Distance-regular Graphs with $\Gamma(x) \simeq 3 \ast K_{a + 1}$

NORIO YAMAZAKI

We show that a distance-regular graph Γ with $\Gamma(x) = 3 \ast K_{a+1}$ (at least two for every $x \in \Gamma$ and $d \geq r(\Gamma) + 3$ is a distance-2 graph of a distance-biregular graph with vertices of valency 3. In particular, intersection numbers $c_i, a_i, b_i (0 \leq i \leq d)$ can be denoted by at most four parameters.

© 1995 Academic Press Limited

1. INTRODUCTION

Let Γ be a connected undirected finite graph without loops or multiple edges.

In the following if α is a vertex of Γ, then we write $\alpha \in \Gamma$. For $\alpha, \beta \in \Gamma$, let $\delta(\alpha, \beta)$ be the distance between α and β. Let d be the maximal distance in Γ and we call it the diameter of Γ.

Let $\Gamma_i(\alpha) = \{\beta \in \Gamma \mid \delta(\alpha, \beta) = i\}$, and write $\Gamma(\alpha) = \Gamma_1(\alpha)$. For vertices α, β in Γ with $\delta(\alpha, \beta) = i$, let

\begin{align*}
&c_i(\alpha, \beta) = |\Gamma_{i-1}(\alpha) \cap \Gamma(\beta)|, \\
&a_i(\alpha, \beta) = |\Gamma_i(\alpha) \cap \Gamma(\beta)|, \\
&b_i(\alpha, \beta) = |\Gamma_{i+1}(\alpha) \cap \Gamma(\beta)|.
\end{align*}

Γ is said to be distance-regular if for each i the numbers $c_i(\alpha, \beta), a_i(\alpha, \beta)$ and $b_i(\alpha, \beta)$ depend only on $i = \delta(\alpha, \beta)$. In this case, we write c_i, a_i and b_i for the corresponding numbers and we call them the intersection numbers of Γ. Note that $c_0 = a_0 = b_0 = 0$. We call $k = b_0$ the valency of Γ.

A bipartite graph Γ is said to be distance-biregular if for each i the numbers $c_i(\alpha, \beta)$ and $b_i(\alpha, \beta)$ depend only on i and the part the base point α belongs to.

For the basic properties of the parameters $c_i, a_i,$ and b_i of distance-regular graphs, see [6]. For example, we have the following:

1. $c_i + a_i + b_i = k$, for $0 \leq i \leq d$;
2. $1 = c_1 \leq \cdots \leq c_d$;
3. $k = b_0 > b_1 \geq \cdots \geq b_{d-1} > 0$.

Let

\[r(\Gamma) = \#\{i \mid (c_i, a_i, b_i) = (c_1, a_1, b_1)\}. \]

In the following we denote $a = a_1$.

We shall investigate the distance-regular graphs which satisfy the following:

(*) For every α and β in Γ with $\delta(\alpha, \beta) = 1$, an induced subgraph $\Gamma(\alpha) \cap \Gamma(\beta)$ is a complete graph or a graph without vertices.

In this case, it follows that

\[\Gamma(\alpha) = m \ast K_{a + 1} \]

for some m and for all $\alpha \in \Gamma$, where K_{a+1} is the complete graph with $(a + 1)$ vertices and $m \ast K_{a+1}$ means the disjoint union of $m K_{a+1}$'s. Clearly, we have $k = m(a + 1)$.

For example, if $r(\Gamma) \geq 2$ or $a \leq 1$, then Γ satisfies the condition (*) (see [6]). If $m = 1$, then it is easy to see that Γ is a complete graph.
The case \(m = 2 \) is treated by Mohar and Shawe-Taylor [11]. They showed that if \(k > 2 \), then \(\Gamma \) is isomorphic to the line graph of a Moore graph or the point graph of a generalized \(2d \)-gon of order \((a + 1, 1)\).

Suppose that \(m = 3 \). If \(a = 0 \), then \(k = 3 \). Distance-regular graphs of valency 3 have been completely classified by several authors (see [4]).

Recently the case \(m = 3 \) and \(a = 1 \) was treated by Hiraki et al. [8]. They showed that there are only four graphs in this class.

This paper is devoted to the case \(m = 3 \) and \(a > 2 \). In this class, the author only knows the following examples: the Hamming graph \(H(3, a + 1) \); and the point graph of a generalized \(2d \)-gon of order \((a + 1, 2)\).

We see that \(d (= 3) = r(\Gamma) + 2 \) in the first case, and that \(d (\leq 4) = r(\Gamma) + 1 \) in the second case.

We now state our main result of this paper.

Theorem 1.1. Let \(\Gamma \) be a distance-regular graph with \(\Gamma(x) = 3 \cdot K_{a+1} \) for all \(x \in \Gamma \) and \(a > 2 \). If \(d > r(\Gamma) + 3 \), then \(\Gamma \) is a distance-2 graph of a distance-biregular graph with vertices of valency 3.

This result means that all intersection numbers can be denoted by at most four parameters. (In the case \(d \geq r(\Gamma) + 3 \), see Theorem 4.1. In the case \(d \leq r(\Gamma) + 2 \), this is clear.) We hope that our result gives a key to a classification of distance-regular graphs with \(\Gamma(x) = 3 \cdot K_{a+1} \).

For a subset \(S \subset \Gamma \), we sometimes recognize it as the induced subgraph with the vertex set \(S \). In particular, for \(\alpha, x \in \Gamma \) with \(\delta(\alpha, x) = i \), we call the induced subgraph \(\Gamma_{i-1}(\alpha) \cap \Gamma(x) \) the \(c_i \)-graph with respect to \((\alpha, x)\) and \(\Gamma_{i+1}(\alpha) \cap \Gamma(x) \) the \(b_i \)-graph with respect to \((\alpha, x)\). We call a complete subgraph a **clique** and a subgraph without edges a **coclique**.

For vertices \(x, y \) with \(x \neq y \), we write \(x \sim y \) when \(\delta(x, y) = 1 \), and \(x \not\sim y \) otherwise.

In the rest of the paper, we assume that \(\Gamma \) is a distance-regular graph with \(\Gamma(x) = 3 \cdot K_{a+1} \) for all \(x \in \Gamma \), and that \(r = r(\Gamma) \).

2. Intersection Diagram

Let \(e(A, B) \) denote the number of edges between subsets \(A, B \) of \(\Gamma \), and let \(e(\{x\}, A) = e(x, A) \) for \(x \in \Gamma \).

For \(\alpha, \beta \in \Gamma \) with \(\alpha \sim \beta \), we set \(D_i^\alpha(\alpha, \beta) = \Gamma_i(\alpha) \cap \Gamma_j(\beta) \). In particular, we denote \(D_i^\alpha = D_i^\alpha(\alpha, \alpha) \) with a fixed pair of vertices \((\alpha, \alpha)\). The **intersection diagram** with respect to \((\alpha, \beta)\) is the collection \(\{D_i^\alpha\}_{i,j}^\beta \) with lines between \(D_i^\alpha \)'s and \(D_i^\beta \)'s. Basic properties of the intersection diagram are summarized in [5] and [7]. In particular, the following holds for every pair of the base points \((\alpha, \beta)\) with \(\alpha \sim \beta \).

Lemma 2.1. The following hold:

1. \(e(D_i^{-1}, D_i^\alpha) = e(D_i^{-1}, D_i^\beta) = e(D_i^{-1}, D_i^{-1}) = e(D_i^{-1}, D_i^{-1}) = 0 \) for \(2 \leq i \leq r \).
2. \(e(D_j^{r+1}, D_j^{-1}) = 0 \).
3. \(e(D_j^\ast, D_j^\ast) = 0 \).
4. \(e(D_j^\ast, D_j^\ast) = 0 \).
5. \(e(D_{r+1}^\ast, D_{r+1}^\ast) = 0 \).

Proof. See [7].
REMARK. In [7], these properties depend on the assumption that \(r \geq 2 \), but we can also have them under the assumption that \(\Gamma \) satisfies the condition (*).

If \(c_{r+1} \geq 2 \), the shape of the intersection diagram is as shown in Figure 1.

\[
\{ \alpha \} = D_0^0 \rightarrow D_1^1 \rightarrow \ldots \rightarrow D_r^r \rightarrow D_{r+1}^{r+1} \rightarrow \cdots
\]

\[
\{ \beta \} = D_0^0 \rightarrow D_1^1 \rightarrow \ldots \rightarrow D_r^r \rightarrow D_{r+1}^{r+1} \rightarrow \cdots
\]

FIGURE 1.

If \(c_{r+1} = 1 \), the shape of the intersection diagram is as shown in Figure 2.

\[
\{ \alpha \} = D_0^0 \rightarrow D_1^1 \rightarrow \ldots \rightarrow D_r^r \rightarrow D_{r+1}^{r+1} \rightarrow \cdots
\]

\[
\{ \beta \} = D_0^0 \rightarrow D_1^1 \rightarrow \ldots \rightarrow D_r^r \rightarrow D_{r+1}^{r+1} \rightarrow \cdots
\]

FIGURE 2.

If \(c_{r+1} \geq 2 \), we say that the numerical girth \(g \) of \(\Gamma \) is \(2r + 2 \). If \(c_{r+1} = 1 \), we say that \(g = 2r + 3 \). If \(\Gamma \) satisfies the condition (*), then the length of a shortest circuit without a triangle is equal to the numerical girth \(g \) (see [6]).

We easily obtain the following.

LEMMA 2.2. Suppose \(c_{r+1} = 1 \). Let \(\alpha, \beta \in \Gamma_{r+1}(x) \) with \(\alpha \sim \beta \), \(\alpha' \in \Gamma(x) \cap \Gamma_r(\alpha) \), and \(\beta' \in \Gamma(x) \cap \Gamma_r(\beta) \). If \(\Gamma(\alpha) \cap \Gamma(\beta) \cap \Gamma_r(x) = \emptyset \), then \(\delta(\alpha', \beta') = 2 \).

PROOF. We consider the intersection diagram with respect to \((\alpha, \beta)\). Clearly, \(x \in D_r^{r+1} \). Let \(\alpha'' \in \Gamma(\alpha) \cap \Gamma_{r-1}(\alpha') \) and \(\beta'' \in \Gamma(\beta) \cap \Gamma_{r-1}(\beta') \). Note that \(\delta(x, \alpha'') = \delta(x, \beta'') = r \). By our assumption, we have \(\alpha'' \in D_2^2 \) and \(\beta'' \in D_2^2 \). So \(\alpha' \in D_{r+1}^{r+1} \) and \(\beta' \in D_{r+1}^{r+1} \). Hence \(\alpha' \sim \beta' \) by Lemma 2.1(5). \(\Box \)

3. Case of Even Numerical Girth

In this section we shall consider the case \(c_{r+1} \geq 2 \). We note that our argument works for \(a = 1 \) as well, in this case.

THEOREM 3.1. Let \(\Gamma \) be a distance-regular graph with \(\Gamma(x) = 3 \ast K_{a+1} \) for all \(x \in \Gamma \). If \(a = 1 \) and \(c_{r+1} \geq 2 \), then one of the following holds:

1. \(c_{r+1} = 3 \) and \(d = r + 1 \); or
2. \(c_{r+1} = 2 \) and \(d = r + 2 \).

Firstly, we show the following.
LEMMA 3.2. The following hold:
(1) \(c_{r+1} \leq 3 \). In particular, if \(c_{r+1} = 3 \), then \(d = r + 1 \).
(2) If \(c_{r+1} = 2 \), then \(a_{r+1} \geq 2a \).

PROOF. (1) Let \(\alpha, x \in \Gamma \) with \(\delta(\alpha, x) = r + 1 \). Since \(\Gamma(x) = 3 \ast K_a+1 \), it follows from Lemma 2.1(4) that \(c_{r+1} \leq 3 \). Moreover, if \(c_{r+1} = 3 \), then \(\Gamma(x) \subset \Gamma(\alpha) \cup \Gamma_{r+1}(\alpha) \); that is, \(d \leq r + 1 \).

(2) Let \(\alpha, x \) be as in (1). Let \(x_1, x_2 \in \Gamma(\alpha) \cap \Gamma(x) \). By Lemma 2.1(4), \(x_1 \neq x_2 \). As \(c_{r+1} = 2 \), we obtain \(\Gamma(x) \cap \Gamma(x_i) \subset \Gamma_{r+1}(\alpha) \) for \(i = 1, 2 \). Since \(\Gamma(x) \cap \Gamma(x_1) \) and \(\Gamma(x) \cap \Gamma(x_2) \) are disjoint, we obtain \(a_{r+1} \geq |\Gamma(x) \cap \Gamma(x_1)| + |\Gamma(x) \cap \Gamma(x_2)| = 2a \).

By the previous lemma, we may assume that \(c_{r+1} = 2 \).

LEMMA 3.3. Let \(c_{r+1} = 2 \). If \(d \geq r + 3 \), then every \(c_{r+2} \) graph is a disjoint union of exactly two cliques. In particular, if \(c_{r+2} = 2 \), then every \(c_{r+2} \) graph is a coclique.

PROOF. By Lemma 2.1(4), every \(c_{r+1} \) graph is a coclique of size 2. Let \(\alpha, x \in \Gamma \) with \(\delta(\alpha, x) = r + 2 \). Since every \(c_{r+2} \) graph contains a \(c_{r+1} \) graph, \(\Gamma_{r+1}(\alpha) \cap \Gamma(x) \) contains a coclique of size 2. If \(d \geq r + 3 \), then \(\Gamma_{r+1}(\alpha) \cap \Gamma(x) \neq \emptyset \). So the assertion follows from our assumption that \(\Gamma(x) = 3 \ast K_a+1 \).

Now we consider the intersection diagram with respect to \((\alpha, \beta)\), with \(\alpha \sim \beta \).

LEMMA 3.4. If \(c_{r+1} = 2 \) and \(d \geq r + 3 \), then \(e(D^{r+1}_{r+1}, D^{r+2}_{r+1}) = 0 \).

PROOF. Assume that \(e(D^{r+1}_{r+1}, D^{r+2}_{r+1}) \neq 0 \). Let \(x \in D^{r+2}_{r+1} \) and \(y \in D^{r+1}_{r+2} \), with \(x \sim y \). Since \(c_{r+2} = 2 \), there exist \(z_1, z_2 \in D^{r+1}_{r+1} \) such that \(z_1, z_2 \in \Gamma(x) \). Note that \(\delta(z_1, z_2) \neq 1 \) by Lemma 2.1(4). By Lemma 3.3, it must hold that \(y \sim z_1 \) or \(y \sim z_2 \). This is impossible.

To prove Theorem 3.1, we consider two cases, as set out below.

Case 1: \(c_{r+1} = 2 \) and \(a_{r+1} = 2a \). We need the following result by Hiraki [7].

PROPOSITION 3.5 [7]. Let \(\Gamma \) be a distance-regular graph with \(a = a_1 \geq 1 \), \(c_{r+1} = 2 \) and \(a_{r+1} = 2a \). Then \((c_{r+1}, a_{r+1}, b_{r+1}) \neq (c_{r+2}, a_{r+2}, b_{r+2}) \).

LEMMA 3.6. If \(c_{r+1} = 2 \) and \(a_{r+1} = 2a \), then the following holds:
(1) \(e(x, D^r_\alpha) = 1 \) for all \(x \in D^{r+1}_{r+1} \).
(2) Let \(x \in D^{r+1}_{r+1} \), \(x_1 \in D^{r+1}_{r+1} \) and \(x_2 \in D^{r+1}_{r+1} \) with \(x_1 \sim x \sim x_2 \). Then \(x_1 \sim x_2 \).
(3) \(e(D^{r+1}_{r+1}, D^{r+2}_{r+1}) = e(D^{r+1}_{r+1}, D^{r+2}_{r+1}) = 0 \) and \(c_{r+2} = 2 \).
PROOF. For (1) and (2), see Lemma 3.4 and Lemma 3.5 in [7].

(3) Let \(x \in D_{r+1}^{r+1} \). By (1), there exist \(y_1 \in D_r \), \(y_2 \in D_{r+1}^{r+1} \) and \(y_3 \in D_r^{r+1} \), with \(y_1, y_2, y_3 \in \Gamma(x) \). By Lemma 2.1(3), we have \(y_2 \not\sim y_1 \not\sim y_3 \). On the other hand, we have \(y_2 \sim y_3 \) by (2). Since

\[
2a = |\Gamma(x) \cap \Gamma_{r+1}(\alpha)| \\
\geq |\Gamma(x) \cap (D_r^{r+1} \cup D_{r+1}^{r+1})| + |\Gamma(x) \cap D_r^{r+1}| \\
\geq |\Gamma(x) \cap (D_r^{r+1} \cup D_{r+1}^{r+1})| \\
= |\Gamma(x) \cap \Gamma(y_1) \cup (\Gamma(x) \cap \Gamma(y_2))| \\
= 2a,
\]

we have \(e(x, D_{r+1}^{r+1}) = 0 \). This implies that \(e(D_r^{r+1}, D_{r+1}^{r+1}) = 0 \). Hence we have \(e(D_r^{r+1}, D_{r+1}^{r+1}) = 0 \) as well.

If \(z \in D_{r+1}^{r+1} \), then \(e(z, D_{r+1}^{r+1}) = 0 \) by Lemma 3.4. Since \(e(z, D_{r+1}^{r+1}) = 0 \), we have \(\Gamma(z) \cap \Gamma_{r+1}(\alpha) = \Gamma(z) \cap \Gamma_{r+1}(\beta) \). Thus we have \(c_{r+2} = 2 \).

Now we prove Theorem 3.1 under the assumption that \(a_{r+1} = 2a \). Since \(c_{r+2} = 2 \) by the previous lemma, it follows from Proposition 3.5 that \(b_{r+2} < b_{r+1} \). Therefore there exist \(x \in D_{r+1}^{r+1} \) and \(y \in D_{r+2}^{r+2} \) such that \(x \sim y \).

We claim that there exists \(z \in D_{r+1}^{r+1} \) such that \(y \sim z \). Suppose not. Then there exist \(z_1 \in D_{r+1}^{r+1} \) and \(z_2, z_3 \in D_{r+1}^{r+1} \) such that \(x \not\sim z_1, z_2 \not\sim z_3 \) and \(\{z_1, z_2, z_3\} \subseteq \Gamma(y) \). Since \(\{x, z_1\} \) and \(\{z_2, z_3\} \) are cocliques by Lemma 3.3 and \(e(D_{r+1}^{r+1}, D_{r+1}^{r+1}) = 0 \) by Lemma 3.4, it follows that \(\{x, z_1, z_2, z_3\} \subseteq \Gamma(y) \) is a coclique of size 4. This is impossible.

Since we have \(e(z, D_r) = 1 \) by Lemma 3.6(1), there is a vertex \(y \in D_1 \) such that \(\delta(y, x) = r + 1 \). Since \(e(D_{r+1}^{r+1}) = 0 \) for \(1 \leq i \leq r \), we have \(\delta(y, z) = r + 2 \). Thus,

\[
D_{r+2}^{r+2}(y, \beta) \ni y \in D_{r+2}^{r+2}(y, \beta).
\]

This contradicts Lemma 3.4. Therefore we obtain the desired result when \(a_{r+1} = 2a \).

Case 2: \(c_{r+1} = 2 \) and \(a_{r+1} > 2a \). Let \(S(\alpha, \beta) \) be the set defined as follows:

\[
S(\alpha, \beta) = \{x \in D_{r+1}^{r+1} \mid e(x, D_{r+1}^{r+1}) = e(x, D_{r+1}^{r+1}) = 2\}.
\]

LEMMA 3.7. If \(c_{r+1} = 2, a_{r+1} > 2a \) and \(d \geq r + 2 \), then \(S(\alpha, \beta) \neq \emptyset \) for some edge \(\alpha \beta \).

PROOF. Let \(\alpha, \beta, y \in D_1 \) such that \(\delta(\alpha, x) = r + 1, \gamma_1 \not\sim \gamma_2 \) and \(\gamma_1, \gamma_2 \in \Gamma(\alpha) \cap \Gamma(y) \). We note that \(\gamma_1 \not\sim \gamma_2 \) by Lemma 2.1(4), and that \(\Gamma(\alpha) \cap \Gamma(y) \subseteq \Gamma_{r+1}(x) \) and \(\Gamma(\alpha) \cap \Gamma(y) \subseteq \Gamma_{r+1}(x) \) as \(c_{r+1} = 2 \). Since \(a_{r+1} > 2a \), there exists a vertex \(\beta \in \Gamma_{r+1}(x) \cap \Gamma(\alpha) \) such that \(\beta \not\sim \gamma_1 \) and \(\beta \not\sim \gamma_2 \). Considering the intersection diagram of rank 1 with respect to \((\alpha, \beta) \), we see that \(\gamma_1, \gamma_2 \in D_2 \) and \(x \in D_{r+1}^{r+1} \). Let \(\gamma_i \in \Gamma_{r-1}(\gamma_i) \cap \Gamma(x) \) for \(i = 1, 2 \). Then \(\gamma_1 \not= \gamma_2 \). Otherwise, it follows that \(\gamma_1, \gamma_2 \in \Gamma_{r-1}(\gamma_i) \cap \Gamma(\alpha) \) and it is contradictory that \(c_{r+1} = 1 \). Since it is clear that \(\gamma_i \in D_{r+1}^{r+1} \) for \(i = 1, 2 \), we have \(e(x, D_{r+1}^{r+1}) > 2 \); that is, \(x \in S(\alpha, \beta) \).

LEMMA 3.8. Let \(x \in S(\alpha, \beta) \), \(\{y_1, y_2\} = D_{r+1}^{r+1} \cap \Gamma(x) \) and \(\{y_3, y_4\} = D_{r+1}^{r+1} \cap \Gamma(x) \). If \(d \geq r + 3 \), then the following hold:

1. There exists a vertex \(\gamma \in D_1 \) such that \(\delta(\gamma, x) = r + 2 \).
2. \(y_1 \not\sim y_3 \) and \(y_2 \not\sim y_4 \), or \(y_1 \not\sim y_2 \) and \(y_3 \not\sim y_4 \).
PROOF. (1) Since $e(x, D_1') = 0$, we have $D_1' \cap \Gamma_r(x) = \emptyset$. Hence the clique D_1' contains a b_{r+1}-graph $\Gamma_{r+2}(x) \cap \Gamma(\alpha)$. Thus we have (1).

(2) Let γ be as in (1). Then $\{y_1, y_2, y_3, y_4\} \subset \Gamma(x) \cap \Gamma_{r+1}(\gamma)$. Since $d \geq r + 3$, every c_{r+2}-graph is a union of two cliques. On the other hand, we have $y_1 \not\sim y_2$ and $y_3 \not\sim y_4$ by Lemma 2.1(4). Hence either $y_1 \sim y_3, y_2 \not\sim y_4$ or $y_1 \not\sim y_4, y_2 \sim y_3$.

Let α, β, γ, x and $y_i (i = 1, 2, 3, 4)$ be as in Lemma 3.8. We assume that $y_1 \sim y_3$ and $y_2 \sim y_4$. We set a circuit of length $2r + 3$ as follows:

$\{x_0 = \alpha, x_1 = \beta, \ldots, x_{r+1} = y_1, x_{r+2} = x, x_{r+3} = y_4, x_{r+4}, \ldots, x_{2r+3} = x_0\}$

where $x_{r+2} \in S(x_0, x_1)$. Let $\delta_{r+1} = y_3$ and $\delta_{r+2} = y_2$ (see Figure 3). Note that $\delta_{r+1} \in \Gamma(x_{r+1}) \cap \Gamma(x_{r+2}) \cap D_{r+1}$ and $\delta_{r+2} \in \Gamma(x_{r+2}) \cap \Gamma(x_{r+3}) \cap D_{r+1}$. We change the base points to (x_1, x_2): see Figure 4.

Since $e(x_{r+3}, D_{r+1}) = 2$, $x_{r+3} \in S(x_1, x_2)$. By Lemma 3.8(2), it follows that there exists $\delta_{r+3} \in D_{r+1}^{r+1}(x_1, x_2)$ such that $x_{r+3} \sim \delta_{r+3} \sim x_{r+4}$.

By induction, we have that $x_0 \in S(x_{r+1}, x_{r+2})$, $x_1 \in D_{r+1}(x_{r+1}, x_{r+2})$ and that there exists $\delta_0 \in D_{r+1}^{r+1}(x_{r+1}, x_{r+2}) \cap \Gamma(x_0) \cap \Gamma(x_1)$

$\subset \Gamma_r(x) \cap D_1(\alpha, \beta)$.

On the other hand, there exists $\gamma \in \Gamma_{r+2}(x) \cap D_1(\alpha, \beta)$ by Lemma 3.8(1), and it follows that $\delta_0 \not\sim \gamma$. This contradicts the fact that $D_1(\alpha, \beta)$ is a clique. This completes the proof of Theorem 3.1.

4. CASE OF ODD NUMERICAL GIRTH

In this section we treat the case $c_{r+1} = 1$.

THEOREM 4.1. Let Γ be a distance-regular graph with $\Gamma(x) = 3 \cdot K_{a+1}$ for all $x \in \Gamma$. Let $r = r(\Gamma)$. If $a \geq 2$ and $c_{r+1} = 1$, then one of the following holds:

(1) $d \leq r + 2$; or
(2) Γ is a distance-2 graph of a distance-biregular graph with vertices of valency 3.

FIGURE 4.
In particular,

\[(c_i, a_i, b_i) = \begin{cases}
(0, 0, 3(a + 1)) & \text{for } i = 0 \\
(1, a, 2(a + 1)) & \text{for } 1 \leq i \leq r \\
(1, a + 2, 2a) & \text{for } i = r + 1 \\
(4, 2a - 1, a) & \text{for } r + 2 \leq i \leq d - 2 \\
(4, 2a + c - 1, a - c) & \text{for } i = d - 1 \\
(3(c + 2), 3(a - 1 - c), 0) & \text{for } i = d
\end{cases} \]

with \(c = 0 \) or \(1 \).

We consider the intersection diagram with respect to \((\alpha, \beta)\) with \(\alpha \sim \beta \). Let \(A(\alpha, \beta) \) and \(B(\alpha, \beta) \) be the sets defined as follows:

\[
A(\alpha, \beta) = \{ x \in D_{r+1}^\bullet | e(x, D_{r+1}^\bullet) = e(x, D_{r}^\bullet) = 1 \}, \\
B(\alpha, \beta) = \{ x \in D_{r+1}^\bullet | e(x, D_{r}) = 1 \}.
\]

In the following we denote \(A = A(\alpha, \beta) \) and \(B = B(\alpha, \beta) \) for a fixed pair of vertices \((\alpha, \beta)\).

It is clear that \(A \cap B = \emptyset, A \neq \emptyset, B \neq \emptyset \) and \(A \cup B = D_{r+1}^\bullet \).

Let \(D_1^\bullet = \{ \gamma_1, \ldots, \gamma_\alpha \}, \alpha = \gamma_0 \) and \(\beta = \gamma_{a+1} \). For \(\delta \in \Gamma \) and \(0 \leq i_1, \ldots, i_r \leq a + 1 \), we denote

\[\delta = (\delta_{(\gamma_0, \delta)} - r, \ldots, \delta_{(\gamma_{a+1}, \delta)} - r), \]

and

\[\delta(i_1, \ldots, i_r) = (\delta_{(\gamma_{i_1}, \delta)} - r, \ldots, \delta_{(\gamma_{i_r}, \delta)} - r). \]

It is easy to see the following:

(1) \(\gamma_i \sim \gamma_m \) for \(0 \leq l \neq m \leq a + 1 \).

(2) \(x \in D_{r+1}^\bullet (\gamma_i, \gamma_m) \) is equivalent to \(x(l, m) = (i - r, j - r) \).

(3) Let \(\delta \) be the vertex such that \(\max(\delta(l) | l = 0, 1, \ldots, a + 1) = i \) and let \(\delta(m) = i \). If \(\# \{ n | \delta(n) = i - 1 \} = s \), then the \(c_{r+1} \)-graph \(\Gamma_{r+i-1}(\delta) \cap \Gamma(\gamma_m) \) contains the complete graph \(K_s \).

The following is a key lemma in this section.

Lemma 4.2. Suppose that \(x \in B \) and \(x' \in D_r^\bullet \cap \Gamma(x) \). If \(d \geq r + 3 \), then \(\Gamma(x) \cap D_{r+1}^\bullet \subseteq \Gamma(x') \). In particular, \(\epsilon(A, B) = 0 \).

Proof. We assume that \(\delta(\gamma_1, x) = r \) and \(\delta(\gamma_1, x') = r - 1 \). Note that \(\bar{x}(0, 1, a + 1) = (1, 0, 1) \) and \(\bar{x}'(0, 1, a + 1) = (0, -1, 0) \). As \(c_r = c_{r+1} = 1 \), we obtain \(\delta(\gamma_i, x) = r + 1 \) and \(\delta(\gamma_i, x') = r \) for \(2 \leq i \leq a \); that is, \(\bar{x} = (1, 0, 1, \ldots, 1) \) and \(\bar{x}' = (0, -1, 0, \ldots, 0) \).

Let \(y \in (\Gamma(x) \cap D_{r+1}^\bullet) \setminus \Gamma(x') \). Suppose that \(y \in B \). If \(\delta(y, \gamma_1) = r \), then \(\bar{y}(0, 1) = (1, 0) \). This means that \(x, y \in D_{r+1}^\bullet (\gamma_0, \gamma_1), x' \in D_{r-1}^\bullet (\gamma_0, \gamma_1), y \sim x \sim x' \) and \(y \sim x' \). This contradicts Lemma 2.1(2). Suppose that \(\delta(y, \gamma_1) = r + 1 \) and \(\delta(y, \gamma_2) = r \). Note that \(\bar{y}(1, 2) = (0, 1) \) and \(\bar{y}(1, 2) = (1, 0) \). However, as \(x \sim y \), this contradicts Lemma 2.1(5).

Suppose that \(y \in A \). Let \(y_1 \in D_{r+1}^\bullet \) and \(y_2 \in D_{r+1}^\bullet \) with \(y_1, y_2 \in \Gamma(y) \). Clearly, we see that \(\delta(y, y_i) \geq r + 1 \) for \(1 \leq i \leq a \). As \(\delta(x, \gamma_1) = r \), \(\delta(y, \gamma_1) = r + 1 \). Since \(a \geq 2 \), suppose that \(\delta(y, y_2) = r + 1 \). Let \(y' \in \Gamma(y_2) \cap \Gamma(y) \). Note that \(y' \in B \). Since both \(\{y_1, y_2, x\} \) and
\{y_1, y_2, y'\} are cocliques of size three in \(\Gamma(y)\), we have \(x \sim y'\). However, since \(\bar{x}(1, 2) = (0, 1)\) and \(\bar{y}(1, 2) = (1, 0)\), this contradicts Lemma 2.1(5). Hence we can assume that \(\delta(y_1, y_2) = r + 2\) and \(\{y_1, y_2, x\} \subseteq \Gamma_{r+1}(y_2) \cap \Gamma(y)\). But, as \(\{y_1, y_2, x\}\) is a coclique, we must have \(b_{r+2} = 0\), or \(d \leq r + 2\). This contradicts our assumption.

By this lemma, we see the types of the vertices in \(A\) and \(B\) under the assumption that \(d \geq r + 3\). If \(x \in A\), then \(\bar{x} = (1, 2, \ldots, 2, 1)\). If \(x \in B\), then \(\bar{x}(i) = 0\) for some \(1 \leq i \leq a\), and \(\bar{x}(j) = 1\) for \(j \neq i\).

Lemma 4.3. Suppose that \(d \geq r + 3\). Let \(x \in D_{r+1}^r\) and \(y, z \in D_{r+1}^{r+1} \cap \Gamma(x)\). Then \(y \not\sim z\). In particular, \(a_{r+1} \leq a + 2\).

Proof. Suppose that \(y \sim z\). By considering the intersection diagram with respect to \((x, y)\), we have \(x \in A(x, y)\) and \(z \in D_1^2(x, y)\). On the other hand, \(\delta(\alpha, z) = r + 1\). This contradicts Lemma 4.2. Hence \(y \not\sim z\). Since \(e(x, D_{r+1}^{r+1}) = a_{r+1} - a\) and \(\Gamma(x) = 3 \ast K_{a+1}\), we have \(a_{r+1} \leq a + 2\).

Lemma 4.4. Suppose that \(d \geq r + 3\). Let \(x \in A, x_1 \in D_{r+1}^r \cap \Gamma(x), x_2 \in D_{r+1}^r \cap \Gamma(x)\). Then \(\Gamma(x) \cap D_{r+1}^{r+1} = \Gamma(x) \cap \Gamma(x_1)\) and \(\Gamma(x) \cap D_{r+1}^{r+2} = \Gamma(x) \cap \Gamma(x_2)\).

Proof. By the previous lemma, we see that \(\Gamma(x) \cap \Gamma(x_1) \subseteq D_{r+1}^{r+1}\) and \(\Gamma(x) \cap \Gamma(x_2) \subseteq D_{r+1}^{r+1}\). Suppose that there exists \(y \in (\Gamma(x) \cap D_{r+1}^{r+2}) \setminus \Gamma(x_1)\). Since \(e(x, D_{r+1}^{r+2}) = e(x, D_{r+1}^{r+2})\), there exists \(z \in \Gamma(x) \cap D_{r+1}^{r+2}\) such that \(y \sim z\). Let \(u \in \Gamma(x) \cap \Gamma(x_1)\) and \(v \in \Gamma(x) \cap \Gamma(x_2)\). We see that \(\{x, u, v\} \not\subseteq \Gamma_{r+1}(\alpha)\) and \(\{u, v\} \subseteq D_2^{r+1}\). Since \(x \in \Gamma_{r+1}(\gamma)\) and \(y \not\sim x_1\), we obtain \(\delta(u, v) = 2\) by Lemma 2.2. Hence a \(c_{r+2}\)-graph \(\Gamma_{r+1}(\gamma) \cap \Gamma(\alpha)\) contains a coclique of size 3, \(\{u, v, \beta\}\), which contradicts \(d \geq r + 3\).

Lemma 4.5. Let \(x \in D_{r+2}^{r+1}\). If \(d \geq r + 3\), then \(e(x, D_{r+2}^{r+1}) = 1\).

Proof. Suppose that \(e(x, D_{r+2}^{r+1}) \neq 0\). Let \(y\) and \(z\) in \(\Gamma(x) \cap D_{r+2}^{r+2}\). Since \(d \geq r + 3\), a \(c_{r+2}\)-graph \(\Gamma(x) \cap \Gamma_{r+1}(\alpha)\) cannot contain a coclique of size 3. Hence we have that \(y \not\sim z\). Let \(u \in \Gamma(\alpha) \cap \Gamma(x)\) and \(v \in \Gamma(\alpha) \cap \Gamma(z)\). Note that \(\Gamma(\alpha) \cap \Gamma(\gamma) \subseteq D_{r+1}^{r+1}\), \(\Gamma(\alpha) \cap \Gamma(z) \subseteq D_{r+1}^{r+1}\), and \(\Gamma(\gamma) \cap \Gamma(x) \subseteq D_{r+1}^{r+1}\). Since \(x \in \Gamma(y) \cap \Gamma(z)\), \(\Gamma(y) \cap \Gamma(x) \subseteq \Gamma_{r+1}(\alpha)\) and \(\Gamma(z) \cap \Gamma(\alpha) = \emptyset\). Hence we see that \(\delta(u, v) = 2\) by Lemma 2.2, and that \(u\) and \(v\) form a coclique in \(\Gamma(\alpha) \cap \Gamma_{r+1}(x)\), a contradiction.

By Lemma 4.3, \(a_{r+1} = a + 1\) or \(a + 2\). We first treat the case \(a_{r+1} = a + 1\).

Lemma 4.6. If \(a_{r+1} = a + 1\) and \(d \geq r + 3\), then the following hold:

1. \(c_{r+2} \geq 3\).
2. If \(x \in A\) and \(y \in D_{r+2}^{r+2}\) with \(x \sim y\), then \(\Gamma(x) \cap \Gamma(y) \subseteq D_{r+2}^{r+2}\). In particular, \(e(A, A) = 0\).

Proof. (1) Let \(x \in \Gamma_{r+1}(\alpha)\). Since \(a_{r+1} = a + 1\), there exist vertices \(y \in \Gamma_{r+2}(\alpha) \cap \Gamma(x)\) and \(z \in \Gamma_{r+1}(\alpha) \cap \Gamma(x)\) such that \(y \sim z\). Hence \(c_{r+2} \geq 2\).

Assume that \(c_{r+2} = 2\). Let \(\bar{y} = (2, 1, 2, \ldots, 2)\). As \(A(\gamma_1, \gamma_2) \neq \emptyset\), the existence of a vertex of type \(y\) is guaranteed by Lemma 4.2. Let \(x_1, x_2 \in \Gamma(y)\) such that \(\bar{x}(i) = 0\) for \(i = 1, 2\). It is clear that \(\bar{x}(0, a + 1) = (1, 1)\) and \(x_i \in B\). Moreover, by Lemma 4.2, we see that \(\bar{x}_1(0, 1, 2, a + 1) = (1, 0, 1, 1)\), \(\bar{x}_2(0, 1, 2, a + 1) = (1, 1, 0, 1)\), and that \(\delta(x_1, x_2) = 2\). Since \(a_{r+1} = a + 1\), it follows from Lemma 4.2 that there exist vertices \(y_1 \in \Gamma(\gamma_1) \cap D_{r+1}^{r+1}\) and \(y_2 \in \Gamma(\gamma_1) \cap D_{r+1}^{r+1}\). By the assumption that \(c_{r+2} = 2\), \(y \not\sim y_1\) and \(y \not\sim y_2\). Hence it must
hold that \(y_1 \sim y_2 \) as \(\Gamma(y) = 3 \ast K_{a+1} \). This implies that
\[
c_{r+2} = |\Gamma_{r+1}(\alpha) \cap \Gamma(y_2)|
= e(y_2, D_{r+1}^{\ast +1}) + e(y_2, D_{r+1}^{\ast +1} \cup D_{r+2}^{\ast +1})
\geq c_{r+1} + \#\{x_1, y_1\}
= 3.
\]

This is a contradiction.

(2) This is a direct consequence of Lemma 4.4, as \(a_{r+1} = a + 1 \). □

Lemma 4.7. If \(a_{r+1} = a + 1 \), then \(d \leq r + 2 \).

Proof. Suppose \(d \geq r + 3 \). Let \(x \in D_{r+1}^{\ast +1} \) and \(y \in D_{r+1}^{\ast +1} \) with \(x \sim y \). Let \(C = (D_{r+2}^{\ast +2} \cap \Gamma(x)) \Gamma(y) \). Clearly \(|C| = a + 1 \).

We claim that there exists \(z \in C \) such that \(z = (2, \ldots, 2, 1) \). Suppose that every \(z \in C \) has the property \(\#\{i \mid z(i) = 1\} \geq 2 \). Since \(|C| = a + 1 \), we can find some \(i \neq a + 1 \) and \(z_1, z_2 \in C \) (\(z_1 \neq z_2 \)) such that \(z_1(0, i, a + 1) = (2, 1, 1) = z_2(0, i, a + 1) \). Note that \(z_1, z_2 \in A(\gamma_i, \gamma_{x+1}) \) and \(z_1 \sim z_2 \). This is impossible by Lemma 4.6(2).

Assume \(z \) as above. Since \(z(i) = 2 \) for \(1 \leq i \leq a \), we have \(e(z, B) = 0 \). Suppose \(e(z, A) \neq 0 \). Let \(u \in \Gamma(z) \cap A \) and \(u' \in \Gamma(u) \cap D_{r+1}^{\ast +1} \). Since \(z \in C \), we have \(x \neq u' \). On the other hand, \(z \neq u' \), as \(x \sim z \) and \(c_{r+1} = 1 \). For \(u \in A \), this contradicts Lemma 4.4. Hence \(e(z, A) = 0 \). Therefore we must have \(e(x, D_{r+2}^{\ast +2}) \geq 2 \) as \(c_{r+2} \geq 3 \). This contradicts Lemma 4.5. □

Now we consider the case \(a_{r+2} = a + 2 \).

Lemma 4.8. Suppose \(d \geq r + 3 \) with \(a_{r+1} = a + 2 \). Then the following hold:

1. Every \(c_{r+2} \)-graph is a disjoint union of two \(K_2 \)'s. In particular, \(c_{r+2} = 4 \).
2. If \(x \in A, x_1 \in \Gamma(x) \cap D_{r+1}^{\ast +1} \) and \(x_2 \in \Gamma(x) \cap D_{r+1}^{\ast +1} \), then \(\Gamma(x) \cap \Gamma(x_1) = D_{r+2}^{\ast +1} \Gamma(x) \cap \Gamma(x) = D_{r+1}^{\ast +2} \) and there exists a vertex \(y \in \Gamma(x) \cap D_{r+2}^{\ast +1} \) such that \(\Gamma(x) \cap \Gamma(y) \in D_{r+2}^{\ast +2} \).
3. There exists no triangle \(\{x, y, z\} \) such that \(x \sim y, y \sim z \), and \(z \sim x \).

Proof. (1) For \(x \in \Gamma_{r+1}(\alpha) \), we consider the type of cliques containing \(x \). Let \(x' \in \Gamma_r(\alpha) \cap \Gamma(x) \). As \(c_{r+1} = 1 \), \(\Gamma(x) \cap \Gamma(x') \subset \Gamma_{r+1}(\alpha) \). As \(a_{r+1} = a + 2 \), there exist \(y \) and \(z \) in \(\Gamma_{r+1}(\alpha) \cap \Gamma(x) \) such that \(y \neq x' \) and \(z \neq x' \). By Lemma 4.3, we obtain \(y \neq z \). As \(a_{r+1} = a + 2 \), \(\Gamma(x) \cap \Gamma(y) \subset \Gamma_{r+2}(\alpha) \) and \(\Gamma(x) \cap \Gamma(z) \subset \Gamma_{r+2}(\alpha) \). Thus the clique type of \(x \in \Gamma_{r+1}(\alpha) \) is uniquely determined. Therefore we see that \(C_{r+2} = m \ast K_2 \) for every \(c_{r+2} \)-graph \(C_{r+2} \) and some \(m \). Since \(d \geq r + 3 \), we have \(m \leq 2 \). Now we claim \(m = 2 \); that is, \(c_{r+2} = 4 \). Suppose that \(m = 1 \). We consider the intersection diagram of rank 1 with respect to \((\alpha, \beta) \). Let \(\delta \in A, \delta_1 \in D_{r+1}(\alpha) \cap \Gamma(\delta) \) and \(\delta_2 \in D_{r+1}(\gamma) \cap \Gamma(\delta) \). By Lemma 4.2, there exists \(y \in D_{r+1}(\gamma) \) such that \(\delta(y, \delta) = r + 2 \). Note that \(\{\delta_1, \delta_2\} \subset \Gamma_{r+1}(\gamma) \cap \Gamma(\delta) \). Since \(\delta_1 \neq \delta_2 \), this contradicts \(m = 1 \).

(2) This is a direct consequence of Lemmas 4.3 and 4.4, as \(a_{r+2} = a + 2 \).

(3) We note that \(x \in A(\gamma_j, \gamma_j), y \in D_{r+1}(\gamma_j, \gamma_j) \) and \(z \in D_{r+2}(\gamma_j, \gamma_j) \). Let \(x' \in \Gamma(x) \cap D_{r+1}(\gamma_j, \gamma_j) \). By (2), we have \(x' \sim y \). On the other hand, we clearly have \(x' \sim z \). This contradicts the fact that \(\Gamma(x) \cap \Gamma(y) \) is a clique. □
LEMMA 4.9. Suppose that $d \geq r + 3$ with $a_{r+1} = a + 2$. For every i with $r + 2 \leq i \leq d$, the following hold:

1. Let $\bar{x}(m,n) = (i-1-r,i-r)$ and $\bar{y}(m,n) = (i-r,i-1-r)$. If $x \sim y$, then $i = r + 2$ or d.
2. If $u \in D_i((\gamma_m, \gamma_n))$, then $e(u, D_i^{-1}(\gamma_m, \gamma_n)) \neq 0$, except the case $i = d$, and $e(D_d^{-1}(\gamma_m, \gamma_n), D_{d-1}(\gamma_m, \gamma_n)) \neq 0$. In other words if $\bar{u}(m,n) = (i-r,i-r)$, then there exists a vertex $v \in \Gamma(u)$ such that $\bar{v}(m,n) = (i-r-1,i-r-1)$, except the case as above.
3. If $\min(\bar{x}(j) \mid j = 0, 1, \ldots, a+1) = i-1-r$ and $\max(\bar{x}(j) \mid j = 0, 1, \ldots, a+1) = i-1-r$, then $s_i = \# \{ j \mid \bar{x}(j) = i-1-r \} \leq 2$ or 3.

Moreover, if $s_i = 3$, then $i = d$.

4. If $r + 2 \leq i \leq d - 1$, every c_i-graph is a disjoint union of two K_2's and every b_i-graph is a K_{a+2}.

PROOF. (1) We note that $x \in D_i^{-1}(\gamma_m, \gamma_n)$ and $y \in D_i^{-1}(\gamma_m, \gamma_n)$. Since a c_i-graph $\Gamma_{i-1}(\gamma_n) \cap \Gamma(x)$ contains a c_{i-1}-graph $D_i^{-1}(\gamma_m, \gamma_n) \cap \Gamma(x)$, it must hold that the c_{i-1}-graph is a clique or the c_i-graph is a disjoint union of three cliques. Hence we have $i = r + 2$ or d.

(2), (3) Let $i = r + 2$. The assertion (3) follows from Lemma 4.8(1).

Suppose that there exists $u \in D_{r+2}^{-1}(\gamma_m, \gamma_n)$ such that $e(u, D_{r+2}^{-1}(\gamma_m, \gamma_n)) = 0$. Then there exist $y_1, y_2 \in \Gamma(x) \cap D_{r+2}^{-1}(\gamma_m, \gamma_n)$ and $y_3, y_4 \in D_{r+2}^{-1}(\gamma_m, \gamma_n)$ such that $y_1 \neq y_2$ and $y_3 \neq y_4$. Since $\Gamma(u) = 3 \ast K_a$, we may assume that $y_1 \sim y_3$ and it follows from Lemma 4.8(1) that there is a vertex $z \in \Gamma_{r+1}(\gamma_n) \cap \Gamma(u) \cap \Gamma(y_1) \cap \Gamma(y_3)$. By Lemma 4.5, we have $z \in D_{r+2}^{-1}(\gamma_m, \gamma_n)$, a contradiction. Thus we have (2) in the case $i = r + 2$.

Let $i-1 \geq r + 2$. Suppose that there exists $u \in D_i^{-1}(\gamma_m, \gamma_n)$ such that $e(u, D_i^{-1}(\gamma_m, \gamma_n)) = 0$. Then there exist $y_1, y_2 \in \Gamma(x) \cap D_i^{-1}(\gamma_m, \gamma_n)$ and $y_3, y_4 \in D_{i-1}^{-1}(\gamma_m, \gamma_n)$ such that $y_1 \neq y_2$ and $y_3 \neq y_4$. Since $\Gamma(u) = 3 \ast K_a$, we may assume that $y_1 \sim y_3$, which contradicts (1). By the same argument, it must also hold that $e(u, D_i^{-1}(\gamma_m, \gamma_n)) \neq 0$ for every $u \in D_i^{-1}(\gamma_m, \gamma_n)$ in the case $e(D_{d-1}^{-1}(\gamma_m, \gamma_n), D_{d-1}^{-1}(\gamma_m, \gamma_n)) = 0$. Thus we have (2).

Suppose that (3) holds for $i-1 \geq r + 2$. Let $\bar{x}(j_1,j_2,j_3,j_4) = (i-r,i-r-1,i-r-1,i-r-1)$. Then, by (2) and (3) with $i-1$, we can find vertices $y_1, y_2, y_3 \in \Gamma(x) \cap \Gamma_{i-1}(\gamma_n)$ such that

\[
\begin{align*}
\bar{y}_1(j_1,j_2,j_3,j_4) &= (i-r-1,i-r-2,i-r-2,i-r-1), \\
\bar{y}_2(j_1,j_2,j_3,j_4) &= (i-r-1,i-r-2,i-r-2,i-r-2), \\
\bar{y}_3(j_1,j_2,j_3,j_4) &= (i-r-1,i-r-1,i-r-2,i-r-2).
\end{align*}
\]

Now, by (1) in this lemma for $i \neq r + 3$ and Lemma 4.8(3) for $i = r + 3$, $\{ y_1, y_2, y_3 \} \cap \Gamma_{i-1}(\gamma_n) \cap \Gamma(x)$ is a coclique of size 3. Hence $i = d$. By the same argument, we know that $\# \{ j \mid \bar{x}(j) = i-r-1 \} \leq 3$. Thus we have (3).

(4) This is a direct consequence of (3).

LEMMA 4.10. Suppose that $d \geq r + 3$, with $a_{r+1} = a + 2$. Then the intersection number of Γ is the one in Theorem 4.1.

PROOF. By Lemma 4.9(4), we only need to determine c_d. We note that $C_d = t \ast K_{s_d}$ for every c_d-graph C_d and $t = 2$ or 3 by Lemma 4.9(3).

Suppose that $s_d = 2$ and $t = 2$. Note that $c_{d-1} = c_d$ in this case. If $x \in \Gamma_d(\alpha)$, it follows from the assumption $t = 2$ that there exists $\beta \in \Gamma_d(x) \cap \Gamma(\alpha)$ such that $\Gamma(\alpha) \cap \Gamma(\beta) \subset$
A DRG with $\Gamma(x) = 3 \ast K_{a+1}$

Hence we may assume that $\vec{x} = (d, \ldots, d)$. Since $c_{d-1} = c_d$, we have $e(D_{d-1}^d(y_m, y_n)) = 0$ for each m and n. Hence we have $e(x, D_{d-1}^d(y_m, y_n)) \neq 0$ for each m and n by Lemma 4.9(2). We can easily find a coclique of size 4 $\{y_1, y_2, y_3, y_4\} \subset \Gamma(x)$ such that

$\vec{y}_1(i_1, i_2, i_3, i_4) = (d - r - 1, d - r - 1, d - r, d - r)$,
$\vec{y}_2(i_1, i_2, i_3, i_4) = (d - r - 1, d - r, d - r - 1, d - r)$,
$\vec{y}_3(i_1, i_2, i_3, i_4) = (d - r, d - r - 1, d - r - 1, d - r)$,
$\vec{y}_4(i_1, i_2, i_3, i_4) = (d - r, d - r, d - r - 1, d - r - 1)$.

This is a contradiction. Thus we obtain $t = 3$ and $c_d = 6$.

Suppose that $s_d = 3$ and $t = 2$. There exists a vertex $x \in \Gamma$ such that $\vec{x}(i_1, i_2, i_3, i_4) = (d - r - 1, d - r - 1, d - r - 1, d - r)$. By Lemma 4.9(2), we can find three vertices $\{y_1, y_2, y_3\} \subset \Gamma(x)$ such that

$\vec{y}_1(i_1, i_2, i_3, i_4) = (d - r - 2, d - r - 2, d - r - 1, d - r)$,
$\vec{y}_2(i_1, i_2, i_3, i_4) = (d - r - 2, d - r - 1, d - r - 2, d - r)$,
$\vec{y}_3(i_1, i_2, i_3, i_4) = (d - r - 1, d - r - 2, d - r - 2, d - r)$.

By Lemma 4.8(3) for $d = r + 3$ and Lemma 4.9(1) for $d \geq r + 4$, we see that $\{y_1, y_2, y_3\} \subset \Gamma(x) \cap \Gamma_{d-1}(y_m)$ becomes a coclique of size 3, a contradiction. Thus $t = 3$ and $c_d = 9$.

To show that, if $a_{r+1} = a + 2$ and $d \geq r + 3$, Γ is a distance-2 graph of a distance-biregular graph with a vertex of valency 3, let Δ be the set of all maximal cliques in Γ. Let $\bar{\Gamma} = \Gamma \cup \Delta$. We view $\bar{\Gamma}$ as an incidence graph, i.e. for $\alpha \in \Gamma$ and $x \in \Delta$, $\alpha \sim x$ in $\bar{\Gamma}$ iff $\alpha \in x$ in Γ.

We use the notation for the graph $\bar{\Gamma}$.

Note that for $\alpha, \beta \in \Gamma$ and $x, y \in \Delta$,

$\vec{\delta}(\alpha, \beta) = 2i$ iff $\delta(\alpha, \beta) = i$
$\vec{\delta}(\alpha, x) = 2i + 1$ iff $\delta(\alpha, x) = i$
$\vec{\delta}(x, y) = 2i + 2$ iff $\delta(x, y) = i$ and $x \neq y$.

It is easy to check the following. For $\alpha \in \Gamma$ and $x \in \Delta$:

$\vec{e}_2(\alpha) + \vec{b}_2(\alpha) = \vec{e}_{2i+1}(x) + \vec{b}_{2i+1}(x) = 3$,
$\vec{e}_2(x) + \vec{b}_2(x) = \vec{e}_{2i+1}(\alpha) + \vec{b}_{2i+1}(\alpha) = a + 2$,

$\vec{e}(\alpha) = \begin{cases}
1 & \text{for } 1 \leq i \leq 2r + 2 \\
2 & \text{for } 2r + 3 \leq i \leq 2(d - 1) \\
3 & \text{for } i = 2d \\
3 & \text{for } i = 2d - 1, 2d \\
\end{cases}$

$\vec{e}(x) = \begin{cases}
1 & \text{for } 1 \leq i \leq 2r + 2 \\
2 & \text{for } 2r + 3 \leq i \leq 2(d - 1) \\
3 & \text{for } i = 2d \\
3 & \text{for } i = 2d - 1, 2d \\
\end{cases}$
Therefore Γ is a distance-2 graph of a distance-biregular graph Γ. This completes the proof of Theorem 4.1. Theorem 1.1 follows directly from Theorems 3.1 and 4.1.

5. CONCLUDING REMARKS

(1) Bounding the diameter of a distance-regular graph by some function of its valency k is generally an open problem. As a partial answer to this, E. Bannai and T. Ito showed in [2] that d (or r) is theoretically bounded by a function of k and $d - r$. Recently, H. Suzuki showed that, if Γ is a distance-regular graph with $\Gamma(x) = 3^*K_{a+1}$ for every $x \in \Gamma$ and with $d \leq r + 2$, then $d \leq 41$.

(2) We have not had the classification of distance-biregular graphs of valency 3 and $a + 2$ ($a \geq 2$). (Note that, if r is odd, H. Suzuki [12] gave the classification.) As the next step, we want the absolute bound of diameter d (not depending on the parameter a) in the case $d \geq r + 3$.

REFERENCES

8. A. Hiraki, K. Nomura, H. Suzuki, Distance-regular graphs of valency 6 and $a_1 = 1$, preprint.

Received 28 April 1993 and accepted 27 February 1995

NORIO YAMAZAKI

Department of Mathematics, Faculty of Science, Kyushu University, Fukuoka 812, Japan