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We develop relative oscillation theory for one-dimensional Dirac operators which, rather
than measuring the spectrum of one single operator, measures the difference between the
spectra of two different operators. This is done by replacing zeros of solutions of one oper-
ator by weighted zeros of Wronskians of solutions of two different operators. In particular,
we show that a Sturm-type comparison theorem still holds in this situation and demon-
strate how this can be used to investigate the number of eigenvalues in essential spectral
gaps. Furthermore, the connection with Krein’s spectral shift function is established. As an
application we extend a result by K.M. Schmidt on the finiteness/infiniteness of the number
of eigenvalues in essential spectral gaps of perturbed periodic Dirac operators.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

To set the stage, let I = (a,b) ⊆ R (with −∞ � a < b � ∞) be an arbitrary interval and consider the Dirac differential
expression

τ = 1

i
σ2

d

dx
+ φ(x). (1.1)

Here

φ(x) = φel(x)1 + φam(x)σ1 + (
m + φsc(x)

)
σ3, (1.2)

σ1, σ2, σ3 denote the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (1.3)

and m, φsc, φel, and φam are interpreted as mass, scalar potential, electrostatic potential, and anomalous magnetic moment,
respectively (see [19], Chapter 4). As usual we require m ∈ [0,∞) and φsc, φel, φam ∈ L1

loc(I) real-valued. We don’t include
a magnetic moment τ̂ = τ + σ2φmg(x) since it can be easily eliminated by a simple gauge transformation τ = U τ̂ U−1,
U = exp(i

∫ x
φmg(r)dr) (there is also a gauge transformation which gets rid of φam or φel (see [7], Section 7.1.1)).

If τ is limit point at both a and b, then τ gives rise to a unique self-adjoint operator H when defined maximally (cf.,
e.g., [7,21,20]). Otherwise, we need to fix a boundary condition at each endpoint where τ is limit circle.
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Explicitly, H is given by

H : D(H) → L2(I,C
2)

f �→ τ f , (1.4)

where

D(H) = {
f ∈ L2(I,C

2) ∣∣ f ∈ AC loc
(

I,C
2), τ f ∈ L2(I,C

2), Wa(u−, f ) = Wb(u+, f ) = 0
}

(1.5)

with

W x( f , g) = i
〈
f ∗(x),σ2 g(x)

〉 = f1(x)g2(x) − f2(x)g1(x) (1.6)

the usual Wronskian (we remark that the limit Wa,b(.,..) = limx→a,b W x(.,..) exists for functions as in (1.5)). Here the
function u− (resp. u+) used to generate the boundary condition at a (resp. b) can be chosen to be a nontrivial solution of
τu = 0 if τ is limit circle at a (resp. b) and zero else.

We refer to the monographs [7,21,22] for background and also [19] for further information about Dirac operators and
their applications.

However, even though the Dirac operator is as important to relativistic quantum mechanics as the Schrödinger operator
to nonrelativistic quantum mechanics, much less is known about its discrete spectrum. The main reason of course being
that in contradistinction to typical Schrödinger operators, Dirac operators are not bounded from below and thus approaches
relying on semi-boundedness are not applicable.

Our aim in the present paper is to develop what we will call relative oscillation theory for a pair of Dirac operators H1
and H0 associated with two potentials φ1 and φ0 as above. As we will show, it turns out to be an effective tool for both
counting eigenvalues in essential spectral gaps as well as for investigation the accumulation of eigenvalues at the boundary
of an essential spectral gap.

Let 〈 f , g〉 = f ∗
1 g1 + f ∗

2 g2 and | f | = √| f1|2 + | f2|2 denote the scalar product and norm in C
2. Our key ingredient will be

the Wronskian of two (nontrivial) real-valued solutions u0 and u1 satisfying τ0u0 = λ0u0 and τ1u1 = λ1u1. Then we define
a Prüfer angle for the Wronskian W (u0, u1) via(

W x(u1, u0)

W x(u1,−iσ2u0)

)
= R(x)

(
sin(ψ(x))
cos(ψ(x))

)
. (1.7)

Note that ψ(x) is uniquely determined up to a multiple of 2π by the requirement that ψ(x) should be continuous since the
two Wronskians cannot vanish simultaneously.

The total difference

#(c,d)(u0, u1) = ⌈
�1,0(d)/π

⌉ − ⌊
�1,0(c)/π

⌋ − 1 (1.8)

will then be called the weighted number of sign flips of the Wronskian W (u0, u1) in the interval (c,d) ⊂ I (with a < c <

d < b). Here �x� = max{n ∈ Z | n � x} and x� = min{n ∈ Z | n � x} are the usual floor and ceiling functions.
In fact, #(c,d)(u0, u1) counts the number of sign flips of W (u0, u1) where a sign flip is counted as +1 if ψ increases along

the sign flip and as −1 if ψ decreases. Moreover, one can show that a zero x0 is counted as +1 if 〈u0(x0),�φ(x0)u0(x0)〉 > 0
and as −1 if 〈u0(x0),�φ(x0)u0(x0)〉 < 0, where

�φ = φ1 − φ0. (1.9)

We will also set

#(u0, u1) = lim
c↓a,d↑b

#(c,d)(u0, u1) (1.10)

provided this limit exists. This will for example be the case if the perturbation is of a definite sign, �φ(x) � 0 or �φ(x) � 0,
at least for x near a and b. We will call τ1 − λ1 relatively nonoscillatory with respect to τ0 − λ0 if #(u0, u1) is finite and
relatively oscillatory otherwise.

Our first result implies that if we choose u0 and u1 to be Weyl solutions, then the weighted number of sign flips counts
precisely the eigenvalue difference. Recall that a solution u−(z, .) of τu = zu is called Weyl solution at a if it is square
integrable near a and fulfills the boundary condition of H at a (if there is any, i.e., if τ is limit circle at a). Such a solution
is unique up to a constant if it exists (e.g. if z /∈ σess(H)) and it can be chosen to be real for z ∈ R. Similarly a Weyl solution
u+(z, .) at b is defined.

Finally, denote by PΩ(H), Ω ⊆ R, the family of spectral projections associated with the self-adjoint operator H (see
e.g. [18]).
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Theorem 1.1. Let H0 , H1 be self-adjoint operators associated with τ0 , τ1 , respectively, and separated boundary conditions. Suppose

(i) �φ � 0, near singular endpoints,
(ii) limx→a �φ(x) = 0 if a is singular and limx→b �φ(x) = 0 if b is singular,

(iii) H0 and H1 are associated with the same boundary conditions near a and b, that is, u0,−(λ) satisfies the boundary condition of
H1 at a (if any) and u1,+(λ) satisfies the boundary condition of H0 at b (if any).

Suppose λ0 < infσess(H0). Then

dim Ran P (−∞,λ0)(H1) − dim Ran P (−∞,λ0](H0) = #
(
u1,∓(λ0), u0,±(λ0)

)
. (1.11)

Suppose σess(H0) ∩ [λ0, λ1] = ∅. Then τ1 − λ0 is relatively nonoscillatory with respect to τ0 − λ0 and

dim Ran P [λ0,λ1)(H1) − dim Ran P (λ0,λ1](H0) = #
(
u1,∓(λ1), u0,±(λ1)

) − #
(
u1,∓(λ0), u0,±(λ0)

)
. (1.12)

The proof will be given at the end of Section 2.

Remark 1.2. Note that condition (ii) implies σess(H0) = σess(H1) (cf. Lemma 2.7 below). In addition, (ii) implies that any
function which is in D(τ0) near a (or b) is also in D(τ1) near a (or b), and vice versa. Hence condition (iii) is well-posed.

In the case where the resolvent difference of H1 and H0 is trace class, the difference in (1.12) as opposed to (1.11) can
be avoided if we replace the left-hand side by Krein’s spectral shift function ξ(λ, H1, H0) (see [23] for more information on
Krein’s spectral shift function). In order to fix the unknown constant in the spectral shift function, we will require that H0
and H1 are connected via a path within the set of operators whose resolvent difference with H0 are trace class. Hence we
will require

Hypothesis H.1.3. Suppose H0 and H1 are self-adjoint operators associated with τ0 and τ1 and separated boundary condi-
tions. Assume that

• �φ is relatively bounded with respect to H0 with H0-bound less than one, and
• √|�φ|(H0 − z)−1 is Hilbert–Schmidt for one (and hence for all) z ∈ ρ(H0).

It was shown in [6, Section 8] that these conditions ensure that we can interpolate between H0 and H1 using operators
Hε , ε ∈ [0,1], such that the resolvent difference of H0 and Hε is continuous in ε with respect to the trace norm. Hence
we can fix ξ(λ, H1, H0) by requiring ε �→ ξ(λ, Hε, H0) to be continuous in L1(R, (λ2 + 1)−1 dλ), where we of course set
ξ(λ, H0, H0) = 0. While ξ is only defined a.e., it is constant on the intersection of the resolvent sets R∩ρ(H0)∩ρ(H1), and
we will require it to be continuous there. In particular, note that by Weyl’s theorem the essential spectra of H0 and H1 are
equal, σess(H0) = σess(H1). Then we have the following result:

Theorem 1.4. Let H0 , H1 satisfy Hypothesis H.1.3. Then for every λ ∈ R ∩ ρ(H0) ∩ ρ(H1) we have

ξ(λ, H1, H0) = #
(
ψ0,±(λ),ψ1,∓(λ)

)
. (1.13)

Again, the proof will be given at the end of Section 2.
In particular, this result implies that under these assumptions τ1 − λ is relatively nonoscillatory with respect to τ0 − λ

for every λ in an essential spectral gap.
Concerning the history of these results we mention that the analogs of Theorem 1.1 and Theorem 1.4 were first given in

the case of Sturm–Liouville operators by Krüger and Teschl [6,4] extending earlier work of Gesztesy, Simon, and Teschl [3]
which corresponded to the case H1 = H0. In the case of Dirac operators the case H1 = H0 was first given in Teschl [17].

Finally, we will show how #(u0, u1) can be used to settle the question whether the eigenvalues introduced by a given
perturbation will accumulate at a boundary point of the essential spectrum and apply this to the case of perturbed periodic
Dirac operators.

We first recall some basic facts from the theory of periodic Dirac operators (cf., e.g., [21, Chapter 12], [22, Chapter 16]).
Let H0 be a Dirac operator associated with periodic potential φ0 of period α > 0, that is, φ0(x + α) = φ0(x), x ∈ I = (a,∞).
The essential spectrum of H0 is purely absolutely continuous and consists of a countable number of bands, that is,

σess(H0) =
⋃
j∈Z

[E2 j, E2 j+1] (1.14)

with · · · E2 j < E2 j+1 � E2 j+2 < E2 j+3 · · · . In addition, in every essential spectral gap there can be at most one eigenvalue.
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Moreover, Floquet theory implies the existence of an (anti-)periodic solution u0(E j, x) at each boundary point of the
essential spectrum.

To phrase our result, we recall the iterated logarithm logn(x) which is defined recursively via

log0(x) = x, logn(x) = log
(
logn−1(x)

)
.

Here we use the convention log(x) = log |x| for negative values of x. Then logn(x) will be continuous for x > en−1 and
positive for x > en , where e−1 = −∞ and en = een−1 . Abbreviate further

Ln(x) = 1

log′
n+1(x)

=
n∏

j=0

log j(x).

Explicitly we have

L0(x) = x, L1(x) = x log(x), L2(x) = x log(x) log
(
log(x)

)
, . . . .

With this notation we have the following result:

Theorem 1.5. Let E j be a boundary point of the essential spectrum of the periodic operator H0 and let u0(x) be a corresponding
(anti-)periodic solution of τ0u0 = E ju0 .

Suppose

φ1(x) = φ0(x) − 1

4

n∑
k=0

1

Lk(x)2
φ1,k + o

(
Ln(x)−2) (1.15)

for some constant matrices φ1,k, 0 � k � n, and define

A = 2

α

α∫
0

〈u(x), ((m + φ0,sc(x))σ3 + φ0,am(x)σ1)u(x)〉
|u(x)|4 dx,

Bk = − 1

α

α∫
0

〈
u(x),φ1,ku(x)

〉
dx, 0 � k � n. (1.16)

Then the eigenvalues of H1 accumulate at E j if

AB0 = · · · = ABn−1 = 1 and ABn > 1 (1.17)

and the do not accumulate at E j if

AB0 = · · · = ABn−1 = 1 and ABn < 1. (1.18)

The proof will be given at the end of Section 4.
In the case of Sturm–Liouville operators this result originates in the work of Rofe-Beketov [8–11] (see also the recent

monograph [13]) who proved the case n = 0. His work was recently improved by Schmidt [15] who gave a new proof and
obtained the cases n = 0,1. Extending the approach by Schmidt the general case was obtained in Krüger and Teschl [5].
Schmidt also established the case n = 0,1 for Dirac operators in [16]. In his paper [16] he also gives an equivalent formula-
tion for the criterion in terms of the gradient of the Floquet discriminant and shows how the above criterion can be applied
to radial Dirac operators via a transformation from [14]. In fact, if

τk = 1

i
σ2

d

dr
+ k

r
σ3 + φ(r), r ∈ (0,∞), (1.19)

is a radial Dirac operator (i.e. one which arises by separation of variables in spherical coordinates [19, Section 4.6.6]), then
the unitary transformation [14, Lemma 3]

U f (r) =
(

cos(θ(r)) − sin(ϑ(r))
cos(ϑ(r)) sin(ϑ(r))

)(
f1(r)
f2(r)

)
, ϑ(r) = 1

2
arctan

(
k

r

)
, (1.20)

transforms τ to

U∗τ U = 1

i
σ2

d

dr
+

(√
1 + k2

r2
− 1

)
σ3 + k

2(r2 + k2)
1 + φ(r). (1.21)
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Since

(√
1 + k2

r2
− 1

)
σ3 + k

2(r2 + k2)
1 = k

2
(kσ3 + 1)

1

r2
+ O

(
r−4) (1.22)

our result is directly applicable to this situation.
We also refer to [16] and the recent work by Cojuhari [2] for more on the history of this problem and references to

related results. Analogous results for the discrete case, Jacobi matrices, can be found in [1].

2. Relative oscillation theory

After these preparations we are now ready to develop relative oscillation theory. Our presentation closely follows [6].

Definition 2.1. For τ0, τ1 possibly singular Dirac operators as in (1.1) on (a,b), we define

#(u0, u1) = lim inf
d↑b, c↓a

#(c,d)(u0, u1) and #(u0, u1) = lim sup
d↑b, c↓a

#(c,d)(u0, u1), (2.1)

where τ ju j = λ ju j , j = 0,1.
We say that #(u0, u1) exists, if #(u0, u1) = #(u0, u1), and write

#(u0, u1) = #(u0, u1) = #(u0, u1) (2.2)

in this case.

By Lemma 3.1 below one infers that #(u0, u1) exists if φ0 − λ0 − φ1 + λ1 has the same definite sign near the endpoints
a and b. On the other hand, note that #(u0, u1) might not exist even if both a and b are regular, since the difference of
Prüfer angles might oscillate around a multiple of π near an endpoint. Furthermore, even if it exists, one has #(u0, u1) =
#(a,b)(u0, u1) only if there are no zeros at the endpoints (or if φ0 − λ0 − φ1 + λ1 � 0 at least near the endpoints).

We begin with our analog of Sturm’s comparison theorem for zeros of Wronskians. We will also establish a triangle-type
inequality which will help us to provide streamlined proofs below. Both results follow as in [6].

Theorem 2.2 (Comparison theorem for Wronskians). Suppose u j satisfies τ ju j = λ ju j , j = 0,1,2, where λ0 − φ0 � λ1 − φ1 �
λ2 − φ2 .

If c < d are two zeros of W x(u0, u1) such that W x(u0, u1) does not vanish identically, then there is at least one sign flip of
W x(u0, u2) in (c,d). Similarly, if c < d are two zeros of W x(u1, u2) such that W x(u1, u2) does not vanish identically, then there
is at least one sign flip of W x(u0, u2) in (c,d).

Theorem 2.3 (Triangle inequality for Wronskians). Suppose u j , j = 0,1,2 are given real-valued non-vanishing vector functions. Then

#(u0, u1) + #(u1, u2) − 1 � #(u0, u2) � #(u0, u1) + #(u1, u2) + 1, (2.3)

and similarly for # replaced by #.

Definition 2.4. We call τ1 relatively nonoscillatory with respect to τ0, if the quantities #(u0, u1) and #(u0, u1) are finite for
all solutions τ ju j = 0, j = 0,1.

We call τ1 relatively oscillatory with respect to τ0, if one of the quantities #(u0, u1) or #(u0, u1) is infinite for some
solutions τ ju j = 0, j = 0,1.

Note that this definition is in fact independent of the solutions chosen as a straightforward application of our triangle
inequality (cf. Theorem 2.3) shows.

Corollary 2.5. Let τ ju j = τ j v j = 0, j = 0,1. Then∣∣#(u0, u1) − #(v0, v1)
∣∣ � 4,

∣∣#(u0, u1) − #(v0, v1)
∣∣ � 4. (2.4)

The bounds can be improved using our comparison theorem for Wronskians to be � 2 in the case of perturbations of
definite sign.

To demonstrate the usefulness of Definition 2.4, we now establish its connection with the spectra of self-adjoint operators
associated with τ j , j = 0,1.



R. Stadler, G. Teschl / J. Math. Anal. Appl. 371 (2010) 638–648 643
Theorem 2.6. Let H j be self-adjoint Dirac operators associated with τ j , j = 0,1. Then

1. τ0 − λ0 is relatively nonoscillatory with respect to τ0 − λ1 if and only if dim Ran P (λ0,λ1)(H0) < ∞.
2. Suppose dim Ran P (λ0,λ1)(H0) < ∞ and τ1 − λ is relatively nonoscillatory with respect to τ0 − λ for one λ ∈ [λ0, λ1]. Then it is

relatively nonoscillatory for all λ ∈ [λ0, λ1] if and only if dim Ran P (λ0,λ1)(H1) < ∞.

Proof. Item (i) is [17, Theorem 4.5] and item (ii) follows as in [6]. �
For a practical application of this theorem one needs of course criteria when τ1 − λ is relatively nonoscillatory with

respect to τ0 − λ for λ inside an essential spectral gap.

Lemma 2.7. Let limx→a(φ0(x)−φ1(x)) = 0 if a is singular, and similarly, limx→b(φ0(x)−φ1(x)) = 0 if b is singular. Then σess(H0) =
σess(H1) and τ1 − λ is relatively nonoscillatory with respect to τ0 − λ for λ ∈ R\σess(H0).

Proof. Since τ1 can be written as τ1 = τ0 + φ̃0 + φ̃1, where φ̃0 has compact support near singular endpoints and |φ̃1| < ε,
for arbitrarily small ε > 0, we infer that R H1 (z) − R H0 (z) is the norm limit of compact operators. Thus R H1 (z) − R H0 (z) is
compact and hence σess(H0) = σess(H1).

Let δ > 0 be the distance of λ to the essential spectrum and choose a < c < d < b, such that∣∣φ1(x) − φ0(x)
∣∣ � δ/2, x /∈ (c,d).

Clearly #(c,d)(u0, u1) < ∞, since both operators are regular on (c,d). Moreover, observe that

φ0 − λ+ � φ1 − λ � φ0 − λ−, λ± = λ ± δ/2,

on I = (a, c) or I = (d,b). Then Theorem 2.6(i) implies #I (u0(λ−), u0(λ+)) < ∞ and invoking Theorem 2.2 shows
#I (u0(λ±), u1(λ)) < ∞. From Theorems 2.3 and 2.6(i) we infer

#I
(
u0(λ), u1(λ)

)
< #I

(
u0(λ), u0(λ+)

) + #I
(
u0(λ+), u1(λ)

) + 1 < ∞,

and similarly for #I (u0(λ), u1(λ)). This shows that τ1 − λ is relatively nonoscillatory with respect to τ0. �
Our next task is to reveal the precise relation between the number of weighted sign flips and the spectra of H1 and H0.

The special case H0 = H1 is covered by

Theorem 2.8. (See [17, Theorem 4.5].) Let H0 be a self-adjoint operator associated with τ0 and suppose [λ0, λ1] ∩σess(H0) = ∅. Then

dim Ran P (λ0,λ1)(H0) = #
(
ψ0,∓(λ0),ψ0,±(λ1)

)
. (2.5)

Combining this result with our triangle inequality already gives some rough estimates in the spirit of Weidmann [20]
who treats the case H0 = H1.

Lemma 2.9. For j = 0,1 let H j be a self-adjoint operator associated with τ j and separated boundary conditions. Suppose that
(λ0, λ1) ⊆ R\(σess(H0) ∪ σess(H1)), then

dim Ran P (λ0,λ1)(H1) −dim Ran P (λ0,λ1)(H0) � #
(
ψ1,∓(λ1),ψ0,±(λ1)

) − #
(
ψ1,∓(λ0),ψ0,±(λ0)

) + 2, (2.6)

respectively,

dim Ran P (λ0,λ1)(H1) −dim Ran P (λ0,λ1)(H0) � #
(
ψ1,∓(λ1),ψ0,±(λ1)

) − #
(
ψ1,∓(λ0),ψ0,±(λ0)

) − 2. (2.7)

Given these preparations the proofs of Theorem 1.1 and Theorem 1.4. can be done as in [6].

Proof of Theorem 1.1. For the proof one can literally follow the arguments in Section 6 of [6]. The only noteworthy dif-
ference is that in Lemma 6.4 one has to use the lim sup of the largest eigenvalue and the lim inf of the lowest eigenvalue
of φ̃. �
Proof of Theorem 1.4. For the proof one can literally follow the arguments in Section 7 of [6]. �
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3. More on Prüfer angles and the case of regular operators

The purpose of this section is to collect some further facts on Prüfer angles for Wronskians and to prove Theorem 1.1 in
the case of regular operators. Even tough the Prüfer angle �1,0 introduced below is different from ψ used in the introduc-
tion it will be equivalent for our purpose (cf. Definition 4.1 below). We closely follow [6] and we will provide proofs only
when there is a significant difference to the Sturm–Liouville case.

We first introduce Prüfer variables for u ∈ C(I,R
2) defined by

u1(x) = ρu(x) sin
(
θu(x)

)
, u2(x) = ρu(x) cos

(
θu(x)

)
. (3.1)

If u is never (0,0) and u is continuous, then ρu is positive and θu is uniquely determined once a value of θu(x0), x0 ∈ I is
chosen by the requirement θu ∈ C(I,R).

The connection with the Wronskian is given by

W x(u, v) = −ρu(x)ρv(x) sin
(
�v,u(x)

)
, �v,u(x) = θv(x) − θu(x). (3.2)

Hence the Wronskian vanishes if and only if the two Prüfer angles differ by a multiple of π . We will call the total difference

#(c,d)(u0, u1) = ⌈
�1,0(d)/π

⌉ − ⌊
�1,0(c)/π

⌋ − 1 (3.3)

the number of weighted sign flips in (c,d), where we have written �1,0(x) = �u1,u0 for brevity.
Next, let us take two real-valued (nontrivial) solutions u j , j = 1,2, of τ ju j = λ ju j and associated Prüfer variables ρ j , θ j .

Since we can replace φ → φ − λ it is no restriction to assume λ0 = λ1 = 0.
Under these assumptions W x(u0, u1) is absolutely continuous and satisfies

W ′
x(u0, u1) = 〈

u0(x),
(
φ1(x) − φ0(x)

)
u1(x)

〉
. (3.4)

Lemma 3.1. Abbreviate �1,0(x) = θ1(x) − θ0(x) and suppose �1,0(x0) ≡ 0 mod π . If −〈u0(x),�φ(x)u1(x)〉 is (i) negative, (ii) zero,
or (iii) positive for a.e. x ∈ (x0, x0 + ε) respectively for a.e. x ∈ (x0 − ε, x0) for some ε > 0, then the same is true for (�1,0(x) −
�1,0(x0))/(x − x0).

Hence #(c,d)(u0, u1) counts the weighted sign flips of the Wronskian W x(u0, u1), where a sign flip is counted as +1 if
−�φ is positive in a neighborhood of the sign flip, it is counted as −1 if −�φ is negative in a neighborhood of the sign
flip. If �φ changes sign (i.e., it is positive on one side and negative on the other) the Wronskian will not change its sign. In
particular, we obtain:

Lemma 3.2. Let u0 , u1 solve τ ju j = 0, j = 0,1, where �φ � 0. Then #(a,b)(u0, u1) equals the number sign flips of W (u0, u1) inside
the interval (a,b).

In the case �φ � 0 we get of course the corresponding negative number except for the fact that zeros at the boundary
points are counted as well since �−x� = −x�. That is, if �φ < 0, then #(c,d)(u0, u1) equals the number of zeros of the
Wronskian in (c,d) while if �φ > 0, it equals minus the number of zeros in [c,d]. In the next theorem we will see that this
is quite natural. In addition, note that #(u, u) = −1.

Finally, we establish the connection with the spectrum of regular operators. A finite end point is called regular if all
entries of φ are integrable near this end point. In this case boundary values for all functions exist at this end point. In
particular, τ is called regular if both end points a,b are regular. In the regular case the resolvent of H is Hilbert–Schmidt
and hence the spectrum is purely discrete (i.e., σess(H) = ∅).

Theorem 3.3. Let H0 , H1 be regular Sturm–Liouville operators associated with τ0 , τ1 and the same boundary conditions at a and b.
Then

dim Ran P (−∞,λ1)(H1) − dim Ran P (−∞,λ0](H0) = #(a,b)

(
u0,±(λ0), u1,∓(λ1)

)
. (3.5)

The proof will be given below employing interpolation between H0 and H1, using Hε = (1 − ε)H0 + εH1 together with
a careful analysis of Prüfer angles.

It is important to observe that in the special case H1 = H0, the left-hand side equals dim Ran P (λ1,λ0)(H0) if λ1 > λ0 and
−dim Ran P [λ0,λ1](H0) if λ1 < λ0. This is of course in accordance with our previous observation that #(u0,±(λ0), u1,∓(λ1))

equals the number of zeros in (a,b) if λ1 > λ0 while it equals minus the numbers of zeros in [a,b] if λ1 < λ0.
Now let us suppose that τ0,1 are both regular at a and b with boundary conditions

cos(α) f1(a) − sin(α) f2(a) = 0, cos(β) f1(b) − sin(β) f2(b) = 0. (3.6)
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Hence we can choose u±(λ, x) such that u−(λ,a) = (sin(α), cos(α)) respectively u+(λ,b) = (sin(β), cos(β)). In particular,
we may choose

θ−(λ,a) = α ∈ [0,π), −θ+(λ,b) = π − β ∈ [0,π). (3.7)

Next we introduce

τε = τ0 + ε(φ1 − φ0) (3.8)

and investigate the dependence with respect to ε ∈ [0,1]. If uε solves τεuε = 0, then the corresponding Prüfer angles satisfy

θ̇ε(x) = − W x(uε, u̇ε)

ρ2
ε (x)

, (3.9)

where the dot denotes a derivative with respect to ε.

Lemma 3.4. We have

W x(uε,±, u̇ε,±) =
{∫ b

x 〈uε,+(r), (φ0(r) − φ1(r))uε,+(r)〉dr,

− ∫ x
a 〈uε,−(r), (φ0(r) − φ1(r))uε,−(r)〉dr,

(3.10)

where the dot denotes a derivative with respect to ε and uε,±(x) = uε,±(0, x).

Denoting the Prüfer angles of uε,±(x) = uε,±(0, x) by θε,+(x), this result implies for φ0 − φ1 � 0,

θ̇ε,+(x) = −
∫ b

x 〈uε,+(r), (φ0(r) − φ1(r))uε,+(r)〉dr

ρε,+(x)2
� 0,

θ̇ε,−(x) =
∫ x

a 〈uε,−(r), (φ0(r) − φ1(r))uε,−(r)〉dr

ρε,−(x)2
� 0, (3.11)

with strict inequalities if φ0 > φ1 on a subset of positive Lebesgue measure of (x,b), respectively (a, x).
Now we are ready to investigate the associated operators H0 and H1. In addition, we will choose the same boundary

conditions for Hε as for H0 and H1.

Lemma 3.5. Suppose φ0 − φ1 � 0 (resp. φ0 − φ1 � 0). Then the eigenvalues of Hε are analytic functions with respect to ε and they
are decreasing (resp. increasing).

In particular, this implies that dim Ran P (−∞,λ)(Hε) is continuous from below (resp. above) in ε if φ0 − φ1 � 0 (resp.
φ0 − φ1 � 0).

Now the proof of Theorem 3.3 follows literally as in [6].

4. Relative oscillation criteria

As in the previous sections, we will consider two Dirac operators τ j , j = 0,1, and corresponding self-adjoint operators
H j , j = 0,1. Now we want to answer the question, when a boundary point E of the essential spectrum of H0 is an
accumulation point of eigenvalues of H1. By Theorem 2.6 we need to investigate if τ1 − E is relatively oscillatory with
respect to τ0 − E or not, that is, if the difference of Prüfer angels �1,0 = θ1 − θ0 is bounded or not.

Hence the first step is to derive an ordinary differential equation for �1,0. While this can easily be done by subtracting
the differential equations for θ1 and θ0, the result turns out to be not very effective for our purpose. However, since the
number of weighted sign flips #(c,d)(u0, u1) is all we are eventually interested in, any other Prüfer angle which gives the
same result will be as good:

Definition 4.1. We will call a continuous function ψ a Prüfer angle for the Wronskian W (u0, u1), if #(c,d)(u0, u1) =
ψ(d)/π� − �ψ(c)/π� − 1 for any c,d ∈ (a,b).

Hence we will try to find a more effective Prüfer angle ψ than �1,0 for the Wronskian of two solutions. The right choice
for Sturm–Liouville equations was found by Rofe-Beketov [8] (see also the recent monograph [13]) and it turns out the
analogous definition is also the right one for Dirac operators [16].

Let u0, v0 be two linearly independent solutions of (τ0 − λ)u = 0 with W (u0, v0) = 1 and let u1 be a solution of
(τ1 − λ)u = 0. Define ψ via

W (u0, u1) = −R sin(ψ), W (v0, u1) = −R cos(ψ). (4.1)
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Since W (u0, u1) and W (v0, u1) cannot vanish simultaneously, ψ is a well-defined absolutely continuous function, once one
value at some point x0 is fixed.

Lemma 4.2. The function ψ defined in (4.1) is a Prüfer angle for the Wronskian W (u0, u1).

Proof. Since W (u0, u1) = −R sin(ψ) = −ρu0ρu1 sin(�1,0) it suffices to show that ψ = �1,0 mod 2π at each zero of the
Wronskian. Since we can assume θv0 − θu0 ∈ (0,π) (by W (u0, v0) = 1), this follows by comparing signs of R cos(ψ) =
ρv0ρu1 sin(θu1 − θv0 ). �
Lemma 4.3. Let u0, v0 be two linearly independent solutions of (τ0 − λ)u = 0 with W (u0, v0) = 1 and let u1 be a solution of
(τ1 − λ)u = 0.

Then the Prüfer angle ψ for the Wronskian W (u0, u1) defined in (4.1) obeys the differential equation

ψ ′ = −〈
u0 cos(ψ) − v0 sin(ψ),�φ

(
u0 cos(ψ) − v0 sin(ψ)

)〉
, (4.2)

where

�φ = φ1 − φ0.

Proof. Observe Rψ ′ = −W (u0, u1)
′ cos(ψ) + W (v0, u1)

′ sin(ψ) and use (3.4), (4.1) to evaluate the right-hand side. �
To proceed we will need the following formula for a second solution of a Dirac equation which can be verified by a

straightforward calculation.

Lemma 4.4. (See [12], [16, Lemma 1].) Let u be a nontrivial solution of τu = zu and choose x0 ∈ I . Then

v(x) =
(

2

x∫
x0

〈u(r), φ̂(r)u(r)〉
|u(r)|4 dr − i

σ2

|u(x)|2
)

u(x), (4.3)

where

φ̂(x) = (
m + φsc(x)

)
σ3 + φam(x)σ1, (4.4)

is a second linearly independent solution satisfying W (u, v) = 1.

Now we will choose v0 to be given by (4.3) and, following Schmidt [16], perform a Kepler transformation

cot
(
ϕ(x)

) = 1

x

(
cot

(
ψ(x)

) − 2

x∫
a

〈u0(r), φ̂0(r)u0(r)〉
|u(r)|4 dr

)
(4.5)

to obtain

ϕ′(x) = 1

x

(
2
〈u0(x), φ̂0(x)u0(x)〉

|u0(x)|4 sin2(ϕ(x)
) + sin

(
ϕ(x)

)
cos

(
ϕ(x)

)
−

〈(
cos

(
ϕ(x)

) − i
sin(ϕ(x))

|u0(x)|2 σ2

)
u0(x), x2�φ(x)

(
cos

(
ϕ(x)

) − i
sin(ϕ(x))

|u0(x)|2 σ2

)
u0(x)

〉)
. (4.6)

Here we assume that a > 0 is regular and b = ∞ without loss of generality. Under the further assumption that |u0(x)|,
|u0(x)|−1, and x2�φ(x) are bounded this simplifies to

ϕ′(x) = 1

x

(
A(x) sin2(ϕ(x)

) + sin
(
ϕ(x)

)
cos

(
ϕ(x)

) + B(x) cos2(ϕ(x)
)) + O

(
x−2), (4.7)

where

A(x) = 2
〈u0(x), φ̂0(x)u0(x)〉

|u0(x)|4 and B(x) = −〈
u0(x), x2�φ(x)u0(x)

〉
. (4.8)

Now we turn to the case where φ0(x) is periodic with period α > 0 and choose u0 to be the (anti-)periodic solution at a
band edge. Taking averages
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ϕ(x) = 1

α

x+α∫
x

ϕ(r)dr (4.9)

the above differential equation turns into (see [5, Section 5])

ϕ′(x) = 1

x

(
A sin2(ϕ(x)

) + sin
(
ϕ(x)

)
cos

(
ϕ(x)

) + B(x) cos2(ϕ(x)
)) + O

(
x−2), (4.10)

where

A = 2

α

α∫
0

〈u0(x), φ̂0(x)u0(x)〉
|u0(x)|4 dx,

B(x) = − 1

α

x+α∫
x

〈
u0(r), r2�φ(r)u0(r)

〉
. (4.11)

Moreover, if φ1(x) is given by (1.15) then one computes

B(x) = −1

4

n∑
k=0

x2

Lk(x)2
Bk + o

(
x2Ln(x)−2). (4.12)

Now we use the following result:

Lemma 4.5. (See [5, Lemma 4.7].) Fix some n ∈ N0 , let Q be locally integrable on (a,∞) and abbreviate

Q n(x) = −1

4

n−1∑
j=0

1

L j(x)2
.

Then all solutions of the differential equation

ϕ′(x) = 1

x

(
sin2(ϕ(x)

) + sin
(
ϕ(x)

)
cos

(
ϕ(x)

) − x2 Q (x) cos2(ϕ(x)
)) + o

(
x

Ln(x)2

)
(4.13)

tend to ∞ if

lim sup
x→∞

Ln(x)2(Q (x) − Q n(x)
)
< −1

4

and are bounded from above if

lim inf
x→∞ Ln(x)2(Q (x) − Q n(x)

)
> −1

4
.

In the last case all solutions are bounded under the additional assumption Q = Q n(x) + O (Ln(x)−2).

Now this lemma implies Theorem 1.5 if A = 1. However, if A > 0 we can easily reduce it to the case A = 1 by the simple
scaling u0(x) → (A)1/2u0(x), which renders A → 1 and Bk → ABk . Similarly, if A < 0 we can reduce it to the case A > 0
via the transformation ϕ → −ϕ which renders A → −A, Bk → −Bk . Finally, in the case A = 0 the result follows by using
Proposition 1 from [16] (Lemma 5.1 in [5]) in place of the above lemma.
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