0)X”. This can be written,
for example,i32 =∑n

i=12(Zi , Zi ), where{Zi }ni=1 is ag-orthonormal basis forT (1,0)X at a
point, and in general3 = i

∑
gi j i (Zi )i (Z j ). If g happens to be a K¨ahler metric then this agrees

with the usual symbolism. Ifs is a holomorphic section ofE, then we have the well-known
identity ([5, Ch. III, Prop. 1.5, p. 50] and [14, p. 349, (3.30)])

h(i32s, s) = −i3∂∂ ‖s‖2h + ‖∇s‖2h. (1.13)

Now (1.12) and (1.13) lead, via the Bochner technique, to the following vanishing result
(cf. [14, Theorem 5, pp. 347–349], [5, Ch. III, Theorem 1.9, p. 52] and [7, Lemma (7.18),
pp. 271–272]):

Lemma 1. Suppose X is compact, s is a holomorphic section of E satisfyingθs = 0 and
i3Fh 6 0 (pointwise as an endomorphism of E). Then s is parallel∇s = 0 and satisfies
θhs= 0 and i3Fh(s) = 0. If i3Fh is a quasinegative operator([14], p. 323)then s= 0.

We will see in Section 3 how Lemma 1 extends to Kodaira–Nakano-type vanishing result
for (p,q)-forms with values in a Higgs bundle.

2. Existence and nonexistence of special metrics

Let X be a complex manifold of complex dimensionn. Let E := ⊕n
p=0

∧(p,0)
(X) be the

holomorphic vector bundle of forms of degree(p,0) for all p. AssumeX has a holomorphic
form $ (not everywhere zero) of type(k,0) wherek is odd. We define a Higgs formθ on
E, θ ∈ ϑ0(Hom(E)⊗31,0(X)), by the formula

θ(Z)(φ) := {i (Z)$ } ∧ φ (2.1)

whereZ is a complex tangent vector toX, i (Z) is interior multiplication byZ, andφ is any
section ofE. One can writeθ without referring to a specific complex tangent vector locally by
the formula

θ(φ) :=
n∑

i=1

({
i
( ∂
∂zi

)
$
}
∧ φ

)
⊗ dzi , (2.2)

where{∂/∂zi } (dzi ) is a local framing forT (1,0)(X) (
∧(1,0)

(X)). Formulas (2.1) and (2.2) imply
thatθ is actually a holomorphic section of Hom(E)⊗31,0(X)and the condition [θ(Z), θ(W)] =
0 follows from the assumption thatk is odd as follows:

[θ(Z), θ(W)](φ) = {i (Z)$ } ∧ {i (W)$ } ∧ φ − {i (W)$ } ∧ {i (Z)$ } ∧ φ = 0

becausei (Z)$ is a form of even degree. This same idea shows that if$ is a sum of holomorphic
forms of possibly different odd degrees, then (2.1) also defines a Higgs structure onE. If $
is a holomorphick-form, wherek is not necessarily assumed to be odd, then a “super Higgs”
structure can be defined onE if we define a new bracket operation “[· , ·]$ ” in Hom(E) by the



296 W. Seaman

prescription

[ A, B]$ (φ) = (AB− (−1deg($))B A
)
(φ).

We now examine some examples of this Higgs form for specific values ofk in a purely
linear algebraic setting. Let (VR, J) be a real vector space with a complex structureJ,V =
VR⊗C =V (1,0)⊕V (0,1) be the complexification and decomposition into±i eigenspaces ofJ.
Let $ ∈ 3(k,0)(V) (k odd) and defineθ ∈ Hom

(⊕
p>03

(p,0)(V)
) ⊗ 3(1,0)(V) by (2.1). If

k = 1, then (2.1) yieldsθ(φ) = φ ⊗$ , that is,θ(Z)(φ) = $(Z)φ. If k = n is odd, then

θ(φ) =


φi (•)$ if deg(φ) = 0,
$ ⊗ φ if deg(φ) = 1,
0 if deg(φ) > 2.

The middle expression meansθ(Z)(φ) = φ(Z)$ and these formulas follow from(i (Z)$)∧
φ = i (Z)($ ∧ φ) +$ ∧ (i (Z)φ), which is valid for any formφ. These examples show the
kernel ofθ is 0 if $ 6= 0 in the interesting cases whereθ could act nontrivially. In general we
have

Proposition 2. (i) For φ ∈⊕p>03
(p,0)(V), θ(φ) = 0⇐⇒$ ∧ φ = 0 and$ ∧ i (Z)φ = 0

∀ Z ∈ V.
(ii) Let h be any Hermitian metric on

⊕
p>03

(p,0)(V), and let θh be the h-adjoint of
θ, h(θh(Y)φ, ψ) = h(φ, θ(Y)ψ). Thenθh(Z)φ = 0 ∀Z ∈ V ⇐⇒ (ε($))∗hφ = 0 and
(ε($))∗h i (Z)∗hφ = 0 ∀Z ∈ V where∗h means adjoint with respect to h.

Proof. (i) We need only considerZ ∈ V (1,0). The formula(i (Z)$) ∧ φ = i (Z)($ ∧ φ) +
$ ∧ i (Z)φ makes⇐H clear. If (i (Z)$) ∧ φ = 0 ∀Z, then(ε(η)i (Z)$) ∧ φ = 0 ∀η ∈
3(1,0)(V). Therefore 0=∑ j (ε(Z

∗
j )i (Z j )$) ∧ φ where{Z j } ({Z∗j }) is a basis (dual) forV (1,0)

(3(1,0)(V)) but this sum also equalsk$ ∧φ due to the identity
∑

j ε(Z
∗
j )i (Z j )$ = k$ which

is valid for any(k,0) form (seemingly most easily proved by computing on basis elements
Z∗j1 ∧ Z∗j2 ∧ · · · ∧ Z∗jk). Thusθ(φ) = 0 implies$ ∧ φ = 0. Therefore the assumption inH⇒
yields 0= (i (Z)$) ∧ φ = i (Z)($ ∧ φ)+$ ∧ i (Z)φ = $ ∧ i (Z)φ ∀Z.

(ii) θh(Z)φ = 0 ∀Z ∈ V ⇐⇒ h(φ, (i (Z)$) ∧ ψ) = 0 ∀Z and ∀ψ . Replacingψ
with ε(Z∗)ψ , this impliesh(φ,

∑
j ε(Z

∗
j )(i (Z j )$) ∧ ψ) = 0, so h(φ,$ ∧ ψ) = 0, i.e.,

h(ε($)∗hφ,ψ) = 0, and thusε($)∗hφ = 0. The rest is as is in part (i). ¤

Let us call a (positive definite) Hermitian metrich on
⊕

p,q>03
(p,q)(V) standardif h is

the unique extension to
⊕

p,q>03
(p,q)(V) of a (real) metric onVR for which J is orthogonal

such that3(p,q)(V) is orthogonal to3(p
′,q′)(V) if (p,q) 6= (p′,q′) andZ∗i1 ∧ Z∗i2 ∧ · · · ∧ Z∗i p

∧
Z∗j1 ∧ · · · ∧ Z∗jq , 1 6 i1 < · · · < i p 6 n, 1 6 j1 < · · · < jq 6 n is an orthonormal basis for
3(p,q)(V) if {Z j }nj=1 is an orthonormal basis forV (1,0). If h is standard then one has the usual
isomorphisms # :V∗ → V and[ : V → V∗ and thenε($)∗h = i ($ #) andi (Z)∗h = ε(Z[).
One proves the following statement:

For a standardh, θh(φ) = 0⇐⇒ i ($ #)φ = 0 and $ ∧ ε(Z[)φ = 0 ∀Z ∈ V. (2.3)
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Let us call a (positive definite) Hermitian metrich on
⊕

p>03
(p,0)(V) natural if h makes

3(p,0)(V) orthogonal to3(p
′,0)(V) if p 6= p′. One verifies that

h natural on
⊕
p>0

3(p,0)(V) H⇒ θh : 3(a,0)(V)→ 3(a−k+1,0)(V)⊗3(1,0)(V). (2.4)

For use later in giving examples of K¨ahler manifolds which admit Higgs–Hermitian–Yang–
Mills metrics (2.12) we now give a formula for the linear algebraic operatorTh(s) defined by

Th(s) :=
i=1∑

n

[
θ(Zi ), θh(Zi )

]
s,

h(Th(s), s) =
{‖θh(Zi )s‖2h − ‖θ(Zi )s‖2h

}
(2.5)

(cf. (2.10)), in the case where the Hermitian metrich on
⊕

p,q>03
(p,q)(V) is standard,

s ∈⊕p>03
(p,0)(V) and theθ operator is defined using an element$ = aZ∗

1
∧Z∗

2
∧· · ·∧Z∗n ∈

3(n,0)(V) (n odd,> 1) where{Z j }nj=1 is an orthonormal basis forV (1,0). In this setting,
one has the identityi ((Z∗i1 ∧ Z∗i2 ∧ · · · ∧ Z∗i p

)#) = i (Zi p)i (Zi p−1) · · · i (Zi1) for any p. If
degs > 2 then θ(Zi )s = {i (Zi )$ } ∧ s = 0 and if degs 6 n − 2 then θh(Zi )s =
i (±(aZ∗

1
∧ Z∗

2
∧ · · · ∧ Ẑ∗

i
∧ · · · ∧ Z∗n)

#)s = 0. ThusTh(s) = 0 if 2 6 degs 6 n − 2. It
is straightforward to check thath(Th(s), s) = f [i ] ‖$‖2h ‖s‖2h, wheres ∈ 3(i,0)(V), with
f [i ] = 0, if 2 6 i 6 n − 2, f [0] = −n, f [1] = −1, f [n] = n and (becauseTh must have
trace 0, or by similar computations)f [n− 1] = 1. By polarizing, we get

$ ∈ 3(n,0)(V), s ∈ 3(i,0)(V) ⇒ Th(s) = ‖$‖2h f [i ]s, (2.6)

f [i ] =



−n if i = 0,

−1 if i = 1,

0 if 2 6 i 6 n− 2,

1 if i = n− 1,

n if i = n.

We remark that one can prove the following identity: if(V, h) are as above, but now
$ = aZ∗i1 ∧ Z∗i2 ∧ · · · ∧ Z∗i k ∈ 3(k,0)(V) is a simple(k,0)-form (k odd), then

Th(s) = −‖$‖2h
{
ks+

min(k−2,degs)∑
r=1

(k− r )(−1)r

×
∑

16t1<t2<···tr6k

ε(Z∗i t1 ∧ Z∗i t2 ∧ · · · ∧ Z∗i tr )i ((Z
∗
i t1
∧ Z∗

i t2
∧ · · · ∧ Z∗i tr )

#)s
}
.

Consequently ifs ∈ 3(i,0)(span{Z∗i1, Z∗i2, . . . , Z∗i k}⊥), then Th(s) = −k‖$‖2hs, while if
s ∈ 3(i,0)(span{Z∗i1, Z∗i2, . . . , Z∗i k}), then one can showTh(s) = ‖$‖2hF [i ]s, with F [0] = −k,
F [1] = −1, F [k− 1] = 1, F [0] = k, F [i ] = 0 if 2 6 i 6 k− 2.

Now consider again the differential geometric setting described in the beginning of Section 2.
E→ X is the holomorphic vector bundleE =⊕p>03

(p,0)(X),$ ∈ ϑ03(k,0)(X), andθ the
Higgs form defined by (2.1). Leth be any Hermitian metric onE and letg be any Hermitian
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metric onT X ⊗ C (we do not assume any a priori relation betweeng andh). In this case
formula (1.11) becomes

h(Fh(Z, Z)s, s)

= h(2(Z, Z)s, s)+ ‖(ε(i (Z)$))∗hs‖2h − ‖(i (Z)$) ∧ s‖2h.
(2.7)

Remark 1. 1. If k = deg$ = 1, then(i (Z)$)∧s= (i (Z)$)s, (ε(i (Z)$))∗hs= (i (Z)$)s
(even if h is not natural) and then(2.7) becomes h(Fh(Z, Z)s, s) = h(2(Z, Z)s, s). In fact,
the operator corresponding toθ ∧ θh + θh ∧ θ (cf. (1.7)) is zero. Partly this reason we will
assume k> 3 unless specified otherwise. Another reason for assuming k> 3 is that we want to
consider solutions to the equation(i (Z)$)∧ s= 0 ∀Z (locally defined) holomorphic tangent
vector fields, and s∈ ϑ0E. If$ is a1-form, then this would imply either$ = 0 or s= 0.

2. Note that Fh does not annihilate functions on X, i.e., sections of3(0,0)(X), unlike2.
In particular, we conclude for the constant section1 ∈ 03(0,0)(X), that h(Fh(Z, Z)1,1) =
‖(ε(i (Z)$))∗h1‖2h − ‖(i (Z)$)‖2h and if h is natural, then h(Fh(Z, Z)1,1) = −‖(i (Z)$)‖2h.

If degs> n−k+2, then(i (Z)$)∧s= 0. If h is a natural metric then deg(ε(i (Z)$))∗hs =
degs− k+ 1 and hence if degs6 k− 2 then(ε(i (Z)$))∗hs= 0. Now k− 2> n− k+ 2→
k > 1

2n + 2, so for this range ofk both of the last two terms on the right-hand side of (2.7)
vanish. We summarize these observations below.

h(Fh(Z, Z)s, s) > h(2(Z, Z)s, s) ∀s ∈ C∞0
⊕

a>n−k+2

3(a,0)(X), (2.8)

h natural ⇒ h(Fh(Z, Z)s, s) 6 h(2(Z, Z)s, s)

∀s ∈ C∞0
⊕

a6k−2

3(a,0)(X),

h natural, k > 1
2n+ 2 ⇒ Fh(Z, Z) s= 2(Z, Z)s

∀s ∈ C∞0
⊕

n−k+26a6k−2

3(a,0)(X).

(2.9)

Theorem 1. Assume(X, g) is a compact Hermitian manifold of complex dimension n, E→ X
is the Higgs bundle given by(2.1) and h is a Hermitian metric on E. If for all sections t of E,
0> h(i3Fht, t), pointwise, then

s ∈ ϑ0
⊕

a>n−k+2

3(a,0)(X) ⇒ ∇hs≡ 0, (ε(i (Z)$)∗hs≡ 0

∀Z and i3Fh(s) ≡ 0.

If 0> h(i3Fht, t) for all sections t of E and k> 1
2n+ 1, then$ = 0.

Proof. (1.12) in this setting can be written

h(i3Fhs, s)− h(i32s, s) =
∑{‖(ε(i (Zi )$))

∗hs‖2h − ‖{i (Zi )$ } ∧ s‖2h
}
. (2.10)

The argument of Lemma 1 implies the result in the first line of the theorem, because
deg(s) > n − k + 2 implies {i (Z)$ } ∧ s = 0 ∀Z. To prove the second statement, note
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thatk > 1
2n + 1 implies that deg($) = k > n − k + 2 so we can use the first argument to

conclude that ($ is h-parallel and)(ε(i (Z)$))∗h$ = 0 ∀Z. From the second part of Propo-
sition 2 we get(ε($))∗h$ = 0. This yieldsh((ε($))∗h$, t) = 0 for all sectionst of E, and
takingt = 1 implies‖$‖2h = 0. ¤

If i3Fh is quasinegative ands is as in Theorem 1 thens= 0.
In the context of general Higgs bundles, the vanishing of theF (2,0)

h andF (0,2)
h is equivalent

to the Higgs form being parallel (cf. Proposition 1). The next result examines the case of those
Higgs bundles defined by 2.1, and with a special metric. The result will be used at the end of
Section 3 in a vanishing theorem for(p,q) forms with values inE.

Proposition 3. Let (X, g) be a K̈ahler manifold, and extend g to a standard metric on
3∗(X) ⊗ C. In the above notation let the metric h on E:=⊕n

p=0

∧(p,0)
(X) be h = g.

Then F(2,0)h = 0⇐⇒ ∇$ = 0 (⇔ F (0,2)
h = 0 by Proposition1).

Proof. From Proposition 1 it follows that on any Higgs bundle(E, θ)with a Hermitian metric
h, F (2,0)

h = 0 at a pointp ⇔ ∂θ t
s = 0 at p whereθeα =

∑
β eβ ⊗ θβα for a local frame

{eα}rα=1 of E adapted top. In the case we are considering, let{eα}rα=1 (r = 2n) be a local frame
of E =⊕n

p=03
(p,0)(X) h-adapted top. Then throughout the neighborhood where{eα}rα=1 is

defined we can write

θeα =
n∑

i=1

({i (∂/∂zi )$ } ∧ eα
)⊗ dzi =

r∑
β=1

(
eβ ⊗

n∑
i=1

Aβi,αdzi
)

where

{i (∂/∂zi )$ } ∧ eα =
r∑
β=1

Aβi,αeβ.

Therefore we haveθβα =
∑n

i=1 Aβi,αdzi and ∂θβα =
∑n

i=1 ∂Aβi,α ∧ dzi . One computes that
Aβi,α =

∑r
γ=1 hβγh

({i (∂/∂zi )$ } ∧ eα,eγ
)
, wherehab = h(ea,eb) and(hst) = (hab)

−1. Up
to this point we have not used the assumption thath is a Kähler metric. We now exploit this
assumption by writing∂ =∑ j ε(∂/∂zj )∇∂/∂zj where{∂/∂zj }nj=1 is a local holomorphic frame
for T (1,0)(X) which is alsoh-adapted top. Then, atp, the following equalities hold

∂θβα =
∑
i, j

∂

∂zj
h
({

i
( ∂
∂zi

)
$
}
∧ eα,eβ

)
dzj ∧ dzi

=
∑
i, j

h
(
∇∂/∂zj

({
i
( ∂
∂zi

)
$
}
∧ eα

)
,eβ

)
dzj ∧ dzi

=
∑
i, j

h
((
∇∂/∂zj

{
i
( ∂
∂zi

)
$
})
∧ eα,eβ

)
dzj ∧ dzi

=
∑
i, j

h
((

i
( ∂
∂zi

)
∇∂/∂zj$

)
∧ eα,eβ

)
dzj ∧ dzi

=
∑
i< j

h
([

i
( ∂
∂zi

)
∇∂/∂zj$ − i

( ∂

∂zj

)
∇∂/∂zi$

]
∧ eα,eβ

)
dzj ∧ dzi .
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We conclude:

∂θβα (p) = 0⇔ h
([

i
∂

∂zi
∇∂/∂zj$ − i

∂

∂zj
∇∂/∂zi$

]
∧ eα,eβ

)
(p) = 0 ∀i < j .

Thus∇$ = 0⇒ ∂θβα = 0 and hence thatF (2,0)
h = 0. Conversely,F (2,0)

h = 0⇒ ∂θβα (p) =
0⇒ h

([
i (∂/∂zi )∇∂/∂zj$ − i (∂/∂zj )∇∂/∂zi$

]∧eα,eβ
)
(p) = 0 for any adapted frame{eα}rα=1

and we can conclude thatF (2,0)
h = 0⇒ (

i (∂/∂zi )∇∂/∂zj$ − i (∂/∂zj )∇∂/∂zi$
)
(p) = 0 ∀i, j ,

e.g., by choosingeα = 1 ∈ 3(0,0)(X) ⊂ E. Finally we have

i
( ∂
∂zi

)
∇∂/∂zj$ = i

( ∂

∂zj

)
∇∂/∂zi$

⇒
∑

i

ε(dzi )i
( ∂
∂zi

)
∇∂/∂zj$ =

∑
i

ε(dzi )i
( ∂

∂zj

)
∇∂/∂zi$

⇒ k∇∂/∂zj$ =
∑

i

ε(dzi )i
( ∂

∂zj

)
∇∂/∂zi$

⇒ k
∑

j

ε(dzj )∇∂/∂zj$ =
∑
i, j

ε(dzj )ε(dzi )i
( ∂

∂zj

)
∇∂/∂zi$

⇒ k∂$ = −
∑
i, j

ε(dzi )ε(dzj )i
( ∂

∂zj

)
∇∂/∂zi$

⇒ k∂$ = −k∂$ ⇒ ∂$ = 0.

From the third line above we also getk∇∂/∂zj$ = ∇∂/∂zj$ −
∑

i i (∂/∂zj )ε(dzi )∇∂/∂zi$ =
∇∂/∂zj$−i (∂/∂zj )∂$ = ∇∂/∂zj$ because∂$ = 0. Finally we conclude(k−1)∇∂/∂zj$ = 0,
and hence∇$ = 0. ¤

In preparation for the examination of stability questions for the Higgs bundleE,we consider
general Higgs subbundles ofE. SupposeP ⊂ E is a Higgs subbundle ofE. This means that
if s is a local section ofP, then(i (Z)$) ∧ s is also a local section ofP. If h is a Hermitian
metric onP, then (2.7) and (2.10) apply to the Higgs bundleP with the Hermitian metrich.
Additionally, the proof of Theorem 1 works as well in this setting, which we include as a

Remark 2. Let P ⊂ E be a Higgs subbundle and let h be a Hermitian metric on P, so all
h Hermitian data applies to P. If0 > i3Fh, i.e., i3Fh is a pointwise negative semidefinite
operator, then any holomorphic section s of P which is a(p,0)-form with p> n− k+ 2 (or a
sum of such forms) must be parallel for the Hermitian connection of h. If i3Fh is quasinegative,
then any such s must be0.

We now examine the question of stability for the Higgs bundles defined by (2.1). Assume
(X, g) is a compact K¨ahler manifold. IfE → X is any holomorphic vector bundle overX,
thenE is said to bestable(semistable) ([5], Ch. V, Sect. 5–7) if for every nontrivial coherent
analytic subsheafF of the sheafϑ(E) of germs of holomorphic sections ofE the following
inequality holds

µ(F) < (6) µ(E). (2.11)
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If F ⊂ E is any holomorphic subbundle ofE, µ(F) (the “slope” of F) is defined to be
µ(F) = deg(F)/rank(F) = ( ∫X c1(F) ∧ ωn−1

)
/rank(F), ω being the Kähler form ofg and

c1(F) the first Chern class ofF. If F is the sheafϑ(F) of germs of holomorphic sections
of F, µ(F) meansµ(F). A coherent subsheaf ofϑ(E) need not arise as the sheaf of germs
of such a subbundleF , i.e.,F need not be locally free. Nevertheless, there is a well-defined
rank for F, becauseF is locally free outside a set of codimension at least 2. There is also a
holomorphic line bundle associated toF, “det(F)” and one definesc1(F) to bec1(det(F)) and
µ(F) = ( ∫X c1(F)∧ ωn−1)/rank(F). In caseF arises from a vector bundleF these definitions
agree with the standard vector bundle ones.

A Hermitian metrich on the holomorphic vector bundleE over (X, g) is said to be an
Einstein–Hermitian metric ([5, Chapter IV]) or a Hermitian–Yang–Mills (HYM) metric ([12])
if i32 = c IdE, 2 being the Hermitian curvature ofh, and wherec is a constant determined
by the rank and degree ofE and the (class of) the K¨ahler form ofg (cf. [5, Ch. IV, Sect. 2]).
If E admits such a metrich, thenE is semistable and splits into a direct sum of holomorphic,
stable subbundles with the same slope ([5, Ch. V, Sect. 8, Theorem 8.3]). The converse theo-
rem conjectured by Kobayashi was proved in [12]: A stable holomorphic vector bundle over a
compact Kähler manifold admits a unique Hermitian–Yang–Mills metric.

In the category of Higgs bundles over compact K¨ahler manifolds,(E, θ)→ (X, g), E is said
to beHiggs stable(Higgs semistable) ([9]) if for every nontrivial coherent analytic subsheafF

satisfyingθ : F→ F⊗ ϑ(3(1,0)(X)) (i.e. a Higgs subsheaf) the inequality in (2.11) holds. A
Hermitian metrich on the Higgs bundle(E, θ)→ (X, g) is said to be a (Higgs–)Hermitian–
Yang–Mills (HHYM) metric ([11]) if i3Fh = c IdE, whereFh is defined in (1.4). Again it is
true that if(E, θ) admits such a metrich, then(E, θ) is (Higgs) semistable and splits into a
direct sum of holomorphic, (Higgs) stable subbundles with the same slope (“polystability” [11,
Theorem 1, p. 19]), because the proof of [5, Ch. V, Sect. 8, Theorem 8.3] can be modified for
the Higgs category, and the inequalities still go the right way. The converse of this theorem,
for compact and certain classes of noncompact K¨ahler manifolds, is due to Simpson ([9], see
also [11]) and plays an important part in the results described at the beginning of Section 1.

One would like to know when an HHYMh exists for the Higgs bundles defined by (2.1) for a
X a compact K¨ahler manifold. The results we present below (2) indicate that such metrics may
be quite rare for suchX. In order to get some information about such metrics we give examples
of HHYM metrics in noncompact cases where there are no topological or complex-analytic
obstructions to their existence.

Let (X, g) be complex n-dimensional with K¨ahler metricg.Assume the following properties
are satisfied:

(i) g is Kähler-Einstein.
(ii) Given any constantC, there is a smooth functionf : X→ C such that¤g( f ) = C.
(iii) $ ∈ 3(n,0)(X) is a holomorphicn-form with constantg-length.
Then the Higgs bundle

(
E =⊕p>03

(p,0)(X), θ
)

admits a HHYM metricg′, i3Fg′ = c IdE

with any numberc (note that the3 in i3Fg′ refers to interior multiplication by theg-dual to
the g-Kähler form, we useg for all Riemannian data onX). In fact we will now show that
such ag′ can be obtained by taking the standard extension ofg to E and changing it confor-
mally on each3(p,0)(X) (with a conformal factor depending onp). X = Cn with the standard
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metric and a constant coefficient(n,0)-form $ is of course an example of such a manifold,
and f (z1, z2, . . . , zn) = (C/n)

∑
i |zi |2+ any harmonic function yields condition (ii). That

condition excludes the possibility ofX being compact.
For (X, g) satisfying (i), (ii) and (iii), say that Ric(g, T (1,0)(X)) = −λ IdT (1,0)(X), so for

the induced action of the Ricci curvature on3(1,0)(X),Ric(g,3(1,0)(X)) = λ Id3(1,0)(X).
Extendg as a standard Hermitian metric toE. Then the curvature2g of the correspond-
ing Hermitian connection onE then satisfiesi32g =

(n−1
p−1

)
λ Id3(p,0)(X) on 3(p,0)(X).

The decompositionE = ⊕
p>03

(p,0)(X) is g-orthogonal, hence each factor3(p,0)(X)
is invariant under the Hermitian connection∇g, i.e., each factor is totally geodesic. Thus
i32(3(p,0)(X),g|

3(p,0)(X))
= i32g |3(p,0)(X)=

(n−1
p−1

)
λ Id3(p,0)(X). Let g′ be the Hermitian metric on

E uniquely determined by the requirement thatE = ⊕
p>03

(p,0)(X) is g′-orthogonal and
g′ = ef pg on3(p,0)(X), where f p is a smooth function onX to be determined. The decompo-
sition E =⊕p>03

(p,0)(X) is g′-orthogonal and totally geodesic and we conclude that forg′

we havei32g′|3(p,0)(X)= i32(3(p,0)(X),g′|
3(p,0)(X))

= (¤g( f p)+
(n−1

p−1

)
λ) Id3(p,0)(X) on3(p,0)(X).

For the Higgs structureθ defined by the form$ one checks thatθg = θg′ because one has
just changed the metric conformally on each of the orthogonal subspaces ofE. Consequently
we haveTg = Tg′ for the operator defined as in (2.5). Also becauseE = ⊕p>03

(p,0)(X) is
bothg andg′ orthogonal,Tg = Tg′ : 3(p,0)(X)→ 3(p,0)(X) ∀p. Becausei3Fg = i32g+Tg,
combining all these observations yields

i3Fg′|3(p,0)(X) =
(
¤g( f p)+

(
n− 1

p− 1

)
λ

)
Id3(p,0)(X) + Tg|3(p,0)(X) . (2.12)

Now using the(n,0)-form$ , which we can assume has pointwise length 1, we see from (2.6)
thatTg |3(p,0)(X)= f [ p] Id3(p,0)(X) in the notation of (2.6). Because of assumption (ii) above, we
can find, for eachp, and for any constantC, a function f p such that

¤g( f p) = C −
(

n− 1

p− 1

)
λ− f [ p]. (2.13)

Hence with such a choice off p for eachp, the corresponding Hermitian metricg′ on E is
Higgs–Hermitian–Yang–Mills, with constantC.Note that in generalg′ (restricted to3(1,0)(X)
and then defined onT (1,0)(X) by g′-duality), will not be a Kähler metric.

We now return to the question of the existence of HHYM metrics in the case whereX a
compact Kähler manifold. We do not have any examples of such metrics for the Higgs bundles
defined by 2.2. In fact, the results we prove below on the nonexistence of such metrics came
about as obstructions to such metrics in our investigations of this question. We need formulas
for c1(F) for various subbundles ofE. If X is any complex manifold of complex dimensionn.
Then there is the well-known formula

c1(3
(p,0)(X)) =

(
n− 1

p− 1

)
c1(3

(1,0)(X)). (2.14)

If p = 0, we interpret
(n−1

p−1

)
to mean 0, so the formula is correct in this case, too. If we now

assumeX is a compact K¨ahler manifold, then it follows from (2.14) that deg(3(p,0)(X)) =(n−1
p−1

)
deg(3(1,0)(X)) andµ(3(p,0)(X)) = pµ(3(1,0)(X)).
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ConsideringE =⊕n
p=03

(p,0)(X) as a Higgs bundle via (2.1), there are a large number of
Higgs subbundles, hence Higgs subsheaves ofϑE. For example,

⊕
p>03

(2p,0)(X) =: 3evenand⊕
p>03

(2p+1,0)(X) =: 3odd are both Higgs subbundles ofE. Also, using the fact that the first
Chern class is additive over direct sums of bundles, one computes thatc1(E) = 2n−1c1(3

(1,0)).
One computesµ(E) = 1

2nµ(3(1,0)), c1(3
even) = 2n−2c1(3

(1,0)) = c1(3
odd), and finally

µ(3even) = 1
2nµ(3(1,0)) = µ(3odd) = µ(E). One gets a Higgs “filtration”{Ea}na=0 (i.e., a

filtration by Higgs subbundles) ofE as follows:

0⊂ En ⊂ En−1 ⊂ · · · ⊂ E1 ⊂ E0 = E, where

Ea =
⊕
p>a

3(p,0)(X). (2.15)

This filtration also gives Higgs filtrations of3even(odd) by3even(odd)∩ Ea. Writing k = 2b+1,
each of the subbundles⊕

p>0

3(2bp+i,0)(X), i = 1,2, . . . ,2b− 1 (2.16)

are Higgs subbundles of3even or 3odd, and intersecting with the Higgs filtration gives more
Higgs subbundles.

We now investigate the of the stability of some of these Higgs bundles. IfV → X is a stable
holomorphic vector bundle, thenV cannot split holomorphically and nontrivially (V = V1⊕V2

holomorphic implies oneVi = 0), i.e.,V is irreducible.
This irreducibility result also holds for Higgs bundles: ifE is Higgs stable andE = E1⊕E2

with E1 andE2 Higgs, then one of these subbundles is 0 (and the proof follows [5, Lemma (7.3),
Ch. 5., Sect. 7]). As a result, for theE defined by (2.1), ifF is a Higgs subbundle ofE for
which there is a nontrivial splitting of the formF = F ∩ 3even⊕ F ∩ 3odd, thenF cannot
be Higgs stable (or “plain” stable). This type of splitting occurs in the bundles in the Higgs
filtration (2.15). In particular, none of theEa,a = 0,1, . . . ,n− 1 can be stable, althoughEn,

being a line bundle, is stable (cf. [5, Prop. (7.7), p. 170]).
It is natural to ask if any of the these Higgs subbundles could be semistable. If any of the

components of the Higgs filtration were semistable (stable), sayEa, thenµ(Eb) 6 (<)µ(Ea)

∀b > a. The next result shows that if deg(3(1,0)(X)) > 0, then the bundlesEa, Ea ∩ 3even,
Ea ∩ 3odd and others cannot be semistable in the “ordinary” sense where no Higgs structure
is assumed (again excluding the automatic caseEn, which is a line bundle and hence stable),
and will be used to show that many of these bundles cannot admit HHYM metrics.

Proposition 4. Let d= deg(3(1,0)(X)), let P be the holomorphic subbundle of
⊕n

i=03
(i,0)(X)

given by P=⊕z
s=13

(ps,0)(X), 0 6 p1 < p2 < · · · < pz 6 n, and let Q be the holomor-
phic subbundle of P given by Q=⊕l

t=13
(qt ,0)(X), p1 6 q1 < q2 < · · · < ql 6 pz,

{q1,q2, . . . ,ql } ⊂ {p1, p2, . . . , pz}. If Q is the“ tail” of P,qi = pz−l+i , i = 1, . . . , l , then
µ(P) > µ(Q)⇔ d < 0, µ(P) = µ(Q)⇔ d = 0.

Proof. We will show thatµ(P) − µ(Q) = d c(p1, . . . , pz;q1, . . . ,ql ) wherec(p1, . . . , pz;
q1, . . . ,ql ) is a rational number which is strictly negative whenqi = pz−l+i , i = 1, . . . , l .
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Write {p1, p2, . . . , pz} = {{q1,q2, . . . ,ql }, {r1, r2, . . . , rz−l }}, r1 < r2 < · · · < rz−l . Using the
formula (2.14) one computes

µ(P) =

z∑
s=1

(
n− 1

ps− 1

)
d

z∑
s=1

(
n

ps

) ,

µ(P)− µ(Q) = d

rk(P) rk(Q)

(
z∑

s=1

(
n− 1

ps− 1

) l∑
t=1

(
n

qt

)
−

l∑
t=1

(
n− 1

qt − 1

) z∑
s=1

(
n

ps

))

= d

rk(P) rk(Q)

(
z−l∑
b=1

(
n− 1

rb − 1

) l∑
t=1

(
n

qt

)
−

l∑
t=1

(
n− 1

qt − 1

) z−l∑
b=1

(
n

rb

))

= d

rk(P) rk(Q)

∑
16t6l

16b6z−l

(
n− 1

rb − 1

)(
n− 1

qt − 1

)
n

{
rb − qt

rb qt

}
.

(2.17)

In the last line of (2.17) we have assumedr1, q1 > 1. If Q is the tail ofP, thenrb− qt < 0
for all b andt . In case one or both ofr1 or q1 is 0, one has to write out some special cases of the
expression in (2.17), but the basic result is the same:µ(P)− µ(Q) = dc wherec is a rational
number, which is strictly negative ifrb − qt < 0 for all b andt.

Theorem 2. Let X be a compact K̈ahler manifold with a nontrivial holomorphic k-form$
where k> 1 is odd. Let the Higgs structure of E be as above, and let P be any Higgs subbundle
of E of the form P=⊕z

s=13
(ps,0)(X), 06 p1 < p2 < · · · < pz 6 n, (z> 2). Then P does

not admit any Higgs–Hermitian–Yang–Mills metric in any of the following cases:
(i) deg(X) < 0.

(ii) deg(X) = 0 and p1 6 n− k+ 1.
(iii) k > 1

2n+ 1, p1 6 n− k+ 1, and$ is a section of P.

Proof. We first prove (i). Note that deg(3(s,0)(X)) = (n−1
s−1

)
deg(3(1,0)(X)), hence deg(P) is

a positive multiple ofd = deg(3(1,0)(X)) = −deg(X). AssumeP admits a HHYM metric
h, i3Fh = c IdP. BecauseP admits this HHYM metric, it is Higgs-semistable, soµ(P) >
µ(P′), whereP′ is the Higgs subbundle ofP given by

⊕z
s=23

(ps,0)(X). Now usingP, and
Q = P′ in Proposition 4, we get that−deg(X) = d 6 0, proving (i). We now prove (ii). As-
sume thatP admits a HHYM metrich, i3Fh = c IdP. Representingc1(P) by (i /2π) trP Fh =
(i /2π)

∑rkP
α=1 Fα

hα one computesc1(P) ∧ ωn−1 = (1/2πn)
∑

α i3Fα
hαω

n = (rk(P)c/2πn)ωn

([5, Ch. 3, Sect. 1, (1.18)]) hence deg(P) is a positive multiple ofc.
If d = 0, then we haveµ(P) = 0 and alsoµ(P′) = 0. If one adapts the proof [5,

Prop. (8.2), Ch. V] to the Higgs setting one concludes the following, using the notation in
[5]: if E is a Higgs bundle andE′ ⊂ E a Higgs subbundle, over a compact K¨ahler man-
ifold (X, g), and if E admits a HHYM metrich, thenµ(E′) 6 µ(E), with equality iff
E = E′ ⊕ (E′)⊥h is a holomorphic splitting into Higgs subbundles (i.e.,(E′)⊥h is a holo-
morphic, Higgs subbundle ofE). In our setting (d = 0, soµ(P) = µ(P′) = 0) this fact
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implies that P = P′ ⊕ (P′)⊥h is a holomorphic Higgs splitting, so(P′)⊥h is θ -invariant.
However,θP ⊂ P′ ⊗ 3(1,0)(X). Thereforeθ (P′)⊥h = 0. Now let s ∈ 03(p1,0)(X) and
split s = s′ + s′′, s′ ∈ 0P′, s′′ ∈ 0(P′)⊥h . Thenθs ∈ 03(p1+k−1,0)(X) ⊗ 3(1,0)(X), while
θ(s′ + s′′) = θs′ ∈ 0P′ ⊗ 3(1,0)(X), so the lowest possible degree “form” part ofθs′ is
p2+ k− 1> p1+ k− 1. We conclude thatθs= 0, for everys ∈ 03(p1,0)(X). From Propo-
sition 2, we conclude that$ ∧ i (Z)s = 0 for everys ∈ 03(p1,0)(X) and every holomorphic
tangent vectorZ. Becausep1 6 n− k+1, this implies that$ ≡ 0 (one can see this pointwise
by pickings= dzA, whereA = {16 A1 < · · · < Ap1 6 n} can be any lengthp1 multiindex,
then i (ZAp1

)s = ±dzA1 ∧ dzA2 ∧ dzA3 ∧ · · · ∧ dzAp1−1 so any of the simplep1 − 1 forms
dzA1∧dzA2∧dzA3∧· · ·∧dzAp1−1 can be obtained asi (Z)s). We have reached a contradiction.

Now assumek > 1
2n+ 1, but not necessarily that deg(X) = 0, and as above, assumeP ad-

mits a HHYM metrich, i3Fh = c IdP. BecauseP admits this HHYM metric, it is semistable
and usingP, andQ = P′ in Proposition 4 we get, thatd 6 0 soc 6 0. Now c 6 0 implies
thati3Fh is a pointwise nonpositive operator. Since$ is a section ofP, the formula (2.10) in
the current setting, for the bundleP, with s= $ , (cf. Remark 2) becomes

c‖$‖2h = −i3∂∂‖$‖2h + ‖∇$‖2h +
∑{‖θh(Zi )$‖2h

}
becausek > 1

2n + 1 impliesθ$ = 0. Integrating this equality overX impliesc > 0, hence
c = 0 and deg(X) = 0. Now part (ii) gives a contradiction.

3. Kodaira-Nakano vanishing type results

In this section we examine analogs of the Kodaira and Nakano-type vanishing theorems for
(p,q)-forms with values in a Higgs bundle over a K¨ahler manifold, cf. [5, Ch. 3] (see also [8,
Ch. 1]) for the Kähler manifold operators and [11, Sect. 1] for the formulas on Higgs bundles.

Let (X, g) be a complex manifold of complex dimensionn with a Kähler metricg. Let
(E, h)→ X be a rankr holomorphic vector bundle with a Hermitian metrich. As in [5], the
Hermitian connection onE extends to an operatord∇ : C∞0E⊗3i (X)→ C∞0E⊗3i+1(X)
and there is the refinement ofd∇ into the two operatorsd∇ = ∂h + ∂,

∂h : C∞0E ⊗3(i, j )(X)→ C∞0E ⊗3(i+1, j )(X),

∂ : C∞0E ⊗3(i, j )(X)→ C∞0E ⊗3(i, j+1)(X),

given relative to a local holomorphic frame{eα}rα=1 of E by

∂(eα ⊗ φ) = eα ⊗ ∂φ,

∂h(eα ⊗ φ) =
r∑
β=1

eβ ⊗ Cβ
α ∧ φ + eα ⊗ ∂φ

where∇eα =
∑r

β=1 eβ ⊗ Cβ
α . The metric onX extends to3∗(X) ⊗ C (we drop theC and

write3∗(X) for the complex exterior algebra ofX) and the Hermitian metric onE combines
to give a metric which we denote〈〈 , 〉〉 on E ⊗3∗(X) by the prescription

〈〈e⊗ φ, f ⊗ ψ〉〉 = h(e, f ) ∗ (φ ∧ ∗ψ), e, f ∈ Eφ,ψ ∈ 3∗(X)
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where∗ denotes the Hodge star operator on3∗(X) determined byg (and extend∗ to E⊗3∗(X)
by idE⊗∗ which we also denote simply as∗). We use the convention that the Hodge star op-
erator is given on the complex exterior algebra by the method in [5, Ch. 3, Sect. 2]. Note that
there is a sign typographical error in this reference in formula (2.6), which should read

ε(A, B) = (−1)np+n(n−1)/2σ(AA′) · σ(B B′).

TheL2 or formal adjoints of∂∇ and∂ with respect to〈〈 , 〉〉 are given by (cf. [5, Ch. 3, Sect. 2])

∂∗h = − ∗ ∂∗ = i [3, ∂],

∂∗ = − ∗ ∂h∗ = −i [3, ∂h]

where3 = i
∑

i, j gi j i (∂/∂zi )i (∂/∂zj ) is the adjoint to exterior multiplication with the K¨ahler
formω. Let¤∂ = (∂+∂∗)2 and¤∂h = (∂h+∂∗h)2. The Kodaira–Nakano formula (cf. [5, Ch. 3,
Sect. 3, Proof (3.5), p. 69], or [8, Ch. 1, p. 16, (1.58)]) can be written

¤∂h −¤∂ = i (3e(2)− e(2)3) (3.1)

where as in [5]e(2) : E ⊗ 3(p,q)(X) → E ⊗ 3(p+1,q+1)(X) is given bye(2)(eα ⊗ φ) =∑
β{eβ ⊗ 2β

α ∧ φ}. We will say that a sections of E ⊗ 3w(X) = ⊕
i+ j=w E ⊗ 3(i, j )(X),

has Hodge type(p,q) if s = ∑r
α=1 eα ⊗ φα where eachφα is a section of3(p,q)(X). This

terminology can become ambiguous ifE is the Higgs bundle discussed in Section 2, since the
E component of a section ofE⊗3(p,q)(X) will be a sum of forms with Hodge types. We will
address this issue when it arises. Both¤∂h and¤∂ preserve the Hodge(p,q) types.

Now supposeE also has the structure of a Higgs bundle with Higgs formθ . The operators
D′′ = ∂ + θ, D′h andDh defined in (1.2) and (1.3) extend toE⊗3∗(X)as above ([11, Sect. 1]):

D′′(eα ⊗ φ) = eα ⊗ ∂φ +
∑
β

eβ ⊗ θβα ∧ φ,

D′h(eα ⊗ φ) = eα ⊗ ∂φ +
∑
β

eβ ⊗ (Cβ
α + θh

β
α) ∧ φ,

D′∗h = − ∗ D′′∗ = i [3, D′′],

D′′∗ = − ∗ D′h∗ = −i [3, D′h],

D∗h = D′∗h + D′′∗.

(3.2)

One checks that as before that these extended operatorsD′′, D′h and their adjoints all
square to zero. Note the adjoints of the Higgs forms are given byθ∗ = ∗θh∗ = −i [3, θh],
θ∗h = ∗θ∗ = i [3, θ ]. Define

¤D′′ = (D′′ + D′′∗)2 = D′′D′′∗ + D′′∗D′′, (3.3)

¤D′h = (D′h + D′∗h )
2 = D′h D′∗h + D′∗h D′h, (3.4)

¤Dh = Dh D∗h + D∗h Dh = ¤D′′ +¤D′h .

We now examine the relation between the Laplacians in (3.4) and (3.3), and the “ordinary”
Laplacians corresponding toθ = 0,¤∂h,¤∂ acting onE⊗3t(X). The following formulas are
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given by computations using the definitions ofD′′, D′h and their adjoints (3.2) (cf. the notation
discussed at the beginning of the proof of Proposition 1):

¤D′′ = ¤∂ + θθ∗ + θ∗θ + ∂(θ∗)+ ∂∗(θ),
¤D′h = ¤∂h + θhθ

∗
h + θ∗hθh + ∂h(θ

∗
h)+ ∂∗h(θh).

(3.5)

In general the operators¤D′′ and¤D′h will not preserve the Hodge type(p,q) of a section
of E ⊗3(p,q)(X), although they do preserve the total degreep+ q because

∂(θ∗), ∂∗h(θh) : C∞0E ⊗3(p,q)(X)→ C∞0E ⊗3(p−1,q+1)(X),

∂∗(θ), ∂h(θ
∗
h) : C∞0E ⊗3(p,q)(X)→ C∞0E ⊗3(p+1,q−1)(X),

(3.6)

and defining

¯ := ¤∂ + θθ∗ + θ∗θ,
¯ := ¤∂h + θhθ

∗
h + θ∗hθh,

each of¯ and¯ preserve Hodge type(p,q) of a section ofE ⊗ 3w(X), i.e., ¯, ¯ :
E⊗3(p,q)(X)→ E⊗3(p,q). The operators̄ and¯ differ from the usual (θ = 0) Laplacians
only by the zeroth order terms, which are nonnegative operators. IfX is compact Kähler, then
becausē and¯ preserve Hodge type(p,q) one has ker̄ (¯) ⊂ ker¤D′′(¤D′h) considering
these operators acting onC∞0E ⊗3w(X). To wit, if s=∑p+q=w sp,q is the decomposition
into Hodge(p,q) components, then̄ s = 0⇔ ¯sp,q = 0 ∀(p,q) ⇔ 0 = ∂sp,q = θsp,q =
∂∗sp,q = θ∗sp,q ∀(p,q)⇔ 0= D′′sp,q = D′′∗sp,q ∀(p,q)⇒ 0= D′′s= D′′∗s⇔ ¤D′′s.

An analog of the Kodaira–Nakano-type formula in this setting is

¤D′h −¤D′′ = i (3e(Fh)− e(Fh)3) (3.7)

where as in [5]e(Fh) : E⊗3w(X)→ E⊗3w+2(X) is givene(Fh)(eα⊗φ) =
∑

β{eβ⊗Fβ
hα∧φ}.

We note that

i (3e(F (1,1)
h )− e(F (1,1)

h )3) : E ⊗3(p,q)(X)→ E ⊗3(p,q),
i (3e(F (2,0)

h )− e(F (2,0)
h )3) : E ⊗3(p,q)(X)→ E ⊗3(p+1,q−1),

i (3e(F (0,2)
h )− e(F (0,2)

h )3) : E ⊗3(p,q)(X)→ E ⊗3(p−1,q+1).

(3.8)

Because¤D′′ , ¤D′h and¤D are nonnegative operators on a compact K¨ahler manifold, for-
mula (3.7) implies

Theorem 3. If (X, g) is a compact K̈ahler manifold, (E, θ) → X a Higgs bundle with a
Hermitian metric h then with the notation above

i
(
3e(Fh)− e(Fh)3

)
6 0⇒ ker¤D′′ ⊆ ker¤D′h ∩ ker¤D (3.9)

where i(3e(Fh)−e(Fh)3),¤D′′,¤D′h and¤D are considered as operators onC∞0E⊗3w(X).
Proof. That ker¤D′′ ⊆ ker¤D′h follows from (3.7). Then, ifs ∈ ker¤D′′ ∩ ker¤D′h , one gets
0= D′′s= D′′∗s= D′hs= D′∗h s and hence 0= Ds= D∗s.
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If the Higgs operatorθ is parallel with respect to the operatord∇ defined byh as in Propo-
sition 1, as a section of Hom(E) ⊗ 3(1,0)(X), i.e., Fh has only(1,1) form parts relative to a
holomorphic frame, then the four operators in (3.6) all vanish (the proof is analogous to the
computation in Proposition 1) and¤D′′ = ¯ and¤D′h = ¯ preserve Hodge type.

Let s = ∑p+q=w sp,q ∈ C∞0E ⊗ 3w(X) be as above, then the formulas above combine
to give

〈〈(¤D′h −¤D′′)s, s〉〉 = 〈〈(i (3e(Fh)− e(Fh)3)s, s〉〉
=

∑
p+q=w

{〈〈(¯−¯)sp,q, sp,q〉〉

+ 〈〈(∂h(θ
∗
h)− ∂∗(θ)h)sp,q, sp+1,q−1〉〉

+ 〈〈(∂∗h(θh)− ∂(θ∗))sp,q, sp−1,q+1〉〉
}
.

(3.10)

In formula (3.10) we see that ifs ∈ E⊗3(p,q)(X) then the term〈〈(i (3e(Fh)−e(Fh)3)s, s〉〉
depends only on the(1,1) part ofFh, cf. (3.8). This observation yields the following vanishing
result, which will be revisited in giving a type of Higgs bundle analog to the Kodaira–Nakano
vanishing theorem.

Theorem 4. Let (X, g) be a compact K̈ahler manifold, (E, θ) → X a Higgs bundle with a
Hermitian metric h. With the notation above, if the(1,1)part of i

(
3e(Fh)−e(Fh

)
3) 6 0point-

wise as an operator on E⊗3(p,q)(X) and if sp,q ∈ C∞0E⊗3(p,q)(X) satisfies¤D′′sp,q = 0
then¤D′hsp,q = 0 and¤Dhsp,q = 0. If the(1,1)-part of i

(
3e(Fh)− e(Fh)3

)
is quasinegative

on E⊗3(p,q)(X), any then any such sp,q must be0.
If the Higgs formθ is parallel as a section ofHom(E)⊗3(1,0)(X), i.e., Fh has only(1,1) form

parts with respect to a holomorphic frame, and if i
(
3e(Fh)−e(Fh)3

)
6 0on E⊗3w(X) then

s = ∑p+q=w sp,q ∈ E ⊗ 3w(X),¤D′′s = 0 implies¤D′hsp,q = 0 and¤Dhsp,q = 0 ∀(p,q)
(cf. Theorem3).

The Kodaira–Nakano vanishing theorems are generally stated as vanishing theorems for
harmonic sections of(p,q)-forms with values in a holomorphic line bundleL, i.e., harmonic
sections ofL⊗3(p,q)(X), with X compact Kähler or compact complex withc1(L) < 0 ([5, Ch.
3, Sect. 3], and [8, Ch. 2, Th. 2.18]). However the proofs given work for¤∂ -harmonic sections
of (p,q)-forms with values in a Hermitian holomorphic vector bundle, i.e., harmonic sec-
tions ofE⊗3(p,q)(X), if we assume thatE admits a projectively flat Hermitian metric (every
Hermitian metric on a line bundle is projectively flat). The main technical point is that confor-
mally changing a projectively flat Hermitian metric yields another projectively flat Hermitian
metric. This observation is used in the course of proving the next theorem.

Theorem 5. (Kodaira–Nakano)Let (E, θ)→ (X, g) be a Higgs bundle over a compact com-
plex manifold of complex dimension n with c1(E) < 0and assume E admits a Hermitian metric
h for which the(1,1) part of the Higgs curvature F(1,1)h satisfies the equation F(1,1)h = κ IdE,
whereκ = ∑ κi j dzi ∧ dzj is a (1,1) form. If sp,q ∈ C∞0E ⊗ 3(p,q)(X) and¤D′′sp,q = 0,
p+ q 6 n− 1 (= n), then sp,q = 0 (¤D′hsp,q = 0 and¤Dhsp,q = 0).
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Proof. Let a negative representative ofc1(E)be given by(i /2π) f = (i /2π)∑i, j fi j dzi∧dzj ,
a closed real(1,1) form with ( fi j ) negative definite pointwise. Then−i

∑
i, j fi j dzi dzj is a

Kähler metricg onX, and we use this metric as the K¨ahler metric onX. Supposeh is a Hermitian
metric onE for whichF (1,1)

h = κ IdE whereκ =∑ κi j dzi ∧dzj is a(1,1) form. From (1.7) we
have trE F (1,1)

h = trE2 and thus we can representc1(E) as(i /2π) trE F (1,1)
h = (i /2π)r κ. Now,

any conformal change ofh to a new Hermitian metrich′ = ah (a a smooth positive real-valued
function on X) changes the Hermitian metric curvature from2 to 2′ = 2 − ∂∂ ln(a) IdE

and does not changeθh, i.e., θh′ = θh. It therefore follows from (1.7) that for the new met-
ric h′, F (1,1)

h′ = κ ′ IdE whereκ ′ = κ − ∂∂ ln(a).
For any real representative ofc1(E), such as(i /2π) f , we can always changeh (or any

given Hermitian metric on aE) conformally to a new metrich′ for which trE2′ = f ([5, Ch.
2, Sect. 2, p. 41, Prop. (2.23)]). Therefore we conclude: we can conformally changeh to a
metrich′ for which f = trE2

′ = trE F (1,1)
h′ = r κ ′. ThusF (1,1)

h′ = (1/r ) f IdE. Now with this
Hermitian metric the formulas (3.7) and (3.8) yield, ifs ∈ C∞0E ⊗3(p,q)(X),

h
(
(¤D′h −¤D′′)s, s

) = h
(
i (3e(Fh)− e(Fh)3)s, s

)
= h

(
i (3e(F (1,1)

h )− e(F (1,1)
h )3)s, s

) = h
(− 1

r (3L − L3)s, s
)

= −1
r (n− (p+ q))‖s‖2h′

(L is exterior multiplication by the K¨ahler form). Thus ifp+ q 6 n− 1 (= n),¤D′′s= 0 we
concludes= 0 (¤D′hs= 0 and¤Dhs= 0). ¤

Remark 3. The vanishing theorem of Gigante and Girbau, ([5, Ch. 3, Sect.3, Theorem3.4]
and [8, Ch. 3, Theorem3.2]) where the assumptions are: X is compact K̈ahler, c1(E) 6 0
and pointwise rank k, and the vanishing occurs in degrees p+ q 6 k − 1, is also valid for
a Hermitian holomorphic vector bundle with a projectively flat metric h and in the Higgs set-
ting when F(1,1)h = κ IdE. The proof given in[5, Ch. 3, Sect.3, Theorem(3.4), pp. 69–73]
works in this setting. One has to extend the formula(3.6), page70 as we now indicate. Let
(E, θ) → (X, g) be a Higgs bundle over a compact Kähler manifold and E admits a Her-
mitian metric h for which F(1,1)h = κ IdE, whereκ =∑ κi j dzi ∧ dzj is a (1,1) form. Then
κ IdE has the same Hermitian symmetries as the Hermitian curvature,2, of h, so without loss
of generality, κ = ∑ κi dzi ∧ dzi ({dzi }ni=1 orthonormal at the point of evaluation). Now for
s ∈ C∞0E⊗3(p,q)(X)we can write locally s=∑ea⊗ϕa

I J
dzI ∧dzJ where the multiindices

satisfy|I | = p, |J| = q and at one particular point of evaluation the holomorphic frame
{ea}ra=1 is orthonormal. With this notation the[5, p. 70, formula(3.6)] translates into

h(i (3e(F (1,1)
h )− e(F (1,1)

h )3)s, s) =
r∑

a=1
|I |=p,|J|=q

(
−

∑
i∈(I∩J)

κi +
∑

i∈(I∪J)c
κi

)
|ϕa

I J
|2.

The remainder of the proof goes through as in[5].

We now examine the consequences of the results in this section for the Higgs bundles defined
by (2.1). With(E, θ) as in (2.1) and assuming(X, g) is a Kähler manifold, we get a second
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grading of the bundle

E ⊗3w(X) =
⊕

p+q=w
E ⊗3(p,q)(X) =

⊕
p+q=w,16a6n

E(p,q)
a

whereE(p,q)
a = 3(a,0)(X)⊗3(p,q)(X). Then one checks

θ(θ∗h) : E(p,q)
a → E(p+1,q)

a+k−1 (E
(p,q−1)
a+k−1 ),

and if E is endowed with a natural metrich (2.4) then

θh(θ
∗) : E(p,q)

a → E(p,q+1)
a−k+1 (E

(p−1,q)
a−k+1 ).

We continue assumingE is endowed with a natural Hermitian metrich. Then the decom-
position E = ⊕n

a=13
(a,0)(X) is h orthogonal, hence is also preserved by the associated

Hermitian connection and its curvature,2. It follows that e(2) : E(p,q)
a −→ E(p+1,q+1)

a ,
that i

(
3e(2) − e(2)3

)
: E(p,q)

a −→ E(p,q)
a , and that i

(
3e(F (1,1)

h ) − e(F (1,1)
h )3

) =
i
(
3e(2) − e(2)3

) + θhθ
∗
h + θ∗hθh − θθ∗ − θ∗θ : E(p,q)

a −→ E(p,q)
a (cf. 3.8). Finally if

we assume that the Higgs formθ is h parallel thenFh = F (1,1)
h (Proposition 294) and we have

i
(
3e(Fh) − e(Fh)3

)
,¯ = ¤D′′,¯ = ¤D′h : E(p,q)

a → E(p,q)
a . From this data we deduce the

following interpretation of the last part of Theorem 4 in this setting.

Theorem 6. Let(X, g) be a compact K̈ahler manifold of complex dimension n, let (E, θ)→ X
be the Higgs bundle given by(2.1). Let h be a natural metric on E and assume that the Higgs
form θ is parallel, d5θ = 0. For a section s of E⊗3w(X), write s= ∑p+q=w,16a6n s(p,q)a ,

where s(p,q)a ∈ C∞0E(p,q)
a . If i (3e(Fh)−e(Fh)3) 6 0pointwise as an operator on E⊗3w(X),

then¤D′′s= 0 implies0= ¤D′′s(p,q)a = ¤D′hs
(p,q)
a = ¤Dhs

(p,q)
a for all (p,q) and all a.

Using Proposition 3 we deduce the following

Corollary 1. Let(X, g)be a compact K̈ahler manifold of complex dimension n, let(E, θ)→ X
be the Higgs bundle given by(2.1). Assume that$ is g parallel and use the standard extension of
g as the Hermitian metric on E. For a section s of E⊗3w(X), write s=∑p+q=w,16a6n s(p,q)a ,

where s(p,q)a ∈ C∞0E(p,q)
a . If i

(
3e(Fh)−e(Fh)3

)
6 0pointwise as an operator on E⊗3w(X),

then¤D′′s= 0 implies0= ¤D′′s(p,q)a = ¤D′hs
(p,q)
a = ¤Dhs

(p,q)
a for all (p,q) and all a.
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