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Abstract

The singular two-point boundary value problem

−u′′(t) = h(t)f
(
u(t)

)
, t ∈ (0,1); u(0) = u(1) = 0

is considered under some conditions concerning the first eigenvalue corresponding to the relevant lin-
ear problem, where h is allowed to be singular at both t = 0 and t = 1. Moreover, f : (−∞,+∞) →
(−∞,+∞) is a sign-changing function and not necessarily bounded from below. By computing the topo-
logical degree of an completely continuous field, the existence results of nontrivial solutions are established.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years, much attention has been given to singular second order two-point boundary
value problem (BVP){−u′′(t) = h(t)f (u(t)), t ∈ (0,1),

u(0) = u(1) = 0
(1.1)
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by a number of authors, see [1,2,4,8,10–12,17–20] and references therein. Most of them obtained
the existence of positive solutions provided f : [0,+∞) → [0,+∞) is nonnegative, continuous
and superlinear or sublinear by employing the cone expansion or compression fixed point the-
orem or super- and subsolution method. In a later paper [16], Sun and Zhang considered the
general singular nonlinear Strum–Liouville problems{−(Lu)(t) = h(t)f (u(t)), t ∈ (0,1),

R1(u) = α1u(0) + β1u
′(0) = 0, R2(u) = α2u(1) + β2u

′(1) = 0,
(1.2)

where (Lu) = (p(t)u′(t))′ + q(t)u(t) and h is allowed to be singular at 0 and 1. Besides, the
main condition they imposed on f is that f is bounded from below, i.e.,

(H0) There exists a constant b � 0 such that

f (u) � −b for all u ∈ R
1. (1.3)

To our knowledge, there are not many references to deal with singular problems in the case that
f : (−∞,+∞) → (−∞,+∞) is not necessarily nonnegative except [16]. When f is a sign-
changing function, the fixed point index theory on a cone becomes invalid since the nonlinear
operator generated by f does not map the positive cone into itself.

The present paper, for simplicity, is concern with the existence of nontrivial solutions of sin-
gular BVP (1.1). Replacing (H0) by the following more general condition:

(H1) There exist three constants b > 0, c > 0 and α ∈ (0,1) such that

f (u) � −b − c|u|α for all u ∈ R
1, (1.4)

we still can obtained the existence of nontrivial solution of (1.1). Notice that condition (H1)
permits f to be a unbounded function. Our results can be generalized to singular nonlinear
Strum–Liouville problems (1.2) without essential difficulties.

We also need the following hypotheses for our main results.

(H2) h ∈ C((0,1), [0,+∞)), h(t) �≡ 0 in (0,1) and

1∫
0

t (1 − t)h(t)dt < +∞;

(H3) f : (−∞,+∞) → (−∞,+∞) is continuous.

It is well known that the solution of singular BVP (1.1) in C[0,1] ∩ C2(0,1) is equivalent to the
solution of the following Hammerstein integral equation in C[0,1]:

u(t) =
1∫

0

G(t, s)h(s)f
(
u(s)

)
ds, t ∈ [0,1], (1.5)

where G : [0,1] × [0,1] → [0,1] is Green’s function for −u′′(t) = 0 for all t ∈ [0,1] subject to
u(0) = u(1) = 0, i.e.,

G(t, s) =
{

s(1 − t), 0 � s � t � 1,
(1.6)
t (1 − s), 0 � t � s � 1.
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Define operators K , F and A :C[0,1] → C[0,1], respectively, by

(Ku)(t) =
1∫

0

G(t, s)h(s)u(s)ds, t ∈ [0,1], ∀u ∈ C[0,1],

(Fu)(t) = f
(
u(t)

)
, t ∈ [0,1], ∀u ∈ C[0,1],

(Au)(t) = (KFu)(t) =
1∫

0

G(t, s)h(s)f
(
u(s)

)
ds. (1.7)

Then the solution of singular BVP (1.1) is equivalent to the fixed point of A in C[0,1].
By (H2), K :C[0,1] → C[0,1] is a completely continuous linear operator with the first eigen-
value λ1 > 0 (see Lemma 3.1 in Section 3). Let ϕ1 be the eigenfunction corresponding to λ1,
namely λ1Kϕ1 = ϕ1.

Theorem 1.1. Assume that (H1)–(H3) hold. If

lim inf
u→+∞

f (u)

u
> λ1, (1.8)

lim sup
u→0

∣∣∣∣f (u)

u

∣∣∣∣ < λ1, (1.9)

then singular BVP (1.1) has at least one nontrivial solution.

Corollary 1.2. Assume that (H0), (H2), (H3), (1.8) and (1.9) hold. Then singular BVP (1.1) has
at least one nontrivial solution.

Theorem 1.3. Assume that (H1)–(H3) and (1.8) hold. If

lim
u→0

f (u)

u
= λ, (1.10)

where λ �= λn, {λn: n = 1,2, . . .} is the eigenvalue set of K , then the singular BVP (1.1) has at
least one nontrivial solution.

Corollary 1.4. Assume that (H0), (H2), (H3), (1.8) and (1.10) hold. Then singular BVP (1.1) has
at least one nontrivial solution.

Remark 1.5. In most papers, the nonlinear term f is a nonnegative function defined on [0,+∞)

to guarantee the operator A generated by f is a cone mapping so that one can apply the fixed
point index theory in cone. In [16, Theorem 1], f permits sign-changing but should be bounded
from below. In our main results, f may be a sign-changing and unbounded function. If we impose
suitable conditions (see [16, condition H1]) on singular nonlinear Strum–Liouville problem (1.2),
then the Green’s function of{−(Lu)(t) = 0, 0 < t < 1,

R1(u) = R2(u) = 0

has analogous properties as G(t, s) defined in (1.6) (see [16, Lemma 1]). Hence, Theorem 2.1
can be applied to the singular nonlinear Strum–Liouville problem (1.2). So, similar results as
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Theorems 1.1 and 1.3 can be established for singular nonlinear Strum–Liouville problem (1.2).
Please refer to [16] for details.

Remark 1.6. For nonsingular BVP, there are analogous results as Theorem 1.1, Corollary 1.2,
Theorem 1.3 and Corollary 1.4. For instance, we can easily prove the following result. Consider
the following Dirichlet boundary value problem:{−u′′(t) = f (t, u(t)), t ∈ [0,1],

u(0) = u(1) = 0.
(1.11)

Theorem 1.7. Suppose that the following conditions hold.

(i) f (t, u) is continuous on [0,1] × R
1 and there exist constants b > 0, c > 0 and α ∈ (0,1)

such that

f (t, u) � −b − c|u|α for all t ∈ [0,1] and u ∈ R
1; (1.12)

(ii) lim inf
u→+∞

f (t, u)

u
> π2 uniformly for t ∈ [0,1]; (1.13)

lim sup
u→0

∣∣∣∣f (t, u)

u

∣∣∣∣ < π2 uniformly for t ∈ [0,1]. (1.14)

Then BVP (1.11) has at least one nontrivial solution.

If we use Mountain pass lemma to deal with BVP (1.11), we should impose conditions on
f such that the functional corresponding to BVP (1.11) satisfies PS condition. For example, we
should suppose that there exist μ ∈ (0,1/2) and M > 0 such that

F(t, u) �
u∫

0

f (t, v)dv � μuf (t, u) for all |u| � M and t ∈ [0,1]. (1.15)

In Theorem 1.7, we use condition (1.12) instead of condition (1.15).

Remark 1.8. Our main results can be applied to investigate the nontrivial radial solution of the
following elliptic boundary value problem in an exterior domain:⎧⎨

⎩
−Δu = a(‖x‖)g(u) for ‖x‖ > 1, x ∈ R

n, n � 3,

u = 0 for ‖x‖ = 1,

u → 0 as ‖x‖ → ∞.

(1.16)

In fact, by simple substitution of variable, (1.16) can be changed into a second order two-point
singular boundary value problem as (1.1). So we can study Eq. (1.16) by our main results.

This paper is organized as follows. In Section 2, we compute the Leray–Schauder degree
for a completely continuous field relating to singular BVP (1.1). Proofs of our main results and a
simple example are given in Section 3. Please refer to [3,5,6] for the basic concepts and properties
about the cone theory and the topological degree theory.
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2. An abstract result of Leray–Schauder degree for a completely continuous field

The aim of this section is to compute the Leray–Schauder degree for a completely continuous
field such as I − A, where A does not map the positive cone into itself.

Let E be a real Banach space, E∗ the dual space of E, P a total cone in E, i.e., E = P − P ,
and P ∗ the dual cone of P , namely P ∗ = {g ∈ E∗: g(u) � 0 for all u ∈ P }. Let K :E → E be
a completely continuous linear positive operator, r1 the spectral radius of K and K∗ the dual
operator of K . On account of Krein–Rutman’s theorem, if r1 �= 0, then there exist ϕ1 ∈ P \{θ}
and g1 ∈ P ∗\{θ}, such that

Kϕ1 = r1ϕ1, K∗g1 = r1g1. (2.1)

Choose such an element g1 ∈ P ∗\{θ}, which enables the latter equation in (2.1) holds. Choose a
number δ > 0 and let

P(g1, δ) = {
u ∈ P : g1(u) � δ‖u‖}, (2.2)

then it is easy to see that P(g1, δ) is a cone in E.

Theorem 2.1. Suppose that the following conditions are satisfied.

(C1) There exist ϕ1 ∈ P \{θ}, g1 ∈ P ∗\{θ} and δ > 0 such that (2.1) holds and K maps P into
P(g1, δ);

(C2) T :E → P is a continuous operator and there exist α ∈ (0,1), M > 0 such that ‖T u‖ �
M‖u‖α for all u ∈ E;

(C3) F :E → E is a bounded continuous operator and there exists u0 ∈ E such that Fu + u0 +
T u ∈ P for all u ∈ E;

(C4) There exist v0 ∈ E and η > 0 such that

KFu � r−1
1 (1 + η)Ku − KT u − v0 for all u ∈ E. (2.3)

Let A = KF , then there exists R > 0 such that

deg(I − A,BR, θ) = 0,

where BR = {u ∈ E: ‖u‖ < R} is the open ball of radius R in E.

Proof. Choose a number R > 0. Suppose there exist u1 ∈ ∂BR and μ1 � 0 such that

u1 = KFu1 + μ1ϕ1. (2.4)

By (2.3) and (2.1), we have

g1(u1) = g1(KFu1) + μ1g1(ϕ1)

� g1(KFu1)

� r−1
1 (1 + η)g1(Ku1) − g1(KT u1) − g1(v0)

= r−1
1 (1 + η)

(
K∗g1

)
u1 − (

K∗g1
)
(T u1) − g1(v0)

= (1 + η)g1(u1) − r1g1(T u1) − g1(v0).

Thus

g1(u1) � η−1r1g1(T u1) + η−1g1(v0). (2.5)
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Hence, it follows from (2.1), (2.5) and condition (C2) that

g1(u1 + KT u1 + Ku0) = g1(u1) + r1g1(T u1) + r1g1(u0)

�
(
1 + η−1)r1g1(T u1) + η−1g1(v0) + r1g1(u0)

�
(
1 + η−1)r1M‖g1‖ · ‖u1‖α + η−1g1(v0) + r1g1(u0)

= C1‖u1‖α + C2, (2.6)

where C1 = (1 + η−1)r1M‖g1‖ > 0 and C2 = η−1g1(v0) + r1g1(u0) are two constants. Since
Fu1 + u0 + T u1 ∈ P from condition (C3) and μ1ϕ1 = μ1r

−1
1 Kϕ1 ∈ P(g1, δ) from condi-

tion (C1), we have from condition (C1) and (2.4)

u1 + KT u1 + Ku0 = K(Fu1 + T u1 + u0) + μ1ϕ1 ∈ P(g1, δ).

So, from the definition of P(g1, δ),

g1(u1 + KT u1 + Ku0) � δ‖u1 + KT u1 + Ku0‖
� δ‖u1‖ − δ‖KT u1‖ − δ‖Ku0‖. (2.7)

Thus, by (2.7) and (2.6), we have

R = ‖u1‖ � δ−1g1(u1 + KT u1 + Ku0) + ‖KT u1‖ + ‖Ku0‖
� δ−1C1‖u1‖α + δ−1C2 + M‖K‖ · ‖u1‖α + ‖Ku0‖
= C′

1‖u1‖α + C′
2

= C′
1R

α + C′
2, (2.8)

where C′
1 = δ−1C1 +M‖K‖ > 0 and C′

2 = δ−1C2 +‖Ku0‖ are constants. Since α ∈ (0,1), (2.8)
cannot hold when R is sufficiently large. Choose such a sufficiently large number R > 0, then
for all u ∈ ∂BR and μ � 0, we have u �= Au + μϕ1. According to the property of omitting a
direction for Leray–Schauder degree, we have

deg(I − A,TR, θ) = 0.

The proof is done. �
Remark 2.2. If the operator T which satisfies the conditions of Theorem 2.1 is a null opera-
tor, then Theorem 2.1 turns into Theorem 1 in [15]. Hence, Theorem 2.1 is an improvement of
Theorem 1 in [15]. On the basis of Theorem 2.1, in studying singular BVP (1.1), we can substi-
tute condition (H1) for condition (H0). In [9], a result analogous to Theorem 2.1 was applied to
investigate a kind of nonlinear Hammerstein integral equation.

3. Proofs of main theorems

In order to use Theorem 2.1, we choose E = C[0,1] to be our real Banach space with the
norm ‖u‖ = maxt∈[0,1] |u(t)| and P = {u ∈ C[0,1]: u(t) � 0 for all t ∈ [0,1]}. Let K , F and A

be the operators defined in (1.7). Then F :E → E is a nonlinear bounded continuous operator if
(H3) holds. It is obvious that G(t, s) � G(s, s) = s(1 − s) for all t, s ∈ [0,1]. Then we have the
following lemma.
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Lemma 3.1. Assume (H2) holds. Then

(i) K :E → E is a completely continuous positive linear operator.
(ii) K satisfies condition (C1) of Theorem 2.1.

Proof. (i) It follows from (H2) that

∣∣Ku(t)
∣∣ �

1∫
0

G(t, s)h(s)
∣∣u(s)

∣∣ds � ‖u‖ ·
1∫

0

G(s, s)h(s)ds < +∞.

Hence, by Lebesgue’s dominated convergence theorem, it is easy to see that K :E → E. Obvi-
ously, K(P ) ⊂ P from (H2) and K is a linear operator, namely K is a positive linear operator.
Next, we will show that K is completely continuous. For any natural number n (n � 2), let

hn(t) =

⎧⎪⎪⎨
⎪⎪⎩

inf
t<s� 1

n
h(s), 0 � t � 1

n
,

h(t), 1
n

� t � n−1
n

,

inf n−1
n

�s<t
h(s), 1

n
� t � 1.

(3.1)

Then hn : [0,1] → [0,+∞) is continuous and hn(t) � h(t) for all t ∈ (0,1). Let

(Knu)(t) =
1∫

0

G(t, s)hn(s)u(s)ds. (3.2)

It is clearly that Kn :E → E is completely continuous. For any r > 0 and u ∈ Br , according to
(3.1), (3.2) and the absolute continuity of integral, we have

lim
n→∞‖Knu − Ku‖ = lim

n→∞ max
t∈[0,1]

∣∣∣∣∣
1∫

0

G(t, s)
(
hn(s) − h(s)

)
u(s)ds

∣∣∣∣∣
� ‖u‖ lim

n→∞

1∫
0

G(s, s)
(
h(s) − hn(s)

)
ds

= ‖u‖ lim
n→∞

∫
e(n)

G(s, s)
(
h(s) − hn(s)

)
ds

� ‖u‖ lim
n→∞

∫
e(n)

G(s, s)
(
h(s)

)
ds = 0,

where e(n) = [0,1/n] ∪ [(n − 1)/n,1]. Therefore, by [5, Chapter 1, Theorem 2.1], K :E → E

is a completely continuous operator.
(ii) It is obvious that there is t1 ∈ (0,1) such that G(t1, t1)h(t1) > 0. Thus there exists

[a1, b1] ⊂ (0,1) such that t1 ∈ (a1, b1) and G(t, s)h(s) > 0 for all t, s ∈ [a1, b1]. Choose ψ ∈ P

such that ψ(t1) > 0 and ψ(t) = 0 for all t /∈ [a1, b1]. Then for t ∈ [a1, b1],

(Kψ)(t) =
1∫
G(t, s)h(s)ψ(s)ds �

b1∫
G(t, s)h(s)ψ(s)ds > 0.
0 a1
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So there exists c1 > 0 such that c1(Kψ)(t) � ψ(t) for t ∈ [0,1]. From [7, Chapter 5, Theo-
rem 2.1], we know that the spectral radius r1 �= 0. Thus, corresponding to λ1 = r−1

1 , the first
eigenvalue of K , K has a positive eigenvector ϕ1 and K∗ has a positive eigenvector g1, i.e.,

Kϕ1 = r1ϕ1, K∗g1 = r1g1.

Since G(0, s) = G(1, s) ≡ 0 for s ∈ [0,1], we have ϕ1(0) = ϕ1(1) = 0. This implies that
ϕ′

1(0) > 0 and ϕ′
1(1) < 0 (see [14]). Define a function Φ on [0,1] by

Φ(s) =

⎧⎪⎨
⎪⎩

ϕ′
1(0), s = 0,
ϕ1(s)

s(1−s)
, s ∈ (0,1),

−ϕ′
1(1), s = 1.

(3.3)

Then it is easy to see that Φ is continuous on [0,1] and Φ(s) > 0 for all s ∈ [0,1]. So, there exist
δ1, δ2 > 0 such that δ1 � Φ(s) � δ2 for all s ∈ [0,1]. Thus

δ1G(t, s) � δ1s(1 − s) � ϕ1(s) � δ2s(1 − s) = δ2G(s, s). (3.4)

for all t, s ∈ [0,1].
It is easy to see that g1 can be explicitly given by

g1(u) =
1∫

0

h(t)ϕ1(t)u(t)dt for all u ∈ E. (3.5)

In fact, firstly, by (3.4),
∫ 1

0 h(t)ϕ1(t)dt � δ2
∫ 1

0 t (1− t)h(t)dt < +∞ and then g1 is well defined.
Secondly, notice that G(t, s) = G(s, t) for all t, s ∈ [0,1], we have

r1g1(u) =
1∫

0

h(t)
(
r1ϕ1(t)

)
u(t)dt

=
1∫

0

h(t)

( 1∫
0

G(t, s)h(s)ϕ1(s)ds

)
dt

=
1∫

0

h(s)ϕ1(s)

( 1∫
0

G(s, t)h(t)u(t)dt

)
ds

=
1∫

0

h(s)ϕ1(s)
[
Ku(s)

]
ds

= g1(Ku) = (
K∗g1

)
(u) for all u ∈ E. (3.6)

So (3.5) holds. Take δ = r1δ1 > 0 in (2.2). In the following we prove that K(P ) ⊂ P(g1, δ). For
any u ∈ P , by (3.4) and (3.6), we have

g1(Ku) = r1

1∫
0

h(s)ϕ1(s)u(s)ds � r1δ1

1∫
0

G(t, s)h(s)u(s)ds

= r1δ1(Ku)(t) for all t ∈ [0,1].
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Hence, g(Ku) � δ‖Ku‖, i.e., K(P ) ⊂ P(g1, δ) and K satisfies condition (C1) in Theorem 2.1.
The proof is completed. �
Proof of Theorem 1.1. According to Lemma 3.1, K satisfies condition (C1) in Theorem 2.1. Let
(T u)(t) = c|u(t)|α for u ∈ E, then T satisfies condition (C2) in Theorem 2.1. Take u0(t) ≡ b,
then it follows from (H1) that

Fu + u0 + T u ∈ P for all u ∈ E,

namely condition (C3) in Theorem 2.1 holds. From (1.8), there exists ε > 0 such that

f (u) � λ1(1 + ε)u (3.7)

as u is sufficiently large. Combining (H1) and (3.7), it is easy to see that there exists b1 � 0 such
that

f (u) � λ1(1 + ε)u − b1 − c|u|α for all u ∈ R
1. (3.8)

Since K is a positive linear operator and (3.8),

(KFu)(t) � λ1(1 + ε)(Ku)(t) − Kb1 − (KT u)(t) for all t ∈ [0,1].
So condition (C4) in Theorem 2.1 holds. According to Theorem 2.1, there exists a sufficiently
large number R > 0 such that

deg(I − A,BR, θ) = 0. (3.9)

It follows from (1.9) that there exist 0 < ε < 1 and 0 < r < R such that∣∣f (
u(t)

)∣∣ � (1 − ε)λ1
∣∣u(t)

∣∣ for all t ∈ [0,1], (3.10)

for any u ∈ E with ‖u‖ � r . If there exist u1 ∈ ∂Br and μ1 ∈ [0,1] such that u1 = μ1Au1, then
by (3.10) and (3.6),

g1
(|u1|

) = μ1g1
(|Au1|

)
� g1

(|KFu1|
) = g1

(∣∣∣∣∣
1∫

0

G(t, s)h(s)f
(
u1(s)

)
ds

∣∣∣∣∣
)

� g1

( 1∫
0

G(t, s)h(s)
∣∣f (

u1(s)
)∣∣ds

)
� (1 − ε)λ1g1

( 1∫
0

G(t, s)h(s)
∣∣u1(s)

∣∣ds

)

= (1 − ε)λ1g1
(
K|u1|

) = (1 − ε)λ1r1g1
(|u1|

) = (1 − ε)g1
(|u1|

)
.

So

g1
(|u1|

)
� 0.

On the other hand, ϕ1(t) > 0 for all t ∈ (0,1) by the maximum principle and u1(t) attains zero
on isolated points by Sturm theorem. Hence

g1
(|u1|

) =
1∫

0

h(t)ϕ1(t)
∣∣u1(t)

∣∣dt > 0.

This is a contradiction. Thus

u �= μAu for all u ∈ ∂Br and μ ∈ [0,1].
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Therefore, according to the homotopy invariance of Leray–Schauder degree, we have

deg(I − A,Br, θ) = 1. (3.11)

By (3.9), (3.11) and the additivity of Leray–Schauder degree, we have

deg(I − A,BR\Br, θ) = deg(I − A,BR, θ) − deg(I − A,Br, θ)

= 0 − 1 = −1.

As a result, A has at least one fixed point on BR\Br , namely the singular BVP (1.1) has at least
one nontrivial solution. �
Proof of Theorem 1.3. By (1.10) we know that

(
A′

θu
)
(t) = λ

1∫
0

G(t, s)h(s)u(s)ds = λ(Ku)(t). (3.12)

Then 1 is not the eigenvalue of A′
θ . According to Leray–Schauder theorem [5, Chapter 2, Theo-

rem 2.6], there exists r � 0 such that

deg(I − A,Br, θ) = deg
(
I − A′

θ ,Br , θ
) = ±1. (3.13)

Similar to the proof of Theorem 1.1, from (H1) and (1.8), we know that there exists R > r such
that

deg(I − A,BR, θ) = 0. (3.14)

By (3.13), (3.14) and the additivity of Leray–Schauder degree, we have

deg(I − A,BR\Br, θ) = deg(I − A,BR, θ) − deg(I − A,Br, θ) = ∓1.

As a result, A has at least one fixed point on BR\Br , namely the singular BVP (1.1) has at least
one nontrivial solution. �

Since (H0) ⇒ (H1), Corollaries 1.2 and 1.4 are obvious. Note that the first eigenvalue of K1
define by

(K1u)(t) =
1∫

0

G(t, s)u(s)ds for u ∈ E

is π2, Theorem 1.7 can be proved as Theorem 1.1. So, we skip it.
Next, we present a simple example to which Theorem 1.1 can be applied.

Example. Let h(t) = tp−1(1− t)q−1 with p,q ∈ (0,1), then h is singular at both t = 0 and t = 1
and h satisfies (H2). Let

f (u) =
{

1 + ∑n
i=1(−1)iai − |u|1/2, u ∈ (−∞,−1],∑n

i=1 aiu
i, u ∈ [−1,+∞),

(3.15)

where 0 < a1 < λ1 and an > 0. Then it is easy to see that all the conditions of Theorem 1.1 are
satisfied and we infer that singular BVP (1.1) has at least a nontrivial solution. Theorem 1 in [16]
is invalid for this example since f is not bounded from below.
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To determine λ1, the first eigenvalue of K , please refer to [13], in which D. O’Regan has
given a complete discussion about the eigenvalues and eigenvectors of K . At the end of this
paper, we give a rough estimate for λ1. Without loss of generality, suppose ϕ1, the eigenfunction
corresponding to λ1, satisfies ‖ϕ1‖ = ϕ1(t0) = 1, then

1 = ϕ1(t0) = λ1

1∫
0

G(t0, s)h(s)ϕ1(s)ds � λ1

1∫
0

G(t0, s)h(s)ds

� λ1 max
t∈[0,1]

1∫
0

G(t, s)h(s)ds � λ1

1∫
0

G(s, s)h(s)ds.

Hence, λ1 � (
∫ 1

0 s(1 − s)h(s)ds)−1. On the other hand, it is easy to see that there is
t1 ∈ [1/4,3/4] such that ϕ1(t1) = mint∈[1/4,3/4] ϕ1(t) > 0 and G(t1, s) � (1/4)G(s, s) for all
s ∈ [0,1]. Thus

ϕ1(t1) = λ1

1∫
0

G(t1, s)h(s)ϕ1(s)ds � λ1

3/4∫
1/4

G(t1, s)h(s)ϕ1(s)ds

� λ1ϕ1(t1)

3/4∫
1/4

G(t1, s)h(s)ds � 1

4
λ1ϕ1(t1)

3/4∫
1/4

G(s, s)h(s)ds.

So, we have

m1 �
( 1∫

0

s(1 − s)h(s)ds

)−1

� λ1 � 4

( 3/4∫
1/4

s(1 − s)h(s)ds

)−1

� M1.

As a result, by Theorem 1.1, if

lim inf
u→+∞

f (u)

u
> M1,

lim sup
u→0

∣∣∣∣f (u)

u

∣∣∣∣ < m1,

then singular BVP (1.1) has at least one nontrivial solution.
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