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Titration of microorganisms in infectious or environmental samples is a corner stone of quantitativemicrobiology.
A simple method is presented to estimate the microbial counts obtained with the serial dilution technique for
microorganisms that can grow on bacteriological media and develop into a colony. The number (concentration)
of viable microbial organisms is estimated from a single dilution plate (assay) without a need for replicate plates.
Our method selects the best agar plate with which to estimate the microbial counts, and takes into account the
colony size and plate area that both contribute to the likelihood of miscounting the number of colonies on a
plate. The estimate of the optimal count given by our method can be used to narrow the search for the best
(optimal) dilution plate and saves time. The required inputs are the plate size, the microbial colony size, and the
serial dilution factors. The proposed approach shows relative accuracywell within± 0.1 log10 from data produced
by computer simulations. Themethodmaintains this accuracy even in the presence of dilution errors of up to 10%
(for both the aliquot and diluent volumes), microbial counts between 104 and 1012 colony-forming units, dilution
ratios from 2 to 100, and plate size to colony size ratios between 6.25 to 200.

Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Quantitative estimation of the number of viable microorganisms in
bacteriological samples has been a mainstay of the microbiological
laboratory for more than one-hundred years, since Koch first described
the technique (Koch, 1883). Serial dilution techniques are routinely
used in hospitals, public health, virology, immunology, microbiology,
pharmaceutical industry, and food protection (American Public Health,
2005; Hollinger, 1993; Taswell, 1984; Lin and Stephenson, 1998) for
microorganisms that can grow on bacteriological media and develop
into colonies. A list of bacteria that are viable but nonculturable
(VBNC), the detection of suchmicroorganisms, and the process of resus-
citation of cells from VBNC state are addressed by Oliver (2005, 2010).
In the work presented here it is assumed that the microorganisms are
culturable.

The objective of the serial dilutionmethod is to estimate the concen-
tration (number of colonies, organisms, bacteria, or viruses) of an
unknown sample by counting the number of colonies cultured from
serial dilutions of the sample, and then back track the measured counts
to the unknown concentration.
ostprobablenumber;TNTC, too
olony forming unit.
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Given an unknown sample which contains n0 colony forming units
(CFUs), a series of J dilutions are made sequentially each with a dilution
factor α. From each of the J dilutions a fraction αp

−1 is taken and spread
(plated) on an agar plate (assay) where colonies are counted. Thus, in
general there are two dilution factors:α andαp. For example,α=10 in-
dicates a 10-fold dilution, e.g., by diluting successively 0.1 ml of sample
into 0.9ml ofmedia; andαp=1means that the entire volume is spread
(plated) on the agar plate. For an experiment with a larger dilution
factor αp, multiple plates may be spread at the same dilution stage. For
example, αp = 20 represent a 5% plating of the dilution, and thus up
to 20 replicates could be created. At each dilution the true number of
colonies is nj = n0α− jαp

−1 and the estimated number is n̂ j . The
estimated quantities are denoted with a “hat” (estimated quantities
can be measured quantities, or quantities that are derived from mea-
sured or sampled quantities); symbols without a “hat” denote
true quantities (also known as population values in statistics) that do
not contain any sampling or measurement error. In this work both nj
and n0 are “counts”, i.e., number of colonies. Knowing the aliquot vol-
ume, one can easily convert counts to concentration (for example
CFU/ml).

The importance of serial dilution and colony counting is reflected by
the number of standard operating procedures and regulatory guidelines
describing thismethodology. In all of these guidelines the optimal num-
ber (n̂ j) of colonies to be counted has been reported (Park andWilliams,
1905; Wilson, 1922; Jennison and Wadsworth, 1940; Tomasiewicz
et al., 1980; FDA, 2001; Goldman and Green, 2008) as 40–400,
200–400, 100–400, 25–250, 30–300. It is interesting to note that these
ense (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Fig. 1. The concept of δj is given with Poisson and a shifted-Poisson probability density
functions for the truenj, and for the counted (measured) n̂ j, respectively. n̂ j is the observed
(counted) number of colonies on plate j of the serial dilution process, for which the true
number of colonies is nj with a mean μj. Due to uncounted colonies in the measuring
process (i.e., merging of colonies that are counted as one colony due to overcrowding),
n̂ j b nj .
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references do not specify the area in which the colonies grow, nor the
diameter of the particular organism assayed. The result is that titration
and counting colonies is done within a range that may be inadequate,
and may introduce considerable error. In our work these parameters
are addressed.

The main challenge in serial dilution experiments is the estimation
of the undiluted microorganisms counts n0 from the measured n̂ j .
There are two competing processes (Tomasiewicz et al., 1980) that af-
fect the accuracy of the estimation: sampling errors and counting errors.
Sampling errors are caused by the statistical fluctuations of the popula-
tion. For example, when sampling an average of 100 colonies, the fluc-
tuations in the number of the population are expected to be �

ffiffiffiffiffiffiffiffiffi
100

p

when the sampling process is governed by a Poisson probability
(Poisson and Binomial distributions are often used in statistical analysis
to describe the dilution process (Hedges, 2002; Myers et al., 1994))
where the standarddeviation equals square-root of themean; the relative
error (ratio of the standard deviation to the mean) is

ffiffiffiffiffiffiffiffiffi
100

p
=100 ¼ 0:1.

Thus, the larger the sample size is, the smaller the relative sampling
error; hence, one would like to use a dilution plate with the largest num-
ber n̂ j (i.e., the least diluted sample, j → 1). However, as the number of
colonies increases, counting error is introduced due to the high probabil-
ity of two (or more) colonies to merge (due to overcrowding) and
become indistinguishable, and be erroneously counted as one colony.
An optimum (a “sweet spot”) between these two processes (sampling
and counting error) needs to be found for using the optimal dilution n̂ j

(i.e., the optimal jth plate) with which to estimate n0. Cells can grow
into colonies in various ways. Wilson (1922) states that when two cells
are placed very close together only one cell will develop, and when two
cells are situated at a distance from each other both cells may grow and
then fuse into one colony. Either way, the end result is the appearance
of one colony which causes counting error.

Estimation of bacterial densities from the most probable number
(MPN) method (Cochran, 1950) requires multiple replicates of the jth
dilution plate, and analyzes the frequency of plates with zero colonies
instead of using counts directly. MPN is often used to measure microbes
in milk, water and food (Blodgett, 2010). The MPN method (Cochran,
1950) “is of low precision, as is to be expected from a method that does
not use direct counts. Large number of samples [replicate agar plates]
must be taken at each dilution if a really precise result is wanted”. In
our work we seek a method where the counts from a single plate are
used to estimate bacterial concentrations.

A simple method to estimate the number of colonies n0 in the
unknown sample from the counted number of colonies n̂ j at the jth
assay is presented. Our method is easy to implement. The method
selects the optimal count (i.e., a best single plate) with which n0 is
estimated. There are only a few inputs needed: the incubation plate
size, the microbial colony size, and the dilution factors (α and αp).
The dilution error (although present in the serial dilution experiment)
is not an input. The relative accuracy of our method is well within
± 0.1 log10 (i.e., within 100% error) which is much better than the
common requirement of ± 0.5 log10 (i.e., within 500% error) that is
often regarded as accepted accuracy in many biological experiments.

2. Material and methods

The measured (counted) number of colonies n̂ j is related to the true
number of colonies nj by nj ¼ n̂ j þ δ j where δj is a bias that accounts
for uncounted colonies due to the merging (overcrowding) of nearby
colonies, and thus, nj ≥ n̂ j. The challenge is to obtain an estimate of δj
from a single measurement n̂ j of the jth Petri dish. The challenge is
met in an ad-hoc manner. The following assumptions are made: (i)
The true nj (when no colonies aremiscounted) is described by a Poisson
probability forwhich the variance equals themean (Forbes et al., 2011),
(ii) The probability density function for n̂ j (with the effect of merging of
nearby colonies) is a displaced version (by δj) of the Poissondistribution
for nj, see Fig. 1. Hence the variance of the probability density function
for nj is the same as that for n̂ j, and therefore the variance Var n̂ j
� �

¼ Var nj
� � ¼ E nj−μ j

� �2� �
. E(⋅) is the expectation operator (i.e., an av-

erage process), and μj is themean of nj. There is not enough data to com-
pute a variance with the expectation operator (because only one plate
with one value of n̂ j for a dilution α−jαp

−1 is available). Therefore, we
define a measure of “spread” given by Vn = (nj − μj)2, that is computed
from a single value of nj. The “spread” can be solved for μj by μ j ¼ nj−ffiffiffiffiffiffi
V j

p
. The distance δj b μj (see Fig. 1), and thus there must be a constant

c b 1 such that δ j ¼ cμ j ¼ cnj−c
ffiffiffiffiffiffi
Vn

p
. Becausewe do notwant tomodify

the individual nj values (with c), we instead construct δj with a con-
stant k N 1 where δ j ¼ nj−k

ffiffiffiffiffiffi
Vn

p
, and k only modifies the spread

ffiffiffiffiffiffi
Vn

p
.

Our notion of “spread” is a substitute for the notion of variance (that we
cannot compute) and is weak; hence, no harm is done in adjusting it
with a fudge factor k. The factor k is a function of the geometry of the se-
rial dilution experiment. At this point it suffices to state that k exists (the
numerical value of k is addressed later).With the Poisson and displaced
Poisson assumptions for nj and n̂ j, we set Vn ¼ Vn̂ ¼ n̂ j, leading to
δ j ¼ nj−k

ffiffiffiffiffi
nj

p . We don't have access to nj, and therefore we replace the
unknown population value nj with the measured n̂ j. This is inspired by
the principle that is often used in signal processing of replacing un-
known population parameters with maximum-likelihood estimates
(as is done, for example, in the generalized likelihood ratio test
(Scharf and Friedlander, 1994)).

With an undetermined k (for the moment) a model-estimate of the
true δ by δ̂ is given by

δ̂ j ¼ n̂ j−k
ffiffiffiffiffi
n̂ j

q
δ̂ j N 0 for 1 b k b

ffiffiffiffiffi
n̂ j

q
δ̂ j ¼ 0 for k ≥

ffiffiffiffiffi
n̂ j

q

8>>><
>>>:

9>>>=
>>>;
: ð1Þ

The inequalities in Eq. (1) are necessary to ensure δ̂ to be a
non-negative quantity less than the value of μ. Eq. (1) implies that the

counting error is negligible δ̂→ 0
� �

when n̂ j b k2. Given δ̂ j in Eq. (1)

we proceed to estimate n0 by

n̂0 ¼ n̂ j þ δ̂ j

� �
α jαp: ð2Þ

Eq. (2) produces an estimate of n0 by correcting the count for the ex-

pected number of missed colonies δ̂ j, and bymultiplying by the total di-
lution factorsα jαp (to reverse the effect of the serial dilutionα−j and the



Fig. 2. Relative error curve in percent (Eq. (4)) as a function of measured number of colo-
nies n̂ on a plate for different values of colony size (diameter). The experimental condition
for the TE curve is dplate = 10 cm (diameter), dilution ratios α = 10, and αp = 1. The op-
timalmeasured n̂ thatminimizes the total error is the one that is closest to theminimumof
the curve (e.g., around n̂ ≅ 100 for dcolony = 3mm). Eq. (6) predicts the value of n̂ at the
minimum of the total error curve (e.g., n̂ ¼ 101 for dcolony = 3mm). Microbial count
in the range 25 b n̂ b 170 is expected to produce an estimate of n0 within 20% error
for dcolony = 3mm. The typically cited optimal range of 25–250 counts is predicted
by our model for a colony of dcolony = 2.5mm (also within 20% error).
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plating dilution αp
−1 in n0 → nj). The question remains “which jth plate

to use for n̂ j?” The rule of thumb that is commonly used (Tomasiewicz
et al., 1980) is to choose a plate with 30 ≤ n̂ j ≤ 300 or 25 ≤ n̂ j ≤ 250.
With our method n̂ j is chosen as follows.

The standard definition of total error (also known as mean squared
error, see p. 330 in Casella and Berger, 2002) for an estimated

quantity n̂0 is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E n̂0−n0ð Þ2
h ir

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var n̂0ð Þ þ E n̂0ð Þ−n0½ �2

q
¼

α jαp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂ j þ δ j
� �þ δ j−δ̂ j

� �2r
where E n̂0ð Þ−n0½ �2 is the error due to the

bias of the estimates. The total error combines the effects of precision
(via the variance of the estimated n̂0) and accuracy (via the bias in esti-
mating n̂0). In computing total error, one performs many Monte Carlo
simulations (where n0, δj, and all other parameters are known) for the
dilution process, constructs estimates for n0, and computes the variance
and the mean from all the estimates of n0. This is what we do later in
Section 3 (Results) whenwe validate our estimationmethod. However,
the true δj is not known in a real scenario (only n̂ j , α

j, and αp are

known), and thus we resort to the estimated δ̂ j with our model as is
given in Eq. (1) to construct an estimator of total error. Our total error
is given as a sum of the sampling error and the counting error. The sam-
pling error which is due to the variance of the sampled nj on a plate is

given by var nj
� � ¼ var n̂ j þ δ̂ j

� �
¼ n̂ j þ δ̂ j (using the Poisson distribu-

tion for nj ¼ n̂ j þ δ j whose Poisson intensity parameter λ is estimat-

ed as λ ¼ E nj
� � ¼ n̂ j þ δ̂ j), and the counting error on a plate that is due

to the residual bias given by δ j−δ̂ j

� �2
which we approximate as δ̂

2
j

(because the true δj is not known). Our total error (TE)model is given by

TE j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sampling errorð Þ2 þ counting errorð Þ2

q
¼ α jαp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var nj

� �
þ δ̂2j

r

¼ α jαp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂ j þ δ̂ j

� �
þ δ̂2j

r

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: ð3Þ

The total error in estimating n0 originates from sampling error (the
variance of the true nj that is transformed by αjαp to the space of n0)

and the counting error due to δ̂ j (also transformed to the n0 space).
We construct a table for TEj values for each serial dilution plate, and
choose the n̂ j value that produces the smallest TEj (example is shown
later in Table 1). With this optimal n̂ j, n0 is estimated with Eq. (2). The
predicted total error in Eq. (3) underestimates the truth (to be shown

in the results section) because usually δ j−δ̂ j

� �2
N δ̂

2
j . Note that δ̂ j in

Eq. (1) cannot exceed the value n̂ j−
ffiffiffiffiffi
n̂ j

q
(which occurs when k = 1),

whereas δ j−δ̂ j is unbounded, because the true δj ≤ nj is only bounded

by nj, where nj≥ n̂ j (Fig. 1). Furthermore, δ̂ j is set to zero in Eq. (1)

for k≥
ffiffiffiffiffi
n̂ j

q
whereas the true δj only approaches zero when the colony

size approaches zero (shown later in Eq. (8)). Hence, usually δ j N δ̂ j .
Note that TE becomes very large as the counts n̂ j→0 because α j

increases rapidly (α j∝1=n̂ j , small counts occur at large j values with
huge dilution).

The estimated uncertainty (error) for the solution n̂0 (Eq. (2) and its
relative error (RE), are given by

n̂0 ¼ n̂ j þ δ̂ j

� �
α jαp � TE j

RE ¼ Δn̂0

n̂0
¼ TE j

n̂0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂ j þ δ̂ j

� �
þ δ̂2j

r

n̂ j þ δ̂ j

� �

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð4Þ
where TE is given in Eq. (3), δ̂ j is given Eq. (1), and the value of k (with

which δ̂ j is computed) is given later in Eq. (5). The estimated uncertainty
with Eq. (4) underestimates the total error (discussed in Section 3).

Relative error as a function of n̂ is shown in Fig. 2 for a nominal 10-
fold dilution ratio (α=10) and for 100% plating (αp = 1) as a function
of colony size (2 to 10 mm diameter) on a 10 cm diameter agar plate.
The decreasing part of the curves (e.g., n̂b100 for dcolony = 3mm) in
the figure represents the effect of the decrease of the sampling error
as a function of increased n̂, whereas the increasing portion of the
curves (e.g., for n̂N100, dcolony= 3mm) represents the effect of counting
error that increases with n̂. The location of the minimum of the curves
depends on the trade-off between sampling and counting errors. The
shape of the error curve shows that as the colony size increases it is ad-
vantageous to select a plate with smaller number of colonies and that
the optimal counts (for a minimum error) is contained in a narrower
range of counts. Observing the behavior of the analytical TEj curve as a
function of k and comparing to the expected behavior of the minimum
location (as a function of sampling error and colony size) allows us to
determine a value for k.

If the total dilution factorααp is decreased, thenmore dilutions steps
will be necessary to obtain a countable plate, and the sampling error at a
given count n̂ will increase (due to compound error of the multiple
steps), thereby pushing the location of the minimum of the total error
curve to larger values (to mitigate the compound error). Thus, it is ad-
vantageous to sacrifice an increase of counting error to mitigate the
fact that sampling error increased by seeking a serial dilution plate
with more colonies. For example, consider a scenario with n0 = 106

and assume that nj=100 is the optimal count in a serial dilution exper-
iment with α = 10 and αp = 1. Four sequential dilutions (j = 4)
are needed in order to obtain nj ≅ 100. For α = 2, thirteen dilutions
(j = 13) are needed to obtain nj ≅ 100 and the compounded sampling
error is larger. Thus, the optimal count for α = 2 will occur at a value
larger than 100.

If the colony size decreases relative to the plate size, it is less likely
for two colonies to merge, and counting error at a given count n̂ will
have decreased, again pushing the location of the minimum of the
total error curve to larger values (i.e., we are willing to sacrifice some
of the benefit of the reduced counting error in order to reduce sampling
error by seeking a serial dilution plate with more colonies).

Since the location of the minimum of TEj increases with k (see
Eq. (6), below), k should be inversely proportional to relative colony
size, and inversely proportional to the combined dilution factor ααp.



Fig. 3.Optimal counts n̂ on a plate (that minimizes the total error in Eq. (3)) as a function
of the ratio dplate/dcolony in a serial dilution process with 10-fold dilution (α = 10) and
100% plating (αp = 1). The likelihood of miscounting colonies due to overcrowding
increases as dplate/dcolony decreases.
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Therefore, the previously undetermined value of k in (Eq. (1)) is
set to

1 b k ¼ 3� kexperiment

1
3
b kexperiment ¼

1
ααp

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
areaplate
areacolony

s
≅ 1

ααp
� dplate
dcolony

8><
>:

9>=
>; ð5Þ

where the proportionally constant is set to be 3 (the value of 3 gave
us good empirical results in our extensive testing, especially for
ααp = 10), and the inequality 1

3 b kexperiment is to ensure that k N 1
so that δj b μj (see Fig. 1). In most experiments the colony sizes are
mono-dispersed and have a circular shape, hence a ratio of diameters
(plate to colony) can be used for k.

We seek the location n̂of the minimum of the total error curve for
TE n̂; kð Þ in Eq. (3), where δ̂ j and k are given by Eqs. (1) and (5).
Although this is a constrained minimization problem subject to k ≤ffiffiffî
n

p
, the constraint does not need to be enforced, and it is sufficient

to minimize Eq. (3) ignoring the constraint.

From Eq. (2) we use α jαp ¼ n̂0
n̂ jþδ̂ j

≅ n̂0
n̂ j

(i.e., we neglect δj in the de-

nominator) in Eq. (3) to obtain a continuous function of the measured
n̂ j . We then, by taking a derivative with respect to n̂ j and solving for
the derivative to be zero, obtain the location n̂ of the minimum of the
total error curve. This approximation gives us a nice compact solution

with less than 13 counts error (when δ̂ j is not neglected) in the location
of optimal n̂ for all possible k N 1 (less than 4 counts error for k N 2, and
less than10% error for k N 4). Our solution for the optimal n̂ that produce
a minimum total error is given by,

n̂ ¼ 4þ k2 þ k4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 8k2 þ 2k6 þ k8

p
2k2

n̂≅ k2 for k N 4:5
1 b k ¼ 3kexperiment

8>>><
>>>:

9>>>=
>>>;
: ð6Þ

The solution is only a function of k. Eq. (6) shows that the optimal n̂
increases with k (as was discussed earlier). For k N 4.5, n̂ ≅ k2 is within
5% of the analytic solution given by Eq. (6), and within 15% of the
more complicated solution that can be derived using the correct expres-
sion for α jαp. The estimate of the optimal count n̂ can be used to narrow
the search for the best dilution plate n̂ j and save time.

In principle TE n̂; kð Þ (Eq. (3)) can be solved for a given value of
TE = const to produce a range n̂min b n̂ b n̂max for which the total error
is bounded (i.e., n̂min and n̂max are given by the intersection between
the curves given in Fig. 2 and a horizontal line at a constant relative
error level). This range can be obtained pictorially from Fig. 2 for the spe-
cific serial dilution experiment (i.e., α = 10, αp = 1, dplate =10cm), for
other serial dilution parameters the figure RE n̂ð Þ must be redrawn

(since k is a function of α, αp, dcolony, dplate — see Eq. (5) — and δ̂ n̂ð Þ
is a function of k through Eq. (1)). For example, in Fig. 2, counts in
the range25 b n̂ b 170 is expected to produce an estimate of n0 within
20% error for dcolony = 3mm. The typically cited optimal range of
25–250 counts on a plate that is used to estimate n0 is predicted by
our model (for dplate = 10cm and the commonly used 10-fold dilution

with αp = 1) for a colony size of dcolony = 2.5mm (i.e., dplate
dcolony

¼ 40,

k = 12) to within error bound of 20% in estimating n̂0 . In Fig. 3 we
show the best n̂ on a plate (that minimize the total error in Eq. (3)) as
a function of the experimental scenario for a given ratio of plate size
to colony size (dplate/dcolony) as is predicted by Eq. (6) for 10-fold dilu-
tion (α=10) and plating dilutionαp=1(i.e., plating the entire dilution
volume). Thefigure shows that the optimal countn̂ increaseswith dplate/
dcolony, where the likelihood ofmiscounting colonies due to overlapping
and merging together increases as dplate/dcolony decreases. Fig. 3 can be
used as a quick guideline for selecting the best available agar plate
from which to estimate n0.
The inverse of Eq. (6) gives an estimate of the ratio dplate
dcolony

as a function

of optimal n̂ (i.e., the counts that minimizes TE) on an agar plate, as

dplate
dcolony

¼ ααp

6
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n̂−4þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n̂2−20n̂þ 9

p
þ 9þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n̂2−20n̂þ 9

p
n̂

s
: ð7Þ

The size of a colony (dcolony) increases as a function of time (through
growth) on the agar plate. Let us assume that onewants to count a given
number of colonies n̂ on a plate (say, n̂ ¼ 50). Theminimum total error
for counting n̂ ¼ 50 on the jth plate will be achieved when dcolony sat-

isfies the ratio dplate
dcolony

that is predicted with Eq. (7). Thus, if the rate of

growth of a particular organism is known (say, τmm/day), and a partic-
ular n̂ is desired a priori, the time for incubation in the serial dilution ex-
periment can be predicted by dcolony/τ where dcolony is computed with
Eq. (7) for a given desired value of n̂. Thus, if a plate with n̂ ¼ 50 is
observed in the serial dilution experiment it is assured to produce
minimum total error.

The estimation algorithm for n̂0 from measured n̂ on a single agar
plate is summarized by the following six steps (knowledge of the
error in sampling the aliquot and diluent volumes is not required):

Step 1: Compute kexperiment ¼ 1
ααp

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
areaplate
areacolony

q
≅ 1

ααp
� dplate

dcolony
(see Eq. (5))

for the serial dilution experiment, where α is the dilution factor
(e.g., for 10-fold sequential dilution, α = 10), αp is the plating
dilution ratio when a fraction of the dilution volume is placed
on an agar plate (e.g., when 5% of the dilution volume is plated,

αp = 20), and the ratio of plate size to colony size
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
areaplate
areacolony

q
≅

dplate
dcolony

is estimated from the agar plate. If kexperiment N
1
3, proceed

to step 2. Our algorithm is only valid for k = 3kexperiment N 1.
Step 2: Count the number of colonies n̂ j on the J serial dilution plates.

The relevant plates are those with n̂ j that are close to n̂ (given
with Eq. (6), and in Fig. 3 for the standard dilution α = 10
and αp = 1). Estimating the best n̂ with Eq. (6) may eliminate
the need to count irrelevant serial dilution plates that are
clearly far from the optimal n̂ and save time.

Step 3: Compute δ̂ jwith Eq. (1). Note that k in Eq. (1) is k=3kexperiment.

Thus, for n̂ j b 9k2experiment the model predicts negligible counting

error and thus δ̂ j→0.
Step 4: Compute total error TEj for each platewith Eq. (3). Select the jth

plate for which the error is the smallest. For this optimal value

of j we now have n̂ j and δ̂ j . This agar plate is defined as the
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best (optimal) plate from which to estimate n̂0.
Step 5: Estimate the sought after number of CFUs n̂0 with Eq. (2).
Step 6: Estimate the uncertainty (error) in the estimated solution n̂0

with Eq. (4). The estimated uncertainty underestimates the
true uncertainty.

One can compute TEj, REj, and candidate solutions n̂0 with
Eqs. (3) and (4) for any (or all) of the J serial dilutions plates and create

a table with {n̂ j, δ̂ j, TEj, n̂0, REj} for each plate, and scrutinize the different
candidate solutions for which the optimal solution with the smallest
error. Instead of forming a table and selecting the n̂ j with the smallest
TE, one could simply select the value of n̂ j closest to the optimal value
given by n̂ in Eq. (6), but this could lead to a suboptimal choice because
of the asymmetry of the total error shown in Fig. 2 (e.g., where for
dcolony = 3mm the error increases faster for n̂ b 100 than for n̂ N100).

3. Results

A series of simulations to demonstrate our method for estimating n0
from serial dilution experiments is presented. In the simulation, 10,000
realizations were constructed for each agar plate of the dilution experi-
ment. In all the simulations αp = 1 is assumed (the entire volume of
each dilution is plated on an agar plate). We assume that only n̂ j plates
with less than 500 colonies are to be counted (a reasonable upper
bound in many practical scenarios). In the simulations, volumetric
errors in aliquot volume x and diluent volume y (e.g., inserting
x = 0.1ml into y = 0.9ml for 10-fold dilution, α = 10) are modeled
with normal statistics with standard deviation given in percent error
(denoted as “dilution error” in subsequent figures). The number of
bacteria (nj) transferred at each dilution stage is sampledwith binomial
statistics where α−1 = x/(x+ y) is the likelihood for a bacterium to be
transferred; the Poisson distribution is a special case of the binomial
distribution (Forbes et al., 2011).

The condition for resolving two colonies on a plate is selected to be
the Rayleigh criterion of resolution in optics (Born and Wolf, 1980) for
which in the context of the serial dilution problem, two overlapping col-
onies each with a diameter dcolony are determined to be “just resolved”
when the distance between the centers of the two colonies is larger
than 0.5dcolony. The number of miscounted colonies δj is simulated
with Matern-II hard-core Poisson point-process (Chiu et al., 2013,
Ch. 5.4), where the hard-core radius (rhardcore) is set to be the Rayleigh
criterion of resolution 0.5dcolony, is given by

δ j ¼ nj 1−pretainð Þ

pretain ¼ d2plate
4njr

2
hardcore

1− exp −
4njr

2
hardcore

d2plate

 !" #

rhardcore ¼
dcolony

2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð8Þ
Table 1
Example of the 6-step estimation algorithm for an unknown sample with n0 = 106counts
to be estimated by a serial dilution method with plate diameter of dplate = 10cm, colony

diameter of dcolony = 3mm, and dilution ratios α = 10 and αp = 1. δ̂ j is computed with
Eq. (1) and k is computed with Eq. (5); The estimated total error (TE) is computed with
Eq. (3), the solution n̂0 and its relative error (RE) are computed with Eq. (4). The 4th
dilution plate exhibits the smallest total error (i.e., optimal, best plate) and produces an

estimate of n̂0 ¼ 1:2� 106. The predicted optimal n̂ j with Eq. (6) is 100 and thus also
points to the selection of the 4th plate as the optimum.

Dilution
stage j

n̂ j (counts) δ̂ j (counts) TEj (counts) n̂0 (counts) RE (%)
predicted

3 469 252 0.254 × 106 0.72 × 106 35
4 113 7 0.130 × 106 1.2 × 106 11
5 8 0 0.282 × 106 0.80 × 106 35
6 2 0 0.414 × 106 2.0 × 106 71
where pretain is the probability for a single colony to be observed (i.e., to
be counted), and 1 − pretain is the probability that a single colony is
miscounted. Two colonies whose centers are located within an area
π rhardcore

2 fuse together and appear as one colony. In Eq. (8) δj → 0

when dcolony
dplate

→ 0 (i.e., the likelihood of overlapping colonies approaches

zero). Using δj of Eq. (8), the observed (measured) counts are given by
n̂ j ¼ nj−δ j.

The details of the extensive and complex statistical model for the
simulations are deferred to a separate publication. That said, we want
to give the reader some insights to the overall governing principles be-
hind the simulations. The simulation of nj is consistentwith a compound
binomial–binomial probability density function, where the compound
binomial–binomial distribution describes a cascade serial
dilution n0 → nj = 1→ nj = 2→ nj →…→ nJ; n0→ nj = 1 is a simple bi-

nomial process, nj¼1 � Binomial n0;
1

ααp

� �
, and each of the intermedi-

ates nj in the J cascade process is a random variable, leading to a

compound binomial–binomial distribution that is itself a binomial nj �

Binomial n0;
1
αp
∏
j

i¼1

1
αi

	 

, where eachαi ¼ xþy

x . The binomial–binomial dis-

tribution describes the serial dilution process in the absence of dilution
errors in the aliquot x and diluent y volumes. The randomness in α (due
to errors in x and y at each dilution stage, hence αi ¼ xiþyi

xi
) is combined

with the binomial–binomial in the Monte-Carlo simulations to include
volumetric errors. It is beneficial to the reader to simply think of nj =
n0α−jαp

−1 (at the expense of accuracy) as 10,000 samples (realizations)
drawn from a Poisson probability density function with intensity λ (the
Poisson population parameter), λ = n0α−jαp

−1.
We vary four factors in the simulations: dilution error of 0 to 10% at

each dilution stage (for both the aliquot and diluent volumes), n0 in the

range 104 to 1012, dilution ratioα in the range 2 to 100, and dplate
dcolony

(6.25 to

200). Thus, a large portion of a 4-dimensional space relevant to the
method is explored. In this work we use the simulation results to verify
and test our proposed estimation algorithm

The parameters ofmerit for testing the estimation algorithm are accu-
racy, precision, and total error. Statistical properties were computed from
10,000 n̂0 estimations where each of the 10,000 n̂ j measurements was
processed as a single platewith our algorithm. Standarddefinitions for ac-
curacy, precision, and total error are used. Accuracy is the distance from
the truth, accuracy ¼ E n̂0−n0j jð Þ. Precision is the standard deviation of
the solution n̂0 around its mean value E n̂0ð Þ , precision ¼ STD n̂0ð Þ .
We strive to obtain small values for both accuracy and precision.

The true total error computed by TE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
accuracy2 þ precision2

q
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E n̂0−n0ð Þ2
h ir

and is a function of n0. These three figures of merit are

presented in the figures below as percentages by normalizing to the
true n0 (which is only known in simulations). The predicted relative
error RE (Eq. (4)) is also presented. The prediction of total error (and
the relative error) is solely dependent on the solution n̂0 without any
knowledge of the true value for n0. The predicted total error may under-
estimate the truth by as much (in an extreme case) as five-fold
(e.g., predicting 10% total error where the true total error is 50%), never-
theless, the prediction is still useful and is within the same order of mag-
nitude as the truth. The median and mean values of the underestimation
in our simulations are within factor of two of the true values.

An example of a single experiment for which the 6-step solution
process is implemented is given in Table 1. In this example n0 = 106

counts, and the parameters of the serial dilution process are plate diam-
eter of dplate = 10cm, colony diameter of dcolony= 3mm, dilution ratios
α=10, and 2%dilution errors. The table shows that the best plate to use
is the 4th dilution assay for which the total error and the predicted
relative error (Eqs. (3) and (4)) are minimized. The 4th dilution, using
Eq. (2) estimates the unknown sample to be n̂0 ¼ 1:2� 106 counts.



Fig. 4. Performance of estimation method (accuracy, precision, total error, and predicted
total error) for a low initial count n0 = 104, a nominal 10-fold dilution ratio, α = 10,
and αp = 1. Performance is a function of the error (0 to 10%) in each stage of the dilution
process for both the aliquot and diluent volumes, and the ratio between the plate-
diameter and the colony-diameter (6.25 to 200). The figure shows that the estimation
method performs with error that is much less than ± 0.1 log10 units (i.e., 100%). Most
accuracy and precision values fall below 30%. The predicted total error for which the
true n0 is not known underestimates the true total error (computed with knowledge of
n0) by a factor of 1.25 (median value). The color-scale ranges from black (lowest value)
to white (highest value).

Fig. 6. Same as Fig. 4 but for a high initial count of n0=1012. Thefigure shows that theper-
formance is similar to that shown in Figs. 4 and 5, and is still within ± 0.1 log10 in spite of
the fact that to reach a countable plate (e.g., n̂ jb500) from the initial value n0= 1012 about
10 sequential dilutions are needed, for which the error in the dilution volumes (aliquot
and diluent) is compounded.
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For a given series of dilutions, it is possible that the counts associated
with a plate other than the optimum will (by sheer luck) give an esti-
mated n̂0 closer to the truth than the optimal plate. For example, if
n̂ j¼6 was equal to 1 instead of 2, the predicted value of n̂0 would be ex-
actly the correct value of 1 × 106. On average, however, the optimal
(best) plate (j = 4) gives a better estimate due to a much smaller rela-
tive error (11% versus 71%).

In this example, using the predicted optimal n̂ ¼ 100with Eq. (6), or
Fig. 3, could have directly pointed to the 4th plate and eliminated the
need to count the other plates. The statistics of the 4th plate over all
the 10,000 simulations gives amean count E(nj = 4)=96with a relative
error of 12%. Ninety percent of the time (i.e., 0.05 confidence limit)
selecting the 4th plate as the best plate results in true relative errors
(for which the true n0 must be known) between −23% and +21%.
Fig. 5. Same as Fig. 4 but for a medium initial count of n0 = 107. The performance is less
good than shown in Fig. 4, but still overall is much better than ± 0.1 log10 units.
Our predicted relative error (11%), with Eq. (4) underestimates the
true relative errors by two-fold.

In Figs. 4 to 6 the performance of the estimationmethod is shown for
three scenarios: a low initial count (n0 = 104 in Fig. 4), medium initial
count (n0 = 107 in Fig. 5), and high initial count (n0 = 1012 in Fig. 6).
In all figures the color-scale ranges from black (lowest value) to white
(highest value). For these scenarios the dilution ratio is held at a
nominal value α = 10. The performance is presented in color images
as a function of error in the dilution process (0 to 10%) and the ratio
dplate/dcolony (6.25 to 200). Fig. 4 shows that the accuracy (top panel)
in most cases is much smaller than 10% for this wide range of parame-
ters; the precision in most areas of the plot is very good, less than 30%,
and the total error is less than about 40%. The predicted total error
(lower panel) is smaller (by factors 1.25 and 1.4 for the median and
Fig. 7. Performance of estimation method (accuracy, precision, total error, and predicted
total error) as a function of dilution ratio α, and n0, for a small ratio dplate/dcolony = 10
for which the likelihood of counting error due to overlapping of colonies is high. The plat-
ing dilution is kept at αp = 1. The error in the dilution process (for both the aliquot and
diluent volumes) is held constant at a level of 5%. The maximum value of α that satisfies
1 b k=3× kexperiment (Eq. (5)) is 30, the upper limit for which ourmethod is valid. The fig-
ure shows that the estimation method performs with error less than ± 0.1 log10 units
(i.e., 100%). The color-scale ranges from black (lowest value) to white (highest value).



Fig. 8. Sameas Fig. 7 but for a largerdplate/dcolony=50 forwhich the likelihoodof overlapping
colonies is lower. The estimation method performs with error less than ± 0.1 log10 units.
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mean values, respectively) than the true error (2nd panel from the bot-
tom), as was anticipated earlier in the discussion of Eq. (3). In Fig. 5 we
show results for a medium initial count n0 = 107 and in Fig. 6 we show
results for a high initial count n0 = 1012. The performance for
these higher counts is less good (slightly) than the one shown in
Fig. 4. The results show that our estimation method works well and is
within ± 0.1 log10 units (i.e., within 100%), even for a high count
where the number of dilutions needed to bring the measured n̂ j to a
reasonable number that can be counted (say, less than 500) is large,
and thus the compounded error in the dilution process is large. The pre-
dicted total error in Figs. 5 and 6 underestimate the true error by factor
of 1.5 and 2 for median values, and factors 1.8 and 2.4 for mean values.

In Figs. 7 to 9 the performance of the estimation method is explored
as a function of the dilution ratioα that ranges from 2 to 100. For a given
dilution ratio α, one only has a few discrete n̂ j values, of which the
closest to the optimal n̂ (Eq. (6)) will produce the smallest total error.
As α decreases (e.g., from 10-fold dilution to 2-fold dilution) the num-
ber of plates increases and the likelihood that a measured n̂ j is closer
to the optimal n̂ increases. For simplicity, the error in the dilution
process (for each dilution stage) is kept at a constant level of 5%. We
Fig. 9. Same as Fig. 7 but for a higher ratio dplate/dcolony= 100 that further reduces the like-
lihood of overlapping colonies. The figure shows that the estimation method performs
with error less than ± 0.1 log10 units.
show results for three dplate/dcolony ratios (low, medium, and high)
that affect the likelihood of counting error. A low ratio of dplate/dcolony
implies high likelihood of counting error (large colonies that can fuse
and overlap). For a given n0 and a dilution stage j, a plate with high
value of dplate/dcolony is more sparsely covered than a plate with a low
value dplate/dcolony. As dplate/dcolony increases (for a fixed n0) each colony
becomes a separate small identifiable dot on the plate, and the counting
error is very small. In Fig. 7 we show the method's performance for a
small ratio dplate/dcolony = 10 (e.g., a 10 cm plate and a very large 1 cm
colony, hence, a very high likelihood for counting error). Due to the lim-
itation of our estimation method (Eq. (1)) that k= 3 × kexperiment must
be greater than one, kexperiment = 10/α is limited by α b 30 and only re-
sults for α b 25 are shown. The figure shows that for a very large range
104 ≤ n0 ≤ 1012 the performance is within ± 0.1 log10 units. In Figs. 8
and 9 we show the performance for dplate/dcolony of 50 and 100 respec-
tively, for which the likelihood of counting error is reduced. The figures
show that the estimation method performs with error much less than
± 0.1 log10 units. For these larger ratios we can study the performance
for a larger α (since the constraint that k N 1 is less restrictive); we
show results for 2 b α b 100. In Fig. 7 (for which the likelihood of
counting error is large due to the small value of dplate/dcolony) the pre-
dicted total error is, on average, the same as the true total error (median
value for ratio of true total error to predicted total error of 0.9, andmean
value of 1.1). The predicted total error in Figs. 8 and 9 underestimates
the true error by factor 1.6 and 1.5 for median values, and 1.6 and 1.6
for mean values.
4. Conclusions

We introduced a simple method for estimating the undiluted
initial counts n0 from observed counts of a serial dilution experiment
which depends on the serial dilution factor α, the plating dilution
factor αp, and the dilution errors. The dilution process is given by
nj = n0α− jαp

−1 where, for example, α = 10 is for 10-fold sequential
dilution, and αp = 20 is for a scenario that 5% of the dilution volume is
plated. Our method predicts the best (optimal) n̂ j agar plate with
which to estimate n̂0 counts with the smallest error. Knowing the
aliquot volume, one can easily convert counts to concentration
(for example CFU/ml).

The number (density) of viable microbial organisms is estimated
from a single dilution plate (assay), hence, no replicates are needed.
The procedure is outlined as a 6-step process. In a serial dilution exper-
iment for microorganisms that can grow on bacteriological media and
develop into colonies, the main factors that affect the process are area
of agar (dilution plate) in which the colonies grow and the size of
colonies being studied. In addition the dilution factor α affects the com-
pound volumetric dilution error in the j dilution stages that are required
to reduce the unknown sample n0 (e.g., 106 organisms) to a countable
number n̂ j (e.g., usually less than a few hundreds). Our method selects
the best dilution plate with which to estimate themicrobial counts, and
takes into account the colony size and plate area that both contribute to
the likelihood of miscounting the number of colonies on an agar plate.
The only two input parameters in our estimation method are (i) the

ratio of a plate area to a typical colony area
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
areaplate
areacolony

q
≅ dplate

dcolony
which as-

sumes that the bacterial colonies on each of the j plates are roughly of
the same size and are roughly of a circular shape, and (ii) the nominal
dilution ratios α and αp for the dilution and plating process. Knowledge
of the error in the dilution process (in sampling the aliquot and diluent
volumes) is not required. It is interesting to note that the guidelines
(e.g., Tomasiewicz et al., 1980; FDA, 2001) for selecting the optimal
dilution plate (e.g., 30 to 300 counts or 25 to 250 counts) do not specify
the area in which the colonies grow, nor the diameter of the particular
organism assayed. In our estimation method these parameters are
addressed.
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Our estimation method attempts to choose an optimal measured n̂ j

by striking a balance between sampling error and counting error, where
relative sampling error increases as j increases (fewer colonies on a
plate), and counting error decreases as j increases (less likelihood for
colonies to merge and overlap, and thus be miscounted). The combined
effect of these two processes is described by the total error curve
(Eq. (3)). We assumed that the spread (related to variance) of the true
nj and the measured (estimated) n̂ j are roughly the same, and can be
described with a Poisson (and shifted Poisson) statistics for which the
variance equals the mean. With this assumption we described the be-

havior of the bias δ̂(Eq. (1)), due tomiscounting of overlapping colonies,

that is introduced in predicting the true nj as nj ¼ n̂ j þ δ̂ j . With the
selection of the optimal dilution stage, j, and its associated values

of n̂ j and δ̂ j, we estimate n0 (Eq. (2)) and predict the error of the es-
timation (Eq. (4)). Our predicted error underestimates the true error
(by about a factor two in our simulations). The optimal observed n̂
(that produces a minimum total error) increases with the parameter

kexperiment ¼ 1
ααp

� dplate
dcolony

which characterizes the serial dilution exper-

iment. The behavior of the optimal n̂ with kexperiment is qualitatively
correct for a dilution process which suffers from sampling and counting
errors, in addition to compounding dilution errors from all the j dilution
stages prior to the optimal dilution. An analytical estimate of the opti-
mal n̂, given in Eq. (6) as a function of kexperiment, can be used to narrow
the search for the optimal n̂ j among all the dilution plates and save time.
An optimal value for n̂ j for a standard 10-fold dilution as a function
of dplate/dcolony is shown in Fig. 3 and can give guidance for the best
(optimal) agar plate to be used in estimating n0 in our 6-step estimation
process. The shape of the error curve (Fig. 2) and the optimal counts
(Fig. 3) show that as the colony size increases it is advantageous to
select a plate with smaller number of colonies, and that the optimal
counts (for a minimum error) is contained in a narrower range of
counts. An analytical solution of TE = const (Eq. (3)) can be pursued
in order to produce a range n̂min b n̂ b n̂max for which the total error is
bounded. In this work wewere only interested in selecting the best sin-
gle plate with which to estimate n0. However, the range n̂min b n̂ b n̂max

for a given error can be obtained pictorially from Fig. 2 by the inter-
section between the curves in Fig. 2 and a horizontal line at RE =
const. For example, for 10-fold dilution, 100% of the dilution volume
is plated, colony diameter of 3 mm, and 10 cm (diameter) agar plate,
the microbial count on an agar plate in the range 25 b n̂ b 170 is ex-
pected to produce an estimate of n0 within 20% error. The typically
cited optimal range of 25–250 counts on a plate that is used to esti-
mate n0 is predicted by our model for α = 10, αp = 1 and dplate =
10cm diameter, for a colony diameter of dcolony = 2.5mm to within
error bound of 20% in estimating n̂0 (Fig. 2). For other serial dilution
parameters a new figure can be easily created.

We extensively tested our estimation method through numerical
simulations as a function of four parameters: dilution errors in the
range of 0 to 10% (for both the aliquot and diluent volumes), n0 (104
counts to 1012 counts), dilution ratio α (2 to 100), and dplate
dcolony

(6.25 to
200). Our method produced accuracy, precision, and total error well
within ± 0.1 log10 units (i.e., within 100% error).
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