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The primitive ideals of the quantum group C,[SL(n)] are classified in the case
where ¢ is a non-zero complex number which is not a root of unity. It is shown
that the orbits in Prim C,[SL(n)] under the action of the character group H =
(C*)7~! are parameterized naturally by W x W where W is the associated Weyl
group. It is shown that there is a natural one-to-one correspondence between
primitive ideals of C,[SL(n)] and symplectic leaves of the associated Poisson
algebraic group SL(n, C). © 1994 Academic Press, Inc.

Let g be a non-zero complex number which is not a root of unity. In [3]
the authors classified the primitive ideals of the quantum group C,[SL(3)},
showing that there is a natural bijection between the primitive ideals of
C,[SL(3)) and the symplectic leaves of SL(3, C) for the associated Poisson
group structure. Here we generalize this result to the quantum group
C,[SL(n)]. Denote by W the associated Weyl group and let ((w) be the
length of the element w € W. Let H be the usual maximal torus of SL(n).
Then SL(n) has a natural H-invariant Poisson structure and H acts by left
translation on the set Symp SL(n) of symplectic leaves of SL(n). The H-
orbits in Symp SL(n) are parameterized by the double Weyl group W x
W. For more details the reader is referred to the appendix of [3] where a
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complete description of the symplectic leaves is given using results of
Semenov-Tian-Shansky and Lu and Weinstein (see section four for a
definition of s(w)).

THEOREM (1) Symp SL(n) = | )ewxw Symp..SL(n).

(2) For eachw € W x W, Symp,.SL(n) is a non-empty H-orbit. If
A, € Symp,.SLin), then H/Staby ;. is a torus of rank equal ton — 1 —
s(w).

(3) The dimension of A, is l{w) + s(w).

The group H occurs again in the quantum case as the character group
which acts naturally as automorphisms on C,[SL(n)]. The primitive spec-
trum Prim C,[SL(n)] therefore decomposes into a union of H-orbits. Fol-
lowing ideas of Soibelman [7, 8], we define for each w € W x W a locally
closed H-invariant subset Prim,, C,[SL(n)] of Prim C,SL(n)]. The main
result of this paper is the following theorem which was conjectured in [3].

THEOREM 4.2. (1)  Prim C[SL(n)] = L, ewxw Prim,CSL(n)].
(2) Foreachw € W x W, Prim,/C,SL(n)] is a non-empty H-orbit. If
P, € Prim,C,[SL(n)], then H/StabyP.;. is a torus of rank equal ton — 1 —
s(w).
(3) The Gelfund-Kirillov dimension of C,[SL(n))/ P, is l(w) + s(w).

Since the proof follows the geometry closely, it is useful for the reader
to understand in a little more detail the description of the symplectic
leaves of G = SL(n, C). Let D = G X G, identify G with the diagonal
subgroup of D and let G, be the dual group. Denote by p the natural
projection G — D/G,. The symplectic leaves of G are precisely the con-
nected components of the inverse images of the left G,-orbits in D/G,. Set
I' = ker p and G = p(G). Then I is a finite subgroup of H and G = G/T is
an open subset of D/G,. Foreach w € W x W, let €, be the image of the
corresponding Bruhat cell of D in D/G,. Let B, = €, N G and let A, =
p~(4,). Since the G,-orbits in ¢, form a single H-orbit, it follows that the
symplectic leaves in A, also form a single H-orbit. The algebras A,., B,
and C, defined below may be considered as quantizations of the algebras
of functions on 4., %, and €, respectively. The role of the hamiltonian
vector fields in the quantized situation is played by the adjoint action of
C,SL(n)] on itself. For this reason, the key result is the description of the
adjoint action given in section three.

Much of the inspiration for this work came from work of Soibelman {7,
8]. When g isreal, g # 1, the quantum group C,[G ] together with a natural
involution * can be viewed as a deformation of C[K], the algebra of
functions on a maximal compact subgroup K of G. Soibelman showed that
the irreducible unitary representations of C,[K] correspond to the sym-
plectic leaves of K. A number of key definitions and results are taken from
these papers.
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These results were first announced at the Symposium on Noncommuta-
tive Rings in Durham in July 1992. More recently Joseph has generalized
the main result to the case of an arbitrary simply connected semi-simple
group.

|. PRELIMINARIES

Denote by g and G the Lie algebra sl{(n, C) and the Lie group SL(n, C)
respectively. Let ¢ be a non-zero complex number which is not a root of
unity and let 2 be the subgroup of C* generated by q. Denote by C,|G] the
usual quantization of C[G] and by U (g) the quantized enveloping algebra.
The notation used for the weights and roots of g is as in Bourbaki [1]. All
other undefined notation will be as in [3]. The Weyl group W can be
identified in a standard way with the symmetric group §, and we shall
often make this identification.

Let L(w,) be the finite dimensional simple U (g)-module corresponding
to the fundamental weight w,. Then L(w;) has a basis of the form {v,., }vew
where each v, has weight ww;. Let [_, . be a dual basis of L(w;)*. Fory,
t € W, the elements ¢, ,,, of C,[G] are defined by:

Yu € UyLg), ¢ rm (M) = 1 (00U,

We set ¢y = ¢Tig .o and ¢y = ¢ Thlim  w,., Where wy is the longest
element of W.
Foreach i€ {1, ..., n — 1}, we define a relation on W by y <, w if and

only if ym; = ww;. We say y =; w if and only if y 'ww; = w;. If we identify
W with S, then this partial order has the following interpretation. If I = {1,
..., I}, then y <, wif and only if yI = wl (where yI < wl means that if y/ =
{y,<---<ytand wi = {w; < --- < wy}, theny, = w, for all /). Set W; =
Stabw(w,-).

The following proposition is proved as in [8, Proposition 3.2]. It is a
consequence of the isomorphism L(w;) ® L(w;) = L(w;)) ® L(w,) given by
the universal R-matrix.

PrROPOSITION 1.1. Let w;, w, be fundamental weights and x,y, t € W.
Then

e N = Ntw, w)—~lxw,, yw,) . ©; Wy
Cyw, 1wl —xw W (q ) o ! e —xm,.w,( —yw, .oy

.o @,
+ z gu(q)( —’u.\‘wj ol —nw. e

new
XX My < v

for some g.(q) € C.
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DEFINITION., Letw = (w,,w )E W X W.Set I, = {c], |y #;w,)and
leté, ={c/w..cin li=1,...,n— 1}

THEOREM 1.2. Let P € Spec C,[G]. Then there exists a unique w €
W x Wsuch that P D 1, and P N &, = &,

Proof. First observe thatforalli =1, ..., n — 1, thereexistsan; € W
such that ¢, & Pbutc/, € Pforally £, w;. To see this let w and w’ be
two distinct elements of {y € W | ¢/, ¢ P} which are maximal for =,.
Suppose that w #; w'. 1t follows from Proposition 1.1 that ¢/, and ¢/ .
are normal and regular modulo P. Apply Proposition 1.1 to these elements
and notice that the exponent of ¢* is symmetric in w and w'. This implies
that (w;, w,) = (wa,, w'w;). Hence w =; w’. Thus we may take w; to be
any maximal element of {y € W ¢/, ¢ P}.

The same remark as above concerning the symmetry in w; and w; in
Proposition 1.1 shows that

(wi, ®) = (ww;., wjw;), foralll =ij=n-1

It is easy to see that this condition is equivalent to the existence of a
unique element w, € W such that w, =; w; for all i.

A similar argument produces an analogous element w_. The element w
= (w,, w_) is then the unique element such that » 2/, and P N €, =
N |

CoRrOLLARY 1.3. Ler Spec,CIG] = {P € Spec C{G]|P D I, and P N
€, = @}. Then Spec C[G] = U,ewxw Spec,C,(G].

Let E,. be the multiplicatively closed set generated by the images of the
elements of ¢,. in C,{G]//,. Since the elements of E, are normal we may
localise with respect to these elements. Denote by A, the localised alge-
bra (C{G1/1,)g . The analysis of Spec C/J|G] reduces to the analysis of
Spec A... Recall that A, # 0 for all w € W x W [3, Theorem 2.2.2].

Another important relation between the ¢/,’s is the following.

LEMMA 1.4, Lety,y € Wandi,j€ {1, ..., n — 1} such that yW; N
y'W; = . Then there exist scalars a,  such that

. + .4 . LT N +
[4 i,'\*(‘j,y" - a0 C 1}“(_;',;1‘
war' €W

and a,, # Qonly if uw; + 0'w; = yw, + ¥y'w; and either i >;y or u' >;y'.

Proof. Thisis a consequence of the Plucker relations {5, 1.2]. Suppose
that / =< j. Then the hypothesis yW; N y'W, = Jis equivalent to yI ¢ y'J
where/ ={1,...,ifandJ = {1, ..., j}. Lett € yI\y'J. Apply [5, 1.2] in the
following situation:
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1| = 1, 12 = .], J] = )'l\{f}, J‘_) = @, K = )".] U {I}
In the notation of that paper, we conclude that

> sangJr, K)sgn(K', K")sgn K", JoeT K el =0,

K'UK"=K

where #(K') = 1 and #(K") = j. We may pick u, u’ € W such that J, U
K'=uland K" = u'J. In this case ¢7'V% = ¢/, and ¢£" = ¢}, . 1t is easily
verified that if K' = {t'}, thent' >t u>;y,t=t'Du=;y,u’ =;y',and
v<t>u >y. |

2. THE STRUCTURE OF CY

Recall some of the notation and basic results from section 2 of [3].
Denote by H the group of one dimensional representations of C/{G].
Notice that H identifies naturally with the usual maximal torus of SL(n, C)
via x — (x(X;)). The group H acts naturally on C,[G] by aX = Za,x(a.)).
The elements ¢, are eigenvectors for this action and hence there is an
induced action of H on A, for all w. Denote by I" the subgroup of H
consisting of representations y such that x(X;) = +1. Set B,. = A'. Then
B.. contains the elements:

28y = ci(ef )l ti=ci, (i)l
We define C, to be the algebra
C.=Cl" 2t le==%y<iwe,i=1,..,n—1]

It is shown in [3, 2.6] that there exists a normal element d € C,,. such that
B, = C,[d™"]. The action of H restricts to an action on C,. and the fixed
ring is the subalgebra generated by the z's. That is

CH=Clzt,|e=*y<iwei=1,..,n—ll.

The monomials in the ¢! form a basis for C,. over C#. Hence C, is an
iterated skew Laurent extension of C¥.

DEFINITION. SetR*(w)={a ER|a>0,w.(a) <0},R (w) ={a ER
| <0, w_(a) >0} and set R(w) = R*(w) U R (w). For a € R define j, =
min{i | (o, w;) # 0}and l, = | + max{i| (&, w) # 0}. Fora € R*(w)set z, =
Z} w,s,- Notice that a is completely determined by e. j, and /, and that
#R(w) = I(w).
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THEOREM 2.1. Assume that 1 = j=n ~ 1,y =, w,. Then for e = =,

25, € Clzo | @ € Re(w) and j, < jor j, = jand w,s, =, y].

Hence C!' = Clz, | « € Rw)].

Proof. We prove the assertion for z;,, the proof in the other case
being similar. The result is trivially true in the case z;,.. = 1. By induction
we may assume that the result is true for all z;/,» where i < jori = j and
y <;y' =; w.. First suppose that there exists an i < j such that w, W; N
yW,; = J. Then Lemma 1.4 implies that

Z_/T_\' = Z au.u'ziuzﬁu'«
where y <; 4’ <; w. and g, € C. The result then follows by induction.
On the other hand suppose that w, W; N yW, # (J for all i <. In this case
we may assume that y =; w, for all i <j. But then it is easily verified that

WL~ YW = By T By = WaY)

where y = & — £, 1, € R*(w). Thus y =, w,s,and j, = j. Hence z;, =
Zy.

DEFINITION. Define a total ordering < on R(w) by the following rule:
if « € R*(w) and B8 € R™(w) then

Jg < Jar or
B<aifqjsg=Jo.n="+.e=—, or

Jg = Jasr € = 7, WeSg >, WS,

Notice that when jz = j,, the condition w,sz >, w,s, is equivalent to
we(lg) > we(l,). (This is not quite the same order as that defined in 3,
Definition 3.3].)

THEOREM 2.2. Let a > B € R(w). Then there exists an a € D such that
Za23 — 2320 € Clz, | ¥ < al.

Proof. Letj = j,,i=jg. First consider the case whena, 8 € R"(w). If
i = j, then it follows from the Plucker relations that z, and zz quasi-
commute. Suppose on the other hand that i < j. Set x = w,s,and y =
w. sg. It follows from Proposition 1.1 that there exist « € 2. and b, € C
such that

- - = b .zt *
lalp — Ugla = wljaux iy
XX e
y<y
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From the previous theorem we have that
Z ' EClz, |y € R*(Gw) and j, <jorj, = jand ws, =; ux],

and z;,, € Clz, | j, = i]. Since j, = j and ws, =; ux >; x = ws, implies that
v > a, the result follows in this case. The proof in the case when « and 8
belong to R (w) is similar. Now consider the case & € R7(w) and 8 €
R*(w). Setx = w_sgand y = w, s,. From Proposition 1.1, we have that:

- + -
Zalg — AZglo = Z bu LiaxLjuy -

RO N (RN LA

From the previous theorem, we deduce that

Z2iw € Clzy |y € R*(w), ¥y <B], Ziw € Clz, |y E R"(W), ¥y < al.

Hence the result follows easily when o and 8 belong to distinct R*(w). |

3. THE ADJOINT ACTION

Denote by Xj; the usual generators for C,[G; thatis, X; = ¢ % e, (1j1w, -
For J C Z and k € Z, define

1 ifk e J,
Sy = .
0 ifk&J,;

andset ¢ = ¢g°> — g™

LEMMA3.l., Letk,le{l,...,nljE{l,....n—llandy € W. SetJ =
{1, ....j}.

Xl«l(‘;y = (qz)ﬁul(q:)—5"\1('jT}'Xkl + (Sk.)'] - I) z é(_qz)dm"\"“(‘_/T(a.k)_vXul]»
a<ka€vJ
where d(a, vy, k) = #{x € yJ | a < x < k}.

Proof. This follows from the identities [6, 4.5.1, 5.1.2]. Let C [M(m)]
be the usual quantized algebra of functions on m X m matrices and let D;;
be the quantum minor obtained by deleting the ith row and the jth column.
Then the formulae in [6, 4.5.1, 5.1.2} may be combined to give:

A-1
Xlerm = (qZ)I\B/_,,.[(q2)8A_,—lDrmX“ - 8/\‘.r Z é(-qz)’ﬁ“; ]DaIXuI]-

a=1

Interpreting this formula for the ¢, yields the desired result. |
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The adjoint action of an element « € C,[G] on b € A, is given by (ad
a)b = Za,bS(ap) where S is the antipode. We denote ad Xy, by ady,. It
follows from the description of the action of I" that B, is invariant under
the adjoint action. The following results imply in particular that C,. and
C! are also invariant and that the adjoint action on C, is locally finite.

THEOREM 3.2. (@) Leta € RT(W),j = Jo, I = L,, and y = w, s,. Then

(qZ)SA,wu‘ﬁA.uza lfk =m
adi mZa = 4 Al Zjm ko fw(h=m<k=sw(j) k&y, meyl

0 otherwise,
where ay,, € C*. In particular ad, ;.1 2« € C*.
(b) Let BER (W), j=jg, I =1ly,andy = w_s4. Then
(gD 1™z ifk =m
adl\.mzﬁ = bl\.m.yz,zt(m.l\)_\‘ ifw_() = k<m= w_(j), ke v, m & v

0 otherwise,

where by ,,, € C*. In particular ad,, ), (zg € C*.

Proof. (a) Lemma 3.1 implies that
CJT“WX[\'[ = (qz)"sl.l*ﬁk.u '}X[\[('jTW_
modulo I,.. Therefore we deduce from the lemma that

Xkl Z;y = (612)5“ " 'j[(qz) ~ }Z_E_\l Xkl
S IR R S| P2 CERR R, o)

a<k.a€EyJ
Since ady 2/, = E;Xuzf,_‘.S(X,,,,) and 2, X, S(X,s) = 8,4 we deduce that

adk,mzfy
(qz)ak‘“diak'UZﬁy ifk=m

= ¢ = G(gHP (=g R iy Em <k, mE yJ, k& yJ, (m, k)y <;w,
0 otherwise.

In the case where y = ws, and j = j,, it is easily seen that the condition

w.l) =m<k=w,()), k& yJ, mE€ yJis equivalent to m < k, m € yJ,
k & yJ, (m, k)y <; w.. A similar argument proves part (b). |
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CoOROLLARY 3.3. Letr €N.

1. Ifa € R*(w)andy = w,s,, then

AZe ifk = m
adk,ng, = a’Zf{' Jk = w+(ja) and m = W+(1“)
0 unless w.(l) =m <k <w,(j), k& yJ, mey]
ork =m,

where a € 2 and a' € C*.
2. IfBER Wandy = w_sa, then

bzy ifk=m
ad .25 = bz ifk=w_(lg)and m = w_(jp)
mlp =
0 unless w_(lp) =k <m=w_(jp. k€ yJ,mée&yl
ork =m,

where b € 2 and b’ € C*.

Proof. The proof is analogous to that of [3, 3.9.2). |

It follows from Theorem 2.2 that the aigebra C? is generated by mono-
mials of the form

z = 1—1 Z;n” H ZM

YER (W) BER w)

where the product is taken over the y’s according to the inverse ordering
given by < on R*(w) and the second product is taken over the 8’s accord-
ing to the ordering < on R~ (w). Such monomials will be called standard
monomials. In order to define an ordering on such expressions we define a
new ordering on R(w).

DEefFINITION. Define a new total ordering <’ in the following way: if
a € R%(w) and B8 € R"(w), then

g=—,n=-+ or
(23 >' B lf & = 7)’ we([a) < H,S(lﬁ)w or
e =1, Myg(la) = M"e(lﬂ)v ja <Jﬂ
The following proposition follows easily from the definition.

481,168/2-7
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PROPOSITION 3.4. Suppose a, 8 € R(w).

1. Ifa>' Band a> B, then j, = jg and w.il,) < w.lp).
2. Ifa>'Band a > B, then j, < jz and wdl,) = wlp).

For a standard monomial z = I1,,crumz5" of the form given above, we
define

Supp(z) = {a € R(w) | m, # 0}

and MSupp(z) to be the largest element of Supp(z) under the ordering <’.
Define the degree of a non-zero standard monomial, deg(z) to be the
element (m,), of NR) and define ¢, by (€.)g = 8a.p-

PrOPOSITION 3.5. Let a € R(w). Set (k, m) = (w, (j,), will)) if ¢ €
R*(w), (k, m) = (w_(L), w_(J.) if @ € R~(w).

1. If MSupp(z) = a, then ad .z is a scalar multiple of a standard
monomial and deg(ad, ,,z) = deg(z) — e,.
2. If MSupp(z) <' «, then ad; ,,z = 0.

Proof. Let z be a monomial such that MSupp(z) <’ «. Then we may
write

z= (H z;"y> ZZ’Q(H Zfz"a),

b2 B

where the products are ordered as described above. We prove the result
by induction on e(z) = #{Supp(z)\{a}). We first consider the case where
a € R~ (w). We prove that if k" < k then

ady z = Sk'vk(ﬂ adk_kzZ’*)adk‘,,,zZ"' (H ad,,,‘ng'”)
Y B

Suppose that e(z) = 0. Then z = z= and the result is true by Corollary
3.3. Now assume that the proposition is true for all monomials y such that
MSupp(y) =’ a and e(y) < e(z). We consider three cases.

{1) Suppose that z = ¢y, where £ = z7» and y € R7(w). Write
ady .z = 2, ady £ad, ,y. Suppose that ad, £ and ad, .,y are non-zero for
some s. From ady £ # 0 it follows that s < k' < k. By induction we
conclude from ad, ,y # O that s = k = k.

(2) Suppose that z = ¢y, ¢ = z3” where y € R°(w) and vy < a.
Proposition 3.4 implies that j, < j,and k = w_(l,) < w_(l,). Write ady ,,z =
2, ady £ad, y. Suppose that ad, £ and ad, ,y are nonzero for some s.
Then k' < 5. If s # k', we have w_(l,) = k' <s = w_(j,). Hence w_(l,) =
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k" = k, a contradiction. Thus s = &’ < kand by inductionk = k' = s = m.
Hence k' = s = k.

(3) Suppose that z = y¢ where ¢ = z3* where 8 € R"(w) and b > a.
Then Proposition 3.4 implies that jz > j, and k = w_(l,) = w_(l5). Write
ady .,z = ady ;y ad; .£ and suppose that ady ,y > 0 and ad; ,,£ # 0. Then
s = m. If s < m, we must have

w(jo = me&ys = {w (1), .., w(jg— 1), w_(lg}
But this contradicts j, < jg. Hence s = m. Then ady ,,y # 0 and induction
yields the result. The case when o € R*(w) is similar. 1
Using induction on the degree of a standard monomial we then obtain:
THEOREM 3.6. Let z be a standard monomial. Then there exists a
monomial fin the X;; such that
1. (ad f)z € C*;
2. (ad fHz' = 0ifz’ is a standard monomial with deg z’ <' deg z.

The theorem implies in particular that the standard monomials are lin-
early independent. This fact together with the commutation relations of
Theorem 2.2 implies the following.

COROLLARY 3.7. The algebra C¥ is an iterated skew polynomial ring
in l(w) variables.

As we noted above, C, is a skew Laurent extension of C# in rkG
variables. Thus C,, is a deformation of the algebra of functions on the
variety €,. = C'™ x (C*)"*G described in |3, A.2]. Similarly the algebra B,,
= C,td '] is a deformation of the algebra of functions on the open subset
B, of €.

LEMMA 3.8. Letk,l€{l, ..., ntandletjE{l, ...,n — 1}. Then
adk‘ﬂj = Bk,qz""vtj

where Yi; = 84y = Srw.in-

Proof. If follows from Lemma 3.1 that Xy,¢/,., = (g2 %t Xy
Similarly Xyc;, = (g9)%/ % D¢/, Xy. The result is then clear. |

Denote by ¥ the n X (n — 1) matrix (). It inducesamap ¥ : 2! —
z

THEOREM 3.9. The subalgebra Clt;'|i =1, ... n — 1]is invariant and
diagonalisable under the adjoint action. The subalgebra of ad-invariant
elements is
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Ciz'fi=1,...n— 1] =Clt™ | ¥m = 0]

which is the algebra of functions on a (commutative) torus with rank dim
kery(w,w ™' — Id).

Proof. It is clear from the lemma that ad; ;1™ = g*¥™™. Thus the
subalgebra of ad-invariants is the linear span of the monomials ¢® for m €
ker V. Identify h* with the usual subspace of V = (¢, ..., g,)c. Let & be
the linear map on V given by the matrix [¥ : 0] with respect to this basis.
Then ®(e;) = (w, — w )eg, + -+ + g &). Hence rank(ker ¥) =
dim(ker ®) — 1 = dim(kerp«(w, — w.)) = dim(kerp(w.w=' — Id)). |

4. PRIMITIVE SPECTRUM OF C, |G|

We are now able to deduce the main result.

DEFINITION. Let K be a subgroup of Z" ! such that Z""! = ker ¥ &
K. Set

Ci = CHlm|m e K]

and let B, = C,;[d"].

It follows from [3, 2.7] and Corollary 3.7 that C; is a localization of an
iterated skew polynomial ring. Hence C,, and B, are integral domains.
Furthermore C,, = C,, ® C* B, = B; ® C as C,G1-module algebras
and C% = C[¢;'|i= 1, ... n — 1]™ as described in Theorem 3.9.

Set s(w) = codim(kery-(w,w_' — 1d)), (c.f. [3, A.2]).

THEOREM 4.1. B, = B, ® C¥ and B, is a simple algebra. The center
of B.. is C2 and the ideals of B,, are generated by their intersection with
the center. Thus Spec B, = Spec C* and Prim B, = Prim C¥. The
primitive ideals of B, are maximal and form an H-orbit. If P € Prim B, ,
then H/Staby P is a torus of rank equal to rank G — s(w) and the Gelfand-
Kirillov dimension of B../P is [(w) + s(w).

Proof. Let P, be the ideal of B, generated by {t™ — 1 | m € ker ¥}.
Then P, is an ad-invariant ideal and B, = B, /P, as C,[G-module alge-
bras. Suppose that B,; is not simple. Then by *‘going up’’ [4, 10.5.15] B,;
contains a proper non-zero ad-invariant ideal, /. In this case I N C; is a
proper non-zero ad-invariant ideal of C,;. Let CK = C[t™ | m € K. Since
CK is diagonalizable under the adjoint action and C,. = C? ® CK as
C,[G]-modules, it follows that the socle of C;. under the adjoint action is
given by

Soc €, = Soc CH Q@ CK =C®CK.
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Thus Soc C,; is a direct sum of distinct one-dimensional submodules each
generated by a unit. Since / N C,; must intersect nontrivially at least one
summand of the socle, it must contain a unit, a contradiction. Thus B,; is
simple.

Let o : H— H/T be the map o (h) = h'l'. Then the action of H on C[¢;"' |
i =1, .. n— 1} factors through ¢ and the induced action of H/I" is the
natural action of a torus on its algebra of functions. This, together with
Theorem 3.9 implies the assertions concerning the f-action. The asser-
tion concerning the Gelfand-Kirillov dimension follows from a slight gen-
eralization of [4, 8.2.10]. 1

Notice that Theorem 4.1 implies that all prime ideals of C[G]" are
completely prime. This result may also be deduced from [2] where it is
proved that all prime ideals of C,|G] are completely prime.

Recall that a Noetherian C-algebra A is said to satisfy the Dixmier—
Moeglin condition if the following are equivalent for P € Spec A: (a) P is
primitive; (b) P is rational (the center of the ring of fractions of A/P is C);
¢) P is locally closed in Spec A.

THeorem 4.2. (1) Prim C,[G1 = U.ewxw Prim,, C,[G].
(2) For eachw € W x W, Prim,C,[G] is a non-empty H-orbit. If
P, € Prim,C,[G], then H/Staby P is a torus of rank equal to rank G ~
s(w).
(3) The Gelfand-Kirillov dimension of C,(G1/ P, is liw) + s(w).
(4) C,G] satisfies the Dixmier-Moeglin condition.

Proof. Notice first that C,[G] satisfies the nullstellensatz, [4, 9.1.8].
Therefore (a) = (b) and (c) = (a) for any P € Spec C,IG]. Let P €
Spec,C,[G] be rational and let 9 = P N C,[G]". Since C%' is central in
A.., PA,. N C* must be a maximal ideal of C%. Thus OB, is maximal by
Theorem 4.1. It then follows from ‘‘going up’’ [4, 10.5.15] that any prime
ideal strictly containing P must contain the product of the elements of €,,.
Hence P is locally closed and primitive. Thus C,[G] satisfies the Dixmier—
Moeglin condition. Since I' acts transitively on the primitive ideals of
C,[G]lying over @ and H acts transitively on the maximal ideals of B,, it
follows easily that H acts transitively on Prim,. C,G]. Since the action of
H is algebraic H/Staby P must be a torus whose rank is rkG — s(v) by
Theorem 4.1. The assertion concerning the Gelfand-Kirillov dimension
follows from [4, 8.2.9]. 1

Comparing this result with Theorem A.3.2 of [3], we see that there
exists an H-equivariant bijection 8 : Prim C,[G] — Symp G such that
B(Prim,C,G]) = Symp,G for all w € W X W and such that dim B(P) =
GKdim C,[G]/P for all P € Prim C,[G]. Thus Conjecture 1 of 3] is true.
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