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Abstract

Exponential stability of the nonlinear filtering equation is revisited, when the signal is a finite state
Markov chain. An asymptotic upper bound for the filtering error due to an incorrect initial condition is
derived in the case of a slowly switching signal.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction and the main result

Consider a discrete time Markov chain X = (Xn)n∈Z+
with values in a finite real alphabet

S = {a1, . . . , ad}, initial distribution νi = P(X0 = ai ) and transition probabilities λi j = P(Xn
= a j |Xn−1 = ai ). Suppose that the chain is partially observed via the noisy sequence of random
variables Y = (Yn)n∈Z+

, generated by

Yn =

d∑
i=1

1{Xn=ai }ξn(i), n ≥ 1, (1)
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where ξ = (ξn)n≥1 is a sequence of i.i.d. random vectors with independent entries ξn(i),
i = 1, . . . , d , such that

P(ξ1(i) ∈ B) =

∫
B

gi (u)ϕ(du), B ∈ B(R)

with densities gi (u) and a σ -finite reference measure ϕ(du).
Let F Y

n = σ {Y1, . . . , Yn} and πn(i) = P(Xn = ai |F Y
n ). The vector πn of the conditional

probabilities satisfies the recursive filtering equation

πn =
G(Yn)Λ∗πn−1

|G(Yn)Λ∗πn−1|
, π0 = ν, (2)

where G(y), y ∈ R is a diagonal matrix with entries gi (y), Λ∗ is the transposed matrix of
transition probabilities and |x | =

∑d
i=1 |xi | for x ∈ Rd .

Suppose that (2) can be solved subject to a probability distribution ν̄ 6= ν and denote the
corresponding solution by π̄n . Under certain mild conditions (to be specified later) the limit

γ := lim
n→∞

1
n

log |πn − π̄n|, P-a.s.

exists and if it is negative the filter is said to be (exponentially) stable. The stability index γ

is elusive for explicit calculation and much research has focused recently on estimating γ in
various filtering settings (see [1–3,5–7,9] and others). In particular, a Gaussian additive white
noise model was considered in [1] (cf. (1))

Yn = h(Xn) + σηn, n ≥ 1, η1 ∼ N (0, 1)

and the following asymptotic upper bound was derived:

lim
σ→0

σ 2γ (σ ) ≤ −
1
2

d∑
i=1

µi min
j 6=i

(h(ai ) − h(a j ))
2, (3)

where µ is the stationary distribution of the chain X , assumed to be ergodic. Recall that X is
ergodic if µi = limn→∞ P(Xn = ai ), i = 1, . . . , d , exist, are unique and positive, which holds
iff Λq has positive entries for some integer q ≥ 1 (see e.g. [11]).

In this note a different scaling of the problem is chosen, namely the slow chain limit of γ is
considered. Let Xε

n be a Markov chain on S with transition probabilities

λε
i j = P(Xε

n = a j |X
ε
n−1 = ai ) =

ελi j , i 6= j
1 − ε

∑
`6=i

λi`, i = j

for an ε ∈ (0, 1). Notice that Xε is an ergodic chain with the same invariant distribution µ as X .
Denote by Y ε the corresponding observation sequence generated by (1), with X replaced by Xε,
and let πε, π̄ε be the solutions of (2) subject to ν, ν̄, with Y and Λ replaced by Y ε and Λε.

Theorem 1. Assume that X is ergodic and the noise densities gi (u)

(a1) are bounded,
(a2) have the same support and
(a3)

∫
R gi (u) log g j (u)ϕ(du) > −∞, for all i, j .
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Fig. 1. γ (ε) for a BSC example.

Then for any pair (ν, ν̄) of probability distributions on S

γ (ε) ≤ −

d∑
i=1

µi min
j 6=i

D(gi ‖ g j ) + o(1), ε → 0, (4)

where D(gi ‖ g j ) =
∫
R gi (u) log gi

g j
(u)ϕ(du) are the Kullback–Leibler relative entropies. For

d = 2 the asymptotic (4) is precise, i.e.

γ (ε) = −µ1D(g1 ‖ g2) − µ2D(g2 ‖ g1) + o(1), ε → 0. (5)

This theorem reveals the following interesting properties of γ (ε) (see Fig. 1).
1. γ (ε) may be discontinuous at ε = 0

γ (0+) = lim
ε→0

γ (ε) < γ (0) = 0,

if at least one of the entropies D(gi ‖ g j ) is strictly positive. This means that for small ε > 0 the
filter remains stable with virtually the same stability index as long as the chain is not “frozen”
completely, while the filter, corresponding to the limit chain X0

n ≡ X0, n ≥ 1, may be unstable
(e.g. when some but not all gi (u)’s coincide ϕ-a.s.). Such a behavior is not observed in the
analogous “slowly varying” setting for the Kalman–Bucy filter, where the state space of the
signal is continuous.

Surprising as it may seem at first glance, this phenomenon is quite natural for signals with
discrete state space and can be explained as follows. The distance |πε

n − π̄ε
n | never increases

and tends to decrease exponentially quickly whenever Xε
n resides in a state with a distinct noise

probability distribution. Since the average occupation time of this “synchronizing” state does not
depend on ε, the decay remains exponential with nonzero average rate. The “dual” manifestation
of this phenomenon is that the filter stability improves when the signal-to-noise ratio is increased
in the setting of (3) (see [6,1]).
2. As demonstrated in the following example, γ (ε) may have a maximum at some ε? > 0 or,
in other words, stability may improve when the chain is slowed down! This provides yet more
evidence against the false intuition, directly relating stability of the filter to ergodic properties of
the signal (see an extended discussion of this issue in [6,3]). The reason for such behavior stems
from the delicate interplay between two stabilizing mechanisms: ergodicity of the signal and the
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synchronizing effect of the observations. The first dominates the second for the faster chain, and
vice versa when the chain is slow.

Example 2. Consider the so-called Binary Symmetric Channel (BSC) model, for which Xn ∈

{0, 1} is a symmetric chain with the jump probability λ, and Yn = (Xn − ξn)2, where ξ is an
i.i.d. {0, 1} binary sequence with P(ξ1 = 1) = p ∈ (0, 1/2). Let Xε and Y ε denote the “slow”
instances as defined above. In this case more can be said about the convergence in (5) (see the
proof in Section 3 below), namely

γ (ε) ≥ −Dp +
4λ(log(2) − h(p))

Dp
ε log ε−1(1 + o(1)), ε → 0 (6)

where Dp := p log p
1−p + (1 − p) log 1−p

p and h(p) = −p log p − (1 − p) log(1 − p). On the
other hand, γ (ε) ≤ log(1 − 2ελ) → −∞ as ε → 1/(2λ) (see e.g. Theorem 2.3 in [1]). Since
the second term in the expansion of γ (ε) in (6) is positive and by (5) γ (ε) → −Dp as ε → 0,
one gets the qualitative behavior depicted in Fig. 1. �

2. The proof of Theorem 1

Hereafter the assumptions of Theorem 1 are in force and the following notations are used:
probability measures on S are identified with (column) vectors in Sd−1

= {x ∈ R : xi ≥ 0,∑d
i=1 xi = 1}, µ( f ) :=

∑d
i=1 f (ai )µi for f : S 7→ R and µ ∈ Sd−1, µ(A) := µ(1{A}) for

A ⊆ S. For a random sequence Z = (Zn)n∈Z and m ≥ k the notation F Z
[k,m]

= σ {Zk, . . . , Zm}

is used and F Z
n := F Z

[1,n]
for brevity. Convergence of random sequences is understood in the

P-a.s. sense unless stated otherwise.
The proof relies on the following idea from [1]. Recall that πn = ρn/|ρn|, n ≥ 0, where ρn is

the solution of the Zakai linear equation (π̄n is obtained similarly)

ρn = G(Yn)Λ∗ρn−1, ρ0 = ν. (7)

Let ρn ∧ ρ̄n :=
1
2 (ρn ρ̄∗

n − ρ̄nρ∗
n ) denote the exterior product of ρn and ρ̄n . The elementary

inequality

|ρn ∧ ρ̄n|

|ρn||ρ̄n|
≤ |πn − π̄n| ≤ 2

|ρn ∧ ρ̄n|

|ρn||ρ̄n|

implies

γ := lim
n→∞

1
n

log |πn − π̄n| = lim
n→∞

1
n

log |ρn ∧ ρ̄n| − lim
n→∞

1
n

log |ρn| − lim
n→∞

1
n

log |ρ̄n|.

(8)

Since gi (u)’s are bounded, the limits in the right hand side exist by virtue of the Oseledec
Multiplicative Ergodic Theorem (MET). Moreover, since (G(Yn)Λ∗)n≥1 are matrices with
nonnegative entries, the Perron–Frobenius theorem implies

lim
n→∞

1
n

log |ρn| = lim
n→∞

1
n

log |ρ̄n| := λ1, ∀ν, ν̄ ∈ Sd−1,

where λ1 is the top Lyapunov exponent corresponding to (7). Similarly MET implies
limn→∞

1
n log |ρn ∧ ρ̄n| ≤ λ1 + λ2 and thus one concludes that γ ≤ λ2 − λ1 ≤ 0, i.e. the
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filter stability index is controlled by the Lyapunov spectral gap of (7). The reader is referred
to [1] for further details.

The statement of Theorem 1 follows from (8) and asymptotic expressions derived in
Lemmas 3 and 4 below.

2.1. Asymptotic expression for λ1(ε)

Lemma 3. For any ε > 0 the Markov process (Xε, πε) has a unique stationary invariant
measureMε. The top Lyapunov exponent is given by

λ1(ε) =

∫
Sd−1

d∑
i=1

(Λε∗u)i

∫
R

gi (y) log |G(y)Λε∗u|ϕ(dy)Mε
π (du), (9)

whereMε
π is the π -marginal of Mε. For each J j = {a` : D(g j ‖ g`) = 0}

lim
ε→0

∫ 1{x∈J j } −

∑
`:a`∈J j

u`

2

Mε(dx, du) = 0 (10)

and in particular

lim
ε→0

λ1(ε) =

d∑
i=1

µi

∫
R

gi (y) log gi (y)ϕ(dy). (11)

Proof. The process (Xε, πε) is Markov and by (a1) it is also Feller, and thus at least one invariant
measure Mε exists. Its uniqueness can be deduced (as in Theorem 7.1 in [4]) from the stability
property limn→∞ |πε

n − π̄ε
n | = 0, ∀ν, ν̄ ∈ Sd−1, which in turn holds under the assumption

(a2) by the arguments used in the proof of Theorem 2.3 in [1] (see also Theorem 4.1 in [3]).
Concentration properties of Mε

π have been studied in [8], when all the noises are distinct, i.e.
D(gi ‖ g j ) > 0 for all i 6= j , which is not necessarily the case here.

Let X̃ε be the stationary chain (i.e. X̃0 ∼ µ) and π̃ε the corresponding optimal filtering
process, generated by (2) subject to π̃ε

0 = µ. For an f : S → R and n, m ≥ 0 (Ỹ ε denotes the
observations corresponding to X̃ε),

E
(

f (X̃ε
n+m) − π̃ε

n+m( f )
)2

= E
(

f (X̃ε
n+m) − E

(
f (X̃ε

n+m)|F Ỹ ε

n+m

))2

≤ E
(

f (X̃ε
n+m) − E

(
f (X̃ε

n+m)|F Ỹ ε

[m+1,n+m]

))2

Ď
= E

(
f (X̃ε

n) − E
(

f (X̃ε
n)|F Ỹ ε

n

))2

= E
(

f (X̃ε
n) − π̃ε

n ( f )
)2

,

where stationarity of (X̃ε, Ỹ ε) has been used in Ď. This means that the filtering error for the
stationary signal does not increase with time. Then by the uniqueness ofMε for any fixed m ≥ 0,∫

( f (x) − u( f ))2Mε(dx, du) = lim
n→∞

E
(

f (X̃ε
n) − π̃ε

n ( f )
)2

≤ E
(

f (X̃ε
m) − π̃ε

m( f )
)2

.

(12)
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Define

π̂ε
n (i) =

µi

n∏
k=1

gi (Ỹ ε
k )

d∑
j=1

µ j

n∏
k=1

g j (Ỹ ε
k )

, i = 1, . . . , d

and let Aε
m = {X̃ε

k = X̃0, ∀k ≤ m}, the event that X̃ε
k does not jump on [0, m]. Notice that on

the set Aε
m , the observation process is independent of ε, namely

Ỹ ε
k ≡ Ỹ 0

k =

d∑
i=1

1
{X̃0=ai }

ξk(i), k = 1, . . . , m.

Then by optimality of π̃ε

E
(

f (X̃ε
m) − π̃ε

m( f )
)2

≤ E
(

f (X̃ε
m) − π̂ε

m( f )
)2

= E1{Aε
m }

(
f (X̃0) − π̂0

m( f )
)2

+ E1{Ω\Aε
m }

(
f (X̃ε

m) − π̂ε
m( f )

)2
≤ E

(
f (X̃0) − π̂0

m( f )
)2

+ 4d2 max
ai ∈S

| f (ai )|
2 (1 − P(Aε

m)
)

−→
ε→0

E
(

f (X̃0) − π̂0
m( f )

)2
.

For f (x) := 1{x∈J j } the latter and (12) imply

lim
ε→0

∫ 1{x∈J j } −

∑
`:a`∈J j

u`

2

Mε(dx, du) ≤ E
(

f (X̃0) − π̂m( f )
)2

−→
m→∞

0,

where the convergence holds since {X̃0 ∈ J j } ∈ F Ỹ 0

∞ =
∨

n≥1 F Ỹ 0

n by definition of J j and

since π̂0
m(i), i = 1, . . . , d , are the optimal estimates of 1

{X̃0=ai }
given F Ỹ 0

m .

Once the existence of the ergodic stationary pair (Xε, πε) is established1 one may use it to
realize the limit λ1 by means of the approach due to H. Furstenberg and R. Khasminskii (see
e.g. [10]). The idea is to study the growth rate of ρε

n by projecting it on the unit sphere (Sd−1 in
this case):

|ρε
n | = |G(Y ε

n )Λε∗ρε
n−1| = |ρε

n−1|

∣∣∣∣∣G(Y ε
n )Λε∗

ρε
n−1

|ρε
n−1|

∣∣∣∣∣ = |ρε
n−1||G(Y ε

n )Λε∗πε
n−1|.

1 Such a pair can be generated by taking both X0 and π0 randomly distributed according toMε and its definition can
be extended to the negative times by the usual arguments. Note that this is different from (X̃ε, π̃ε) used in the proof of
Mε concentration.
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Then by the law of large numbers (LLN) for ergodic processes (the required integrability
conditions are provided by (a1) and (a3))

λ1(ε) = lim
n→∞

1
n

log |ρε
n | = lim

n→∞

1
n

n∑
m=1

log
∣∣G(Y ε

n )Λε∗πε
n−1

∣∣ = E log
∣∣G(Y ε

1 )Λε∗πε
0

∣∣
= E

d∑
i=1

1{Xε
1=ai } log

∣∣G(ξ1(i))Λε∗πε
0

∣∣
= E

d∑
i=1

P
(

Xε
1 = ai |F

Y ε

(−∞,0]

)
log

∣∣G(ξ1(i))Λε∗πε
0

∣∣
= E

d∑
i=1

(
Λε∗πε

0

)
i log

∣∣G(ξ1(i))Λε∗πε
0

∣∣ . (13)

The latter expression is nothing but (9). The asymptotic (11) follows from Λε
= I + O(ε) and

the concentration (10) of Mε as ε → 0, since gi (u)’s coincide ϕ-almost surely for all ai ∈ J j

for any j and the X -marginal ofMε is given byMε
X (dx) =

∑d
i=1 µiδai (dx). �

2.2. Asymptotic bound for λ1(ε) + λ2(ε)

Lemma 4. For any ν, ν̄ ∈ Sd−1,

lim
n→∞

1
n

log |ρε
n ∧ ρ̄ε

n |

≤

d∑
i=1

µi max
k 6=m

∫
R

gi (u) log(gm(u)gk(u))ϕ(du) + o(1), ε → 0. (14)

In the case d = 2,

lim
n→∞

1
n

log |ρε
n ∧ ρ̄ε

n | = log(1 − ελ12 − ελ21) + µ1

∫
R

g1(u) log(g1(u)g2(u))ϕ(du)

+ µ2

∫
R

g2(u) log(g1(u)g2(u))ϕ(du). (15)

Proof. The process Qε
n := ρε

n ∧ ρ̄ε
n evolves in the space of antisymmetric matrices (with zero

diagonal) and satisfies the linear equation

Qε
n = G(Y ε

n )Λε∗Qε
n−1Λ

εG(Y ε
n ), Qε

0 = ν ∧ ν̄,

or in the componentwise notation

Qε
n(i, j) =

∑
1≤k 6=`≤d

gk(Y
ε
n )λε

ki Qε
n−1(k, `)λε

`j g`(Y
ε
n ), i 6= j.

Unlike in the case of (7), it is not clear whether the limit limn→∞
1
n log |Qε

n| depends on ν, ν̄

or whether Π ε
n = Qε

n/|Qε
n| has any useful concentration properties as ε → 0. However the
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technique used in the previous section still gives the upper bound. With a fixed integer r ≥ 1,

|Qε
n| = |Qε

n−r |
∣∣{G(Y ε

n )Λε∗ . . .
{
G(Y ε

n−r+1)Λ
ε∗Π ε

n−rΛ
εG(Y ε

n−r+1)
}
. . .ΛεG(Y ε

n )
}∣∣

≤ |Qε
n−r |

(∑
i 6= j

∣∣Π ε
n−r (i, j)

∣∣ n∏
m=n−r+1

gi (Y
ε
m)g j (Y

ε
m) + c1(r)ε

)

≤ |Qε
n−r |

(
max
i 6= j

n∏
m=n−r+1

gi (Y
ε
m)g j (Y

ε
m) + c1(r)ε

)
, n ≥ r

with a constant c1(r) > 0, depending only on r (due to assumption (a1)). By the MET the limit
limn→∞

1
n log |Qε

n| exists P-a.s. and hence (recall the definitions of Ỹ ε and Aε
r in the proof of

Lemma 3)

lim
n→∞

1
n

log |Qε
n| = lim

`→∞

1
`r

log |Qε
`r |

≤ lim
`→∞

1
`

∑̀
k=1

1
r

log

(
max
i 6= j

kr∏
m=kr−r+1

gi (Y
ε
m)g j (Y

ε
m) + c1(r)ε

)
Ď
=

1
r

E log

(
max
i 6= j

r∏
m=1

gi (Ỹ
ε
m)g j (Ỹ

ε
m) + c1(r)ε

)

≤
1
r

E1{Aε
r }

log

(
max
i 6= j

r∏
m=1

gi (Ỹ
ε
m)g j (Ỹ

ε
m) + c1(r)ε

)
+ c2(r)(1 − Pµ(Aε

r ))

≤
1
r

d∑
`=1

µ`E log

(
max
i 6= j

r∏
m=1

gi (ξm(`))g j (ξm(`)) + c1(r)ε

)
+ c3(r)(1 − Pµ(Aε

r ))

ε→0
−→

d∑
`=1

µ`E max
i 6= j

1
r

log
r∏

m=1

gi (ξm(`))g j (ξm(`)),

where the LLN was used in Ď and the ci (r) stand for r -dependent constants. Applying the LLN
once again one gets for each `

1
r

log
r∏

m=1

gi (ξm(`))g j (ξm(`)) =
1
r

r∑
m=1

log gi (ξm(`))g j (ξm(`))

r→∞
−→

∫
R

g`(u) log(gi (u)g j (u))ϕ(du), P-a.s.

Since “max” is a continuous function

max
i 6= j

1
r

log
r∏

m=1

gi (ξm(`))g j (ξm(`))
r→∞
−→ max

i 6= j

∫
R

g`(u) log(gi (u)g j (u))ϕ(du)

and by the uniform integrability, provided by assumption (a3),

E max
i 6= j

1
r

log
r∏

m=1

gi (ξm(`))g j (ξm(`))
r→∞
−→ max

i 6= j

∫
R

g`(u) log(gi (u)g j (u))ϕ(du).
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Putting all parts together one gets the bound (14). In the case d = 2, the process Qε
n is one

dimensional and all the calculations can be carried out exactly, leading to the expression (15).
�

3. Proof of (6)

When the observation process Y ε
n takes values in a discrete alphabet S′

= {b1, . . . , bd ′}, the

conditional densities (with respect to the point measure ϕ(dy) =
∑d ′

i=1 δbi (dy)) are of the form

gi (y) =

d ′∑
j=1

pi j 1{y=b j },

d ′∑
j=1

pi j = 1, pi j ≥ 0,

and hence by (13) (πε
1|0 := Λε∗πε

0 for brevity)

λ1(ε) = E log |G(Y ε
1 )Λε∗πε

0 | = E
d ′∑

j=1

1{Y ε
1 =b j } log

(
d∑

i=1

pi jπ
ε
1|0(i)

)

= E
d ′∑

j=1

P
(

Y ε
1 = b j |F

Y ε

(−∞,0]

)
log P

(
Y ε

1 = b j |F
Y ε

(−∞,0]

)
=: −H (Y ε), (16)

where H (Y ε) is known as the entropy rate of the stationary process Y ε
= (Y ε

n )n∈Z.
Consider now the special case when Xε and Y ε take values in S = {0, 1} and p = P(Y ε

n
= i |Xε

n = j) for i 6= j . The vector πε
n is one dimensional and hence P(Y ε

1 = 1|F Y ε

(−∞,0]
)

= (1 − p)πε
1|0 + p(1 − πε

1|0), where

πε
1|0 := P

(
Xε

1 = 1|F Y ε

(−∞,0]

)
= (1 − ελ10)π

ε
0 + ελ01(1 − πε

0 ) (17)

and πε
0 := P(Xε

0 = 1|F Y ε

(−∞,0]
) are redefined for brevity.

Let h(x) := −x log x − (1 − x) log(1 − x), x ∈ [0, 1] and `p(q) = (1 − p)q + p(1 − q), and
define

H(p, q) := h(`p(q)) p, q ∈ [0, 1],

where 0 log 0 ≡ 0 is understood. Since h(x) ≤ log(2) with equality at x = 1/2 and
`p(1/2) = 1/2, H(p, q) ≤ log(2) for all p, q ∈ [0, 1] with equality at q = 1/2. Since h(x) is a
concave function, symmetric around x = 1/2,

H(p, q) = h((1 − p)q + p(1 − q)) ≥ qh(1 − p) + (1 − q)h(p) = h(p), p ∈ [0, 1],

with equality at q = 0 and q = 1. Finally for any fixed p ∈ [0, 1], q 7→ H(p, q) inherits
concavity and symmetry from h(x). These properties imply the following lower bound:

H(p, q) ≥ h(p) +
log(2) − h(p)

1/2
min(q, 1 − q), p, q ∈ [0, 1]. (18)

By Theorem 1 in [8] for the symmetric chain Xε with jump probability λ and p 6= 1/2,

E min(πε
0 , 1 − πε

0 ) = P(Xε
0 6= argmaxiπ

ε
0 (i))

=
λ

Dp
ε log ε−1(1 + o(1)), ε → 0, (19)
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where Dp := p log p
1−p + (1 − p) log 1−p

p . The expression for H (Y ε) in the case d = 2 reads

H (Y ε) = EH(p, πε
1|0) = EH(p, πε

0 ) + O(ε), ε → 0

where the latter asymptotic form follows from (17), since H(p, q) is differentiable in q.
Now (18) and (19) imply

H (Y ε) ≥ h(p) + 2(log(2) − h(p))
λ

Dp
ε log ε−1(1 + o(1)), ε → 0,

and (6) follows from (8), (15) and (16). �
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