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plicit all-atom models, considering the balance between computational cost and simulation accuracy. Implicit
models can be easily combined with replica-exchange molecular dynamics methods to explore a wider confor-
mational space of a protein. Other molecular models and enhanced conformational sampling methods are also
briefly discussed. As application examples, we introduce recent simulation studies of glycophorin A, phospho-
lamban, amyloid precursor protein, and mixed lipid bilayers and discuss the accuracy and efficiency of each sim-
ulation model and method. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C.
Gumbart and Sergei Noskov.
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1. Introduction

Biomembranes consist of various lipid molecules as well as mem-
brane proteins [1]. Typical lipid molecules are amphiphilic and sponta-
neously form a bilayer where the hydrophobic acyl chains exist in the
interior and the hydrophilic head groups facing outside [2]. Since ions,
sugars, polypeptides, and other large substrates have difficulties in
crossing the membrane hydrophobic core, membrane proteins such as
channels, transporters, and pumps play key roles in facilitating their
transport [3–6]. In order to communicate between cells as well as be-
tween a cell and its surrounding environments, membrane receptor
proteins are responsible for signal transduction across membranes,
mostly via conformational changes of the proteins [7–9]. These two bi-
ological phenomena, namely, substrate transports and signal transduc-
tions, are key functions of membrane proteins. Although atomic
structural information of membrane transporters and receptors can
greatly contribute to our understanding of such biological phenomena,
their structure determination using X-ray, NMR, and cryo-EM tech-
niques is still extremely challenging compared to soluble proteins. Con-
sequently, the number of membrane protein structures in the Protein
Data Bank (PDB: http://www.pdb.org) is much smaller than that of sol-
uble proteins [10,11]. Moreover, many membrane proteins undergo
large conformational changes during their functional cycles [12], imply-
ing that a single structure corresponding to just one of possible func-
tional states of the protein is often not sufficient for understanding
their biological function.

Theoretical and computational studies are expected to provide in-
sight into these complex systems, which is difficult to obtain by exper-
imental studies. Molecular dynamics (MD) simulation is a widely used
computational tool to explore relationships between structure, dynam-
ics, and function of biomolecules [13–16]. It has been applied to a wide
variety of biomolecules, in particular proteins [17–19], nucleic acids
[20–22], biomembranes [23–26], glycans [27–29], and so on. For bio-
membrane studies,mostMD simulations before 2000 focused on simple
phospholipid bilayers, such as DPPC (dipalmitoylphosphatidylcholine)
or DMPC (dimyristoylphosphatidylcholine) bilayers [30–32]. Nowa-
days, MD simulations are applied tomanymembrane proteins in realis-
tic cellularmembrane environments [33,34] to examine conformational
dynamics on the time scale of microseconds [35,36]. Furthermore, MD-
special supercomputers, Anton [37] or Anton2 [38], make it possible to
reach even longer time scales up tomilliseconds so that biologically rel-
evant events can be sampled frequently in a single MD trajectory
[39–42]. In spite of these advances,many phenomena in biomembranes
are still difficult to be simulated by conventional all-atom MD simula-
tions because of limited simulation time scales. In particular, the transi-
tion time between the functional states of membrane proteins is
generally much longer than what one can currently simulate. There
are two possible approaches to potentially overcome these issues: the
first involves simpler, but physically still realistic molecular models or
representations for biomembrane systems; the other approach focuses
on efficient conformational sampling algorithms. These two approaches
can be combined to overcome the limitations of computational re-
sources. In this review, we discuss both approaches in detail.

In biomembrane simulations, three main types of molecular models
have been employed: all-atom [43–45], coarse-grained (CG) [46,47],
and all-atom/CG mixed models [48–50]. Arguably, all-atom models
are the most accurate, but it is computationally the most expensive.
To extend the simulation time scales, different coarse-grained strategies
have been developed to simplify the representation of proteins, water,
and lipids [14]. One of the most popular models is the MARTINI model
developed by Marrink and co-workers [47]. In this model, several
atoms in proteins and lipids are approximated as a single united particle
and fourwater molecules are treated as a single particle. Another popu-
larmodel is the combination of an explicit protein representationwith a
mean-field solvent/membrane model such as the generalized Born
(GB) model where the effects of solvent and membrane are included
implicitly in the MD simulations [51,52]. Many MD simulations based
on enhanced conformational sampling algorithms have been carried
out with the GB models. Therefore, in this review, we discuss the GB
models in detail because there are already many good review articles
on MARTINI (and CG approaches) written by the original developers
[53].

Enhanced conformational sampling methods for biomolecules have
been actively developed bymany theoretical and computational groups
[54]. In this review, wemainly focus on the generalized-ensemble algo-
rithm [55], which were originally developed in statistical physics [56].
Hansmann and Okamoto first applied the algorithm to the protein fold-
ing problem [57]. After that, various biological phenomena such as ag-
gregation [58–60], large conformational changes of proteins [61],
membrane protein folding and insertion [62–64], and protein–ligand
binding [65,66] have been simulated using this algorithm. Here, we re-
view replica-exchange MD (REMD) [67], replica-exchange umbrella
sampling (REUS) [68], surface-tension REMD [69], and replica exchange
with solute tempering (REST) [70] for biomembrane simulations. We
also briefly discuss the accelerated MD (aMD) method [71].

To illustrate the accuracy and efficiency of different molecular
models and enhanced sampling algorithms, we review recent simula-
tions of glycophorin A (GpA) [72–75], phospholamban (PLN) [76–80],
amyloid precursor protein (APP) [81–84], and mixed lipid bilayers
[85–87]. In the simulations of GpA, PLN, and APP, REMD and REUS
using implicit membrane models were mostly used to determine their
conformational ensembles in membranes. Multi-scale molecular
models including all-atom and CG models were also highly effective in
the APP simulations. For mixed lipid bilayers, enhanced lateral diffusion
andmixingwere examined by REMD, surface-tension REMD, REST, and
aMDwith the all-atommodel. This review concludes with perspectives
in using MD simulations together with the enhanced conformational
sampling algorithms in biomembrane studies.

http://www.pdb.org


1637T. Mori et al. / Biochimica et Biophysica Acta 1858 (2016) 1635–1651
2. Molecular models for membranes and membrane proteins

2.1. Implicit solvent and membrane models

2.1.1. Implicit solvent models
In most implicit solvent models based on continuum electrostatics,

the solvent is approximated as amean-field environmentwith a specific
dielectric constant (ε) such as ε=80 forwater [88]. The resulting solva-
tion free energy of a solute is then incorporated into the molecular
mechanics potential energy function as an effective energy term [89].
Although detailed solute–solvent interactions are not considered, the
solvation free energy can be reproduced reasonably with this approach.
There are several advantages in using implicit solvent models. One ad-
vantage is increased computational efficiency because the computation
of explicit solvent–solvent interactions, which is the most time-
consuming part in explicit solvent MD simulations, is neglected. There-
fore, implicit solvent simulations can easily reach microseconds with
moderate computational resources [90,91]. This advantage is especially
attractive in simulations of protein folding and large conformational
changes that require longer time scales. Another advantage is a signifi-
cant reduction in the degrees of freedom in a given system, which
makes replica-exchange simulations effective using fewer replicas to
achieve good overlaps in histograms between neighboring replicas
(see below) [92]. The omission of the solvent degrees of freedom in an
implicit model also means that solvent relaxation becomes instanta-
neous, which offers significant kinetic acceleration when modeling
environments that reorganize slowly, such as membranes.

The solvation free energy is defined as the free energy change for
transferring a given solute from vacuum to solution. When calculating
solvation free energies, the following transfer process is often conve-
nient: 1) removal of the partial charges and van der Waals interactions
of a solute in vacuum, 2) creation of a solute cavity in solution, and 3) re-
storing the van der Waals interactions and partial charges of the solute
inserted into the cavity within the solvent environment [93]. Therefore,
the total solvation free energy,ΔGsolv, is usually decomposed as [94,95]:

ΔGsolv ¼ ΔGelec þ ΔGnp ¼ ΔGelec þ ΔGcav þ ΔGvdW; ð1Þ

where ΔGelec and ΔGnp are the electrostatic and nonpolar contributions
to ΔGsolv, respectively. ΔGelec includes direct interactions between
solute partial charges and solvent as well as the screening of Coulombic
interactions between solute charges. ΔGnp can be partitioned further
into the free energy of cavity formation (ΔGcav) and the free energy of
solute–solvent van der Waals interactions (ΔGvdW). In most implicit
solvent models, ΔGnp is approximated as∑iσ iAi, where σi is an empir-
ically derived coefficient and Ai is the solvent-accessible surface area
(SASA) of the i-th atom. In the simplest approximation, a common
value of σ is used for all atoms [95].ΔGnpmay also include an additional
term representing solute–solvent van derWaals interactions separately
[93,96].

2.1.2. Poisson–Boltzmann equation and generalized Born approaches
Based on the continuum electrostatic theory, ΔGelec in Eq. (1) can

be computed as ΔGelec ¼ 1=2∑iqiϕiðriÞ, where qi is the partial charge
and ϕ(ri) is the reaction field potential of the i-th solute atom. ϕ(ri) is
obtained by solving the Poisson–Boltzmann (PB) equation:

∇ � ε rð Þ∇ϕ rð Þ½ �−κ2 rð Þϕ rð Þ ¼ −4πρ rð Þ; ð2Þ

where κ(r) and ρ(r) are the Debye–Hückel screening factor and the
charge density of a solute, respectively. ε(r) is the spatially-varying di-
electric constant, which is typically set to a solute dielectric constant
(εp) in the solute interior (usually 1) and a solvent dielectric constant
(εw) for the solute exterior (80 for water). In the case that salt effects
are not included, the PB equation reduces to the Poisson equation. The
PB equation can be numerically solved by finite-difference methods
[97–99]. The PB model is easily extended to heterogeneous environ-
ments like membrane systems by choosing an appropriate dielectric
function [100], and it has been successfully applied for determining
solvation free energy of biomolecules in membranes [101] as well as
for including the transmembrane potential for solvation free energy
calculations [102]. However, the direct solution of the PB equation is
computationally expensive, and electrostatic forces cannot be simply
described in terms of pairwise interactions between solute atoms.
Therefore, the direct use of the PB equation in MD simulations is
challenging [103].

An alternative approach for computingΔGelec is the generalized Born
(GB) method, in which ΔGelec is approximated as a sum of screened
pairwise interactions between charges of a solute molecule: [94]

ΔGelec ¼ −
1
2

1
εp

−
1
εw

� �X
i; j

qiq jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ij þ αiα j exp −r2ij=4αiα j

� �r ; ð3Þ

where qi and qj are the partial charges on the i-th and j-th atoms and rij is
the distance between them. αi is the effective Born radius of the i-th
atom, which is typically estimated in the Coulomb field approximation,
i.e.,

1
αi

¼ 1
Ri

−
1
4π

Z
solute;rNRi

1
r4
dV ; ð4Þ

where Ri is the adjustable input radius of the i-th atom (mostly set to the
atom's van der Waals radius), and the integral is carried out over the
volume inside the solute but outside the i-th atom. If the effective
Born radius is calculated accurately, the GB model can reproduce ΔGelec

obtained from the PBmodel [104,105]. Many efforts in developing prac-
tical applications of the GB model have focused on how to carry out the
volume integral. Different approaches include a pairwise approximation
[106–108], numerical surface/volume integration [94,109,110], addi-
tions of correction terms [111–113], introduction of rescaling parame-
ters being proportional to the degree of the atom's burial [114], and
the use of a smoothing function for the dielectric boundary [115],
which yield different balances between accuracy and computational
efficiency.

2.1.3. Extension to biological membrane systems
The GB model has also been extended to heterogeneous environ-

ments like membranes to simulate membrane proteins. In typical im-
plicit membrane models, the dielectric constant of the protein interior
is considered to be one, and the membrane region is treated as a low-
dielectric slab (usually ε = 1 − 4) with a certain thickness embedded
in a high-dielectric region to represent water and polar head-groups
of membrane lipids [116,117]. In the first membrane GB model, called
GBIM [118], the membrane is assumed to have the same dielectric con-
stant as the proteins, so the system consists of two dielectric regions
(Fig. 1a). The volume integral in Eq. (4) is split into two terms, where
the integrals are taken over the solute space inside and outside the
membrane individually. The integral over the membrane interior is ap-
proximated by an analytic function of a membrane thickness and the
van der Waals radius and z-coordinate of a solute atom to reproduce
ΔGelec obtained from the PB model. The integral over the membrane
exterior is computed by the pairwise method used for the implicit
water model.

Im et al. proposed a different implicit membrane model, which is
called the GBSWMEMB model [119], an extension of GBSW in solution
[115]. The GBSWMEMB model assumes that the membrane has the
same dielectric constant as the solute, and introduces a smoothing func-
tion at the dielectric boundary between the membrane hydrophobic
core (ε = 1) and water (ε = 80) as well as between the solute (ε = 1)
and water (Fig. 1b). This treatment makes the numerical calculation
more stable at the membrane–water boundary. The model includes an



Fig. 1. Implicit and explicit membrane models. As an example, glycophorin A (GpA) is embedded in the membrane. (a) GBIM, (b) GBSW, (c) HDGB, (d) All-atom, and (e) MARTINI
coarse-grained models.
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empirical correction term to the Coulomb field term (Eq. (4)) [112], and
the volume integral is carried out usingquadrature techniqueswith radial
and angular integration. The GBSWMEMB model reproduces the corre-
sponding PB ΔGelec within 2% absolute error with a confidence of about
95%.

Feig et al. proposed the HDGBmodel [120], where the dielectric con-
stant varies along the membrane normal in order to model multiple
layers with different dielectric constants (Fig. 1c). The membrane slab
does not need to have the same dielectric constant as the solute. The
varying dielectric constant is then used in Eq. (3) with Born radii αi cal-
culated as a function of the local value of ε. This model was optimized to
reproduce the solvation free energy profile of a solute upon insertion
into the explicit lipid bilayers [121]. The HDGB model has been further
extended to allow dynamicmembrane deformationswith an additional
energy term for the free energy of deformation from an elasticity theory
[122].

2.1.4. Other implicit solvent and membrane models
Another implicit membrane model, different from the PB- or

GB-based models, is the IMM1 model [123]. The IMM1 model is an ex-
tended form of the EEF1 model for soluble proteins [124]. Both EEF1
and IMM1 are computationally very efficient, even more than the GB
models [125]. In the EEF1 model, the solvation free energy is given by

ΔGsolv ¼
X
i

ΔGref
i −

X
i

X
i≠ j

f i rij
� �

V j; ð5Þ

where

f i rij
� � ¼ αi

4πr2ij
exp −

rij−Ri
� �2

λ2
i

( )
: ð6Þ

ΔGi
ref is the reference solvation free energy of the i-th atom when it is

fully exposed to solvent. Vi, Ri, λi, and αi are the volume, van der
Waals radius, correlation length, and proportionality coefficient of the
i-th atom, respectively. The second term of Eq. (5) describes the effect
of the surrounding atoms around the i-th atom. In the EEF1 model,
ΔGi

ref is derived from the experimental data of the solvation free energy
for amino acid side-chain analogs in water. In the IMM1model, ΔGi
ref is

re-defined by a combination of the solvation free energy of solute in
water and cyclohexane:

ΔGref
i z0ð Þ ¼ f z0ð ÞΔGref ;water

i þ 1− f z0ð Þð ÞΔGref ;cyclohexane
i ; ð7Þ

where f(z') is a function describing the transition from one phase to the
other:

f z0ð Þ ¼ z0n

1þ z0n
: ð8Þ

The exponent n controls the steepness of the transition, and z'=|z |/
(T/2), where T is the membrane thickness. Like EEF1, the IMM1 model
uses a distance-dependent dielectric consent for the electrostatic calcu-
lation. However, the dielectric constant depends on the position of the
interacting atoms with respect to the membrane. Far from the mem-
brane, the dielectric constant is given by ε = r, which corresponds to
the EEF1 model, while ε is close to one in the membrane center.

Recently, the IMM1model has been extended tomodel lipid bilayers
with a transmembrane potential [126,127], with aqueous pores
[128,129], with anionic lipids [130], andmixed lipid bilayerswith lateral
pressure effects [131]. The transmembrane potential can be considered
by introducing the analytical solution of the PB equation [102] or by
introducing an empirical monotonic function along the membrane
normal [126,127]. This method makes it possible to study mechanisms
of voltage-dependent insertion of peptide and channel gating in the
implicit solvent. In the IMM1 model with a cylindrical aqueous pore,
an empirical function is introduced in Eq. (7) to describe the effects of
the pore radius. MD simulations of β-barrel proteins with an implicit
aqueous pore demonstrated that the proteins are more stable than in
the standard IMM1 model [128]. To mimic the anionic lipid bilayers,
the IMM1 model incorporates the Gouy–Chapman theory to describe
the effect of a static surface charge on the membrane surface [130].
This model can deal with the electrostatic interactions between the
lipid head groups and the solute, and it can be applied in the simulation
of biologically active peptides, e.g. antimicrobial peptides. The mem-
brane lateral pressure effects are considered by introducing the external
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field describing the bilayer area expansion as well as pressure change
caused by the compression of lipids upon solute insertion [131]. The
model can describe mixed lipid-bilayers with a membrane lateral pres-
sure profile that changes depending on the lipid composition [132].

2.1.5. Availability and applicability of the implicit solvent and membrane
models

Implicit solvent and membrane models are available in many MD
program packages such as CHARMM [133], AMBER [134], NAMD
[135], GROMACS [136], TINKER [137], and IMPACT [138]. The PB
model in AMBER can deal with both solvent and membrane systems,
while the GB model is available for solvent. CHARMM supports all of
the GB models as well as the EEF1/IMM1 model. The PB model in
CHARMM is also available, but MD simulations are not practical. The
Implicit Solvent Modeler available in CHARMM-GUI can facilitate the
setup of implicit solvent simulations in CHARMM [139].

Recently, graphics processing units (GPUs) have become common
for accelerating MD simulations with explicit solvent as well as implicit
solvent [140,141]. The GB models in CHARMM/OpenMM, AMBER,
NAMD, and GROMACS can utilize GPU and can produce hundreds of
nanoseconds per day for small systems like Trp-cage and myoglobin
[90,91]. A major bottleneck of GPU computation is the communication
speed for copying data between CPU and GPU. To overcome this prob-
lem, MD simulation with the GB model in AMBER is performed mostly
using the GPU, including force and energy evaluation and integration.
The communication between the CPU and GPU takes place only when
trajectory data need to be output [90]. In addition, computation with
the GB model in mixed double and single precision on GPU has been
demonstrated to be fast and can reproduce the results in double
precision on CPU [90]. An efficient GB/SA calculation scheme was also
introduced into NAMD, in which the GB term is computed on the GPU
while the SA term is calculated on the CPU, thereby implementing a
hybrid CPU/GPU architecture [142].

In general, the GB model is the most useful for simulating relatively
small protein molecules, where the computational time for the GB term
is usually only a few times slower than that for gas-phase simulations
and where fully solvated systems would contain much more solvent
atoms than solute atoms. Since the GB models use a cut-off scheme
for the calculation of non-bonded interactions, the cut-off distance
should be large enough (usually 16–20 Å or more for membrane sys-
tems) to maintain an accurate calculation of long-range electrostatic
interactions. This creates additional computational costs compared to
explicit solvent simulations where 10–12 Å are the typical cut-off dis-
tance for van der Waals interactions and the real space for the particle
mesh Ewald (PME)method [143] for electrostatic interactions. Further-
more, the PME method can be efficiently parallelized via domain de-
composition schemes for accurate and fast electrostatic calculations
[144]. As a result, the calculation of the GB energy and forces can be
more expensive than those in the explicit solvent model for large sys-
tems like the ribosome. To overcome this problem, a hierarchical charge
partitioning (HCP) scheme has been proposed to achieve NlogN scaling,
where the atoms far from focusing given central atom are approximated
to one particle with a point charge and a corresponding effective Born
radius [145]. The HCP method can offer significant speed-up over the
conventional GB method in particular for large systems. In NAMD, the
GB computation is parallelized by the combination of domain decompo-
sition and force decomposition schemes to realize balanced workload
between high- and low-density domains [146].

2.2. Explicit solvent and membrane models

2.2.1. All-atom models for membranes and membrane proteins
In contrast to implicit solvent models, explicit solvent models

include fully detailed interactions between a solute and solvent, and
between solvent and solvent. In MD simulations with explicit solvent
and membranes, the all-atom model is widely used, where one atom
is described by one particle with an atomic mass, a partial charge, and
a van der Waals radius (Fig. 1d). The all-atom model can be further
extended to include polarizability, such as the Drude model, where a
massless and charged particle is attached to a polarizable atom via a
harmonic spring [147,148].

There are mainly two important considerations in performing MD
simulations with all-atom membrane models. First, the choice of force
field parameters and nonbonded cut-off options is critical for the suc-
cess of simulations [149]. InMD simulations with previous CHARMM27
[150] or AMBER Lipid11 force fields [151], lipid tail groups showed a
bias toward all-trans conformations, which yielded reduced area per
lipid values in MD simulation in the NPT (constant particle number,
pressure, and temperature) ensemble compared to the experiments
[152]. To overcome this problem, NPAT (constant particle number, nor-
mal pressure, area, and temperature) andNPγT (constant particle num-
ber, normal pressure, surface tension, and temperature) ensembles had
to be used, so that the area per lipid was maintained close to the target
experimental value [153]. The recently optimized lipid force-field pa-
rameters (CHARMM36 [43] and AMBER Lipid14 [45]) show excellent
agreement with experimental structural properties of lipid bilayers
such as the area per lipid, membrane thickness, and order parameters
in the NPT ensemble.

Second, careful modeling of a protein–membrane complex is neces-
sary. The initial orientation of a protein with respect to the bilayer plane
should be reasonably determined before starting MD simulations. For
this, the OPM database (http://opm.phar.umich.edu) can be used,
which provides PDB coordinates of membrane proteins in the optimal
orientation predicted by minimizing the solvation free energy in mem-
branes [154]. After determining the orientation, a membrane protein is
embedded into an explicit lipid bilayer. Many protocols have been pro-
posed to construct a reasonable initial structure of a protein–membrane
complex [155–159]. CHARMM-GUIMembrane Builder is widely used for
system building in homogenous or mixed bilayers with more than 180
lipid types available [160,161]. It also provides well-validated equilibra-
tion and production inputs for manyMD program packages (CHARMM,
NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM) [162].
While it is difficult to estimate the correct number of lipids in each leaf-
let of protein–membrane systems to avoid a mismatch in lipid packing,
it has been suggested that the area per lipid mismatch up to 5% would
be tolerable in membrane simulations of typical all-atom system sizes
[163]. For the analysis of the area per lipid in protein–membrane sys-
tems, the Voronoi tessellation Monte Carlo integration method has
been proposed [164], which also makes possible to assess equilibration
of lipid bilayers by comparing the obtained area per lipid with the
experimental data.

2.2.2. Coarse-grained and all-atom/coarse-grained mixed models
An alternative to all-atom membrane and protein–membrane

models are coarse-grained (CG) models. In CG models, several atoms
are combined into one particle with a certain mass, radius, and charge
(Fig. 1e). Several CG models have been developed previously [165],
among which MARTINI is the most popular and widely used model for
lipids as well as proteins [47]. In MARTINI, four heavy atoms and their
associated hydrogen atoms are grouped together into a single particle
(four-to-one mapping). MARTINI has been applied to investigate
large-scale and long-time scale biological phenomena such as mem-
brane domain formation [166], crowding [167], peptide insertion
[168], and channel gating [169]. However, the model requires
knowledge-based secondary structure restraints to simulate proteins
in the membrane. To overcome this problem, the backbone pseudo-
dihedral potential has been recently introduced to the MARTINI model
in order to reproduce internal dynamics of proteins [170].

Multi-scale or mixed resolution models have also been developed
[48,171]. Feig et al. proposed the PRIMOmodel, inwhich the CG interac-
tion sites are chosen so that an analytic reconstruction from the CG
to all-atom model is possible [172,173]. In addition, the model can

http://opm.phar.umich.edu
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combine CG and all-atom particles at the same time duringMD simula-
tions. Recently, PRIMOwas extended to PRIMO-M that can be usedwith
the GB model to simulate membrane-inserted peptides [50]. Wu et al.
developed the PACE force field, which is used to simulate protein–
membrane systems with the united-atom model for proteins and the
MARTINI model for water and lipids [49,174]. They demonstrated that
the orientation of WALP peptides and the predicted structure of the
GpA dimer are well in agreement with the experimental data. Recently,
the PACE CG Builder andMartini Maker have been developed and added
to CHARMM-GUI, to allow the automatic setup of various systems with
PACE and MARTINI force fields [175,176].

3. Enhanced conformational sampling methods

3.1. Replica-exchange molecular dynamics (REMD) method

3.1.1. Temperature REMD
The replica-exchangemolecular dynamics (REMD)method is one of

the enhanced conformational sampling methods used for systems with
rugged free-energy landscapes. The original temperature-exchange
method (T-REMD) is used most widely in biomolecular simulations
[67]. In T-REMD, replicas (or copies) of the original system are prepared,
and different temperatures are assigned to each replica. Each replica is
run in an NVT [67] or NPT ensemble [177], and target temperatures
are exchanged between a pair of replicas during the simulation
(Fig. 2a). Exchanging temperature enforces a randomwalk in tempera-
ture space, resulting in the simulation surmounting energy barriers and
the sampling of amuchwider conformational space of targetmolecules.
The transition probability from state X to X' in the replica-exchange pro-
cess is given by the Metropolis criterion:

w X→X0� � ¼ 1; for Δ≤0;
exp −Δð Þ; for ΔN0;

	
ð9Þ
Fig. 2. Replica-exchange schemes in (a) T-REMD and (b) surface-tension REMD.
with

Δ ¼ βm−βnð Þ E q j½ �
� �

−E q i½ �
� �n o

; ð10Þ

where E is the potential energy, q is the position of atoms, β is the in-
verse temperature defined by β= 1/kBT, i and j are the replica indexes,
and m and n are the temperature indexes. After the replica exchange,
atomic momenta are rescaled as follows:

p i½ �0 ¼
ffiffiffiffiffiffiffi
Tn

Tm

s
p i½ �; p j½ �0 ¼

ffiffiffiffiffiffiffi
Tm

Tn

s
p j½ � ð11Þ

where p are themomenta of atoms. The transition probability should be
independent of constant temperature and constant pressure algo-
rithms, whereas the momenta-rescaling scheme depends on the algo-
rithm used in the simulation. If thermostat and barostat momenta are
included in the equations of motion like the Martyna–Tobias–Klein
algorithm [178], these variables should also be rescaled after replica ex-
change [179,180]. The results from T-REMD simulation can be analyzed
by reweighting techniques such as the weighted histogram analysis
method (WHAM) [181,182].

3.1.2. Replica-exchange umbrella sampling (REUS)
The umbrella sampling (US) method has been widely used to calcu-

late free energy profiles of physical and/or chemical processes along
reaction coordinates [183]. In this method, an umbrella potential
(or biasing potential) is imposed to sample conformations around a
target value along a reaction coordinate, and a series of independent
simulations with different umbrella potentials are performed to cover
the entire range of a given reaction coordinate. If a sufficient overlap be-
tween histograms of neighboring umbrellas is obtained, reweighting
techniques such as WHAM can be used to combine individual simula-
tions and calculate the free energy profile [184]. To perform US simula-
tion, the choice of the umbrella potential parameters is important. If the
force constant of the umbrella potential is too strong, each simulation
samples a very narrow conformational space, requiring toomany simu-
lations for covering the entire reaction coordinate. Efficient sampling
methods based on the idea of US have been developed, such as
λ-dynamics [185].

Sugita and Okamoto proposed the replica-exchange umbrella sam-
plingmethod (REUS [68], thismethod is also referred to as Hamiltonian
REMD [186] or window-exchange USMD [187]), where each simulation
is run with different umbrella potentials and they are exchanged
between a pair of replicas (or windows) during the simulation. The
potential energy of the system in the replica i is given by the summation
of the original potential energy E0 and the umbrella potential Vwith the
coupling parameter λm,

Eλm q i½ �
� �

¼ E0 q i½ �
� �

þ Vm q i½ �
� �

; ð12Þ

where Vm depends on the parameter λm, which can also be written as
λmV(q[i]). The transition probability for a replica exchange scheme is
given by the Metropolis criterion as in Eq. (10) and

Δ ¼ β Vm q j½ �
� �

−Vm q i½ �
� �

−Vn q j½ �
� �

þ Vn q i½ �
� �� �

: ð13Þ

The computational cost of REUS is the same as for US, when the
number of replicas (or umbrella potentials) is the same. However, all
the replicas have to be simulated simultaneously on amassively parallel
computing architecture, requiring very large computer resources, when
REUS simulations for large biological systems are carried out. Nonethe-
less, the advantage of REUS over US is that the continuity of states along
the reaction coordinate is guaranteed, because umbrella potentials are
exchanged between neighboring λ conditions. To further improve sam-
pling efficiency, REUS has also been combined with other enhanced
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samplingmethods such as REMD [68] and replica-exchange solute tem-
pering (REST/REUS; for REST, see the section below) [66]. Recently, Park
et al. derived an analytical expression for the average acceptance prob-
ability between neighboring replicas (or windows) and combined it
with the first passage time optimization method to predetermine a
pair of optimal US parameters, k (the window force constant) and d
(the window spacing): k1/2d = 0.8643(2kBT)1/2 [187].

3.1.3. Surface-tension REMD
Surface tension is a force arising at liquid interfaces such as in

vacuum/water, oil/water, and membrane/water systems. In the case
of a lipid bilayer/water system, the surface tension is zero when the bi-
layer is ideally flat [188]. Positive surface tension increases the surface
area of a lipid bilayer, while the thickness decreases due to volume
incompressibility [2]. The surface-tension REMD (γ-REMD) method is
an enhanced conformational samplingmethod that is specialized for bi-
ologicalmembrane systems [69]. In thismethod, each replica is simulat-
ed in the NPγT ensemble [153], and target surface tension values are
exchanged between a pair of replicas. Accordingly, the γ-REMDmethod
aims at enhancing structural changes of molecules in membranes
mechanically.

If one considers an orthorhombic simulation box with lengths of hx,
hy, and hz and a lipid bilayer parallel to the xy plane, the surface tension
of the system is defined as

γ ¼ hz � Pzz−
Pxx þ Pyy

2

� �
; ð14Þ

where Pzz is the normal pressure, and Pxx and Pyy are the tangential com-
ponents of the pressure tensor. The replica exchange scheme in the
γ-REMD method is basically the same as in T-REMD. The transition
probability for the replica-exchange process (Fig. 2b) is given by the
Metropolis criterion as in Eq. (10):

Δ ¼ βm−βnð Þ E q j½ �;h j½ �� �
−Eðq i½ �; h i½ �Þ

n o
þ βmPm−βnPnð Þ h j½ �

x h j½ �
y h j½ �

z −h i½ �
x h

i½ �
y h

i½ �
z

� �
− βmγm−βnγnð Þ h j½ �

x h j½ �
y −h i½ �

x h
i½ �
y

� �
;

ð15Þ

where P is the normal pressure. Based on this equation, surface tension
can be exchanged multi-dimensionally with temperature (γT-REMD),
normal pressure (γP-REMD), or both of them (γPT-REMD).

Mori et al. applied the γ-REMDmethod to a pure DPPC lipid bilayer,
and they found that lateral diffusion of lipidmolecules is enhanced com-
pared to a standard NPTMD simulation [69]. This can be understood in
terms of free-area effects [189] in the expanded structures of themem-
brane. They also carried out γ-REMD simulations of the WALP23 pep-
tide in POPC lipid bilayers, and calculated the free energy profile as a
function of tilt angle ofWALP23. The γ-REMDmethod induced reorien-
tation of WALP23 due to protein–lipid interactions, resulting in more
accurate free energy profile than in NPT MD simulations. They further
performed γT-REMD, γ-REMD, and T-REMD simulations of mixed
POPC/DMPC lipids, whose results are described below in detail in
terms of the effect of surface tension on membrane structures [87].

3.2. Other enhanced sampling methods

3.2.1. Replica exchange with solute tempering (REST)
Although REMD is applicable to many systems, the number of rep-

licas required for efficient sampling scales as
ffiffiffi
f

p
(where f is the number

of degrees of freedom), implying that a large number of replicas are nec-
essary for simulating large systems. To overcome this problem, the rep-
lica exchangewith solute tempering (REST)method has been proposed,
in which only the solute molecule is heated up, while the solvent stays
cold even in high temperature replicas [70]. REST is one of Hamiltonian
REMDmethods, where solute tempering is achieved by scaling solute–
solvent and solvent–solvent interactions (REST1) [70] or solute–solvent
and solute–solute interactions (REST2) [190,191].

In REST1, the potential energy of the system for replicam is given by

Em qð Þ ¼ Epp qð Þ þ β0 þ βm

2βm
Epw qð Þ þ βm

β0
Eww qð Þ; ð16Þ

where Epp, Epw, and Eww are protein–protein, protein–water, water–
water interactions, respectively.Withβ0=1/kBT0 for the target temper-
ature T0, the acceptance criterion for the replica exchange is determined
similarly as in other replica-exchange methods:

Δ ¼ βm−βnð Þ Epp qnð Þ−Epp qmð Þ� �þ 1
2

Epw qnð Þ−Epw qmð Þ� �
 �
: ð17Þ

In Eq. (17), the water–water interactions terms are canceled out,
which allows us to use smaller number of replicas required for efficient
conformational sampling. In REST1 simulations, each replica is run at
different temperature and has different potential energy function.
REST1 simulation was shown to be more efficient than T-REMD for a
small solute system like the alanine dipeptide [70]. In contrast, simula-
tions for a large system involving large conformational changes were
less efficient than T-REMD.

To overcome this problem, REST2 has been developed [190,191], in
which the potential energy of the system for replicam is given by

Em qð Þ ¼ βm

β0
Epp qð Þ þ

ffiffiffiffiffiffiffi
βm

β0

s
Epw qð Þ þ Eww qð Þ; ð18Þ

and the acceptance criterion for the replica exchange becomes

Δ ¼ βm−βnð Þ

� Epp qnð Þ−Epp qmð Þ� �þ
ffiffiffiffiffiffi
β0

p
ffiffiffiffiffiffiffi
βm

p þ ffiffiffiffiffiffi
βn

p Epw qnð Þ−Epw qmð Þ� �" #
: ð19Þ

In REST2 simulations, all the replicas are run at the same tempera-
ture T0, while each replica has a different scaling factor for the potential
energy. A comparison between T-REMD, REST1, and REST2 on folding
simulations of Trp-cage and β-hairpin indicated that REST2 is the
most efficient one for larger systems [191].

Anothermethod based on the idea of solute tempering has also been
proposed by Moors et al. [192]. They introduced the replica exchange
with flexible temperingmethod, in which a part of the solute molecule,
e.g., flexible hinges or loops of the protein, is heated up in order to
enhance domain motions of proteins.

3.2.2. Accelerated molecular dynamics (aMD)
In the accelerated MD (aMD) method [71], conformational

transitions between different states are enhanced by adding a bias
potential to the potential energy:

E� qð Þ ¼ E qð Þ þ ΔE qð Þ; ð20Þ

where E(q) is the original potential energy, andΔE(q) is called the boost
potential defined by

ΔE qð Þ ¼
0; for E qð Þ≥Ecut;

Ecut−E qð Þð Þ2
α þ Ecut−E qð Þ ; for E qð ÞbEcut;

8<
: ð21Þ

where Ecut is the energy threshold that determines whether the system
is biased or unbiased.When the potential energy is greater than Ecut, the
simulation is run on the original potential energy surface E(q). The
acceleration factorα determines the depth of themodified potential en-
ergy surface. The choice of Ecut and α is very important, andmay require
a trial-and-error search for each system. As α increases, the modified
potential energy surface becomes close to the original one. As α
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decreases, the modified energy surface becomes more flat. When Ecut
is very high and α is very small, the modified potential becomes
isoenergetic in most place of the energy landscape, and the simulation
shows a random walk. One way to choose Ecut is to use an average of
the original potential energy distribution obtained from a short unbi-
ased MD simulation for the target system.

Recently, Miao et al. proposed the Gaussian accelerated MDmethod
(GaMD), where a harmonic boost potential is used instead of Eq. (21) to
smoothen the potential energy surface [193]. They suggested that this
treatment could reduce energetic noise during reweighting and yield
an accurate free energy profile.

4. Recent membrane and membrane protein simulations using
enhanced conformational sampling methods

4.1. Glycophorin A (GpA)

Glycophorin A (GpA) is an antigen-presenting protein on the surface
of human erythrocytes. Its transmembrane (TM) dimer structure was
determined by solution nuclear magnetic resonance (NMR) spectrosco-
py in detergent micelles (PDB ID: 1AFO) [194] and in lipid bicelles (PDB
ID: 2KPE, 2KPF) [195]. GpA has long been amodel protein to investigate
structure and stability of membrane protein dimers in different mem-
brane environments [196,197] as well as a popular target of membrane
simulations [72,74,75,119,123,187,198]. The transmembrane sequence
of GpA contains the “GxxxG” motif (Table 1), which is often observed
at TM–TM contact interfaces of membrane proteins [199,200]. This
motif as well as its variants “G(A)xxxG(A)” can form an interhelical
backbone hydrogen bond that enhances dimer stability in membranes.
In addition, β-branched residues (Val, Leu, and Ile) adjacent to the
“GxxxG” motif contribute to the enhanced stability of GpA dimer
structure.

Since it is not feasible to predict TM helix dimers using conventional
all-atom MD simulations, the MD simulation studies for the GpA dimer
prediction have combined various implicit membrane models and sev-
eral enhanced conformational sampling methods such as US [72,75],
replica-exchange Monte Carlo (REMC) [198], T-REMD [75,77,119], and
REUS [74]. Toward reliable modeling/simulation of the TM helix
dimer, it is necessary to examine accuracy and efficiency of molecular
models and simulation methods. Here, we discuss the choices of
(i) reaction coordinates in US and REUS, (ii) sampling algorithms (US
vs T-REMD), and (iii) implicit membranemodels (IMM1 vs GBSWMEMB)
in the simulations.

In general, the structure of a TM helix homodimer is described by
three internal coordinates, namely, interhelical distance (R), interhelical
crossing angle (Ω), and relative rotational angle (ρ), if we assume each
TM helix as a rigid rod and the TM helix homodimer is symmetric
(Fig. 3a). Henin et al. performed US simulations of a GpA dimer using
only the interhelical distance R as a reaction coordinate in an all-atom
POPC bilayer [72]. They defined the interhelical distance as the distance
separating the centers of mass (COM) of the two TM helices. In their
simulations, the potential of mean force (PMF) for the reversible dimer-
ization of the GpA dimer was estimated, and a mechanism was sug-
gested where the early recognition stage was primarily driven by van
der Waals TM helix interactions. Although this simulation agreed with
the “two-stage” model of integral membrane protein folding [201], the
Table 1
The amino acid sequences of the proteins discussed in this review.

Proteins Amino acid sequence

Glycophorin A (GpA) E72ITLI TGVMA GVIGT ILLIS YGI95
Phospholamban (PLN) MEKVQ YLTRS AIRRA STIEM PQQAR QNLQN

LFINF ALILI FLLLI AIIVM LL
Amyloid precursor protein (APP) DAEFR HDSGY EVHHQ KLVFF AEDVG SNKGA

IIGLM VGGVV ATVI VITLV MLKKK
sampling efficiency of other degrees of freedom was not clear. Lee
et al. developed the restraint potentials bywhich the distance and cross-
ing angle of two helices are kept around target values inMD simulations
[202]. In this potential, the interhelical distance is defined as the mini-
mum distance between two TM helices. This was applied in the study
of generic TM dimer formation in an all-atom DMPC bilayer [203]. In
addition, using such a helix restraint potential, Park et al. compared
the conformational sampling efficiency for the one-dimensional (1d)
REUS with R as the reaction coordinate to the two-dimensional (2d)
REUSwith R andΩ as the reaction coordinates [74]. They demonstrated
that the high barrier alongΩ in the free-energy landscape prevents effi-
cient sampling along R, and thus the 2d-REUS is a general and efficient
approach to studying TM helix dimerization.

Recently, Li et al. defined three points in each helix A and B (X1, X2,
X3, where X = A or B) for describing three internal coordinates, R, Ω,
and ρ [75]. X1 and X2 are the COM of helix X and the COM of the top
(or bottom) half of helix X, and X3 is a selected Cα atom for defining ρ
of helix X with respect to another. R is defined as a distance between
A1 and B1. The dihedral angles of A2–A1–B1–B2 and A3–A2–A1–B1
are used to define Ω and ρAB for helix A with respect to helix B. In this
work, a two-step procedure is applied; the first step is to simulate
the association process, while the PMF at a target value of Ω, and ρ is
calculated in the second step using a flat bottom harmonic restraint to
prevent the TM helices from drifting away from each other. To obtain
a 2d-PMF along with Ω, and ρ, about 500 independent US MD simula-
tions were carried out. In Fig. 3b and c, the native-like right-handed
dimer structures of GpA were observed in the 2d-PMF, when both
GBSWMEMB and IMM1 implicit models were used in the simulation. As
a second stable conformation, both simulations suggested a left-
handed structure. The PMFs obtained by the 2d-US along with Ω and ρ
were also compared to that obtained by T-REMD. At the same tempera-
ture (300 K), the two PMFs show good agreement regardless of the dif-
ference in sampling algorithms. At higher temperatures in T-REMD, a
broader distribution along ρ was observed, while the distribution of Ω
remained narrow. This was partially due to the flat bottom distance
restraints in the T-REMD simulations.

There are only few simulation studies of the GpA dimer associations
in explicit solvent andmembranes, presumably due to the large compu-
tational cost. MD simulations based on theMARTINI CGmodels [73] and
the PACE (hybrid all-atom protein/CG MARTINI lipid) models [49]
successfully reproduced the GpA dimer structures in DPPC bilayers.
Promisingly, the binding stability of the GpA dimer was estimated at
around 10 kcal/mol regardless of the membrane models [72–74] in
good agreement with the experimental value [197].

4.2. Phospholamban (PLN)

Phospholamban (PLN) is an integralmembrane protein that consists
of 52 amino acid residues (Table 1) [204]. It works as a reversible regu-
lator protein for the activity of the sarcoplasmic/endoplasmic reticulum
calcium pump (SERCA). The structure of PLN is composed of a cytoplas-
mic helix (residues 1–16), a TM helix (residues 22–52), and a linker re-
gion (residues 18–21) [205]. In membranes, PLN has a strong tendency
to take oligomer forms, and the pentamer is known as the most stable
oligomer. However, when PLN interacts with SERCA in membranes,
PLN takes a monomeric form [206], suggesting that there is a dynamic
equilibrium between monomer and pentamer forms [207]. The mono-
mer structure of PLN was determined in detergent micelle (PDB ID:
1N7L) by solution NMR [205] and in a mixed bilayer (PDB ID: 2KB7)
by solid-state NMR [208]. The pentamer structure in detergent micelles
was first determined by solution NMR and is known as the ‘bellflower’
structure (PDB ID: 1ZLL) [209], where the cytoplasmic helix is greatly
exposed in solution. Another pentamer structure determined by solid-
state NMR showed that the cytoplasmic helix is partially embedded in
themembranes (‘pinwheel’ structure) (PDB ID: 2KYV) [210]. The stabil-
ities of these two pentamer structureswere examined by using all-atom



Fig. 3.MD simulations of GpA dimer. (a) The definition of interhelical distance (R), interhelical crossing angle (Ω), and relative rotational angle (ρ). (b) The potential of mean force (PMF)
and two major dimer structures from T-REMD/IMM1 simulation. (c) PMF and three major dimer structures from T-REMD/GBSWMEMB simulation.
Reprinted with permission from [75]. Copyright 2014 JohnWiley & Sons, Inc.

1643T. Mori et al. / Biochimica et Biophysica Acta 1858 (2016) 1635–1651
MD simulations in a lipid bilayer, and Kim et al. found that the cytoplas-
mic domain in the bellflower structure was highly unstable [78], sug-
gesting that this structure is stable only in detergentmicelle conditions.

The oligomer structures of PLN as well as GpA and the M2 proton
channel (M2) were investigated by T-REMD simulations with the
GBSWMEMB model [77]. In experiments, their most stable oligomer
structures were known as a dimer (GpA), tetramer (M2), and pentamer
(PLN). In the simulation, they utilized the IMAGE facility in CHARMM to
simulate putative oligomers. In three cases, the simulations successfully
predicted the native homo-oligomer structures, using only the native
oligomerization state as a structural constraint. For PLN, they could
predict the pentamer structure as the most stable oligomer without
the constraint, while GpA and M2 were not predicted as a dimer and a
tetramer state, presumably due to the insufficient parameterization of
peptide–lipid dispersion interactions.

How PLN interacts with SERCA to regulate the ion uptake is the cen-
tral question, yet it remains unresolved. Biochemical experiments
showed that phosphorylation of PLN at Ser16 by cAMP-dependent pro-
tein kinase [211] or at Thr17 by Ca2+/calmodulin-dependent kinase re-
lieves the inhibition [212]. However, molecularmechanisms underlying
the regulation remain elusive. Before the atomic structures of SERCA
had been determined by X-ray crystallography, structural information
was accumulated via S–S cross-linking experiments [213]. In 2003,
Toyoshima et al. proposed a structural model of PLN bound to SERCA
based on the E2-state crystal structure of SERCA and three distance re-
straints: (SERCA, PLN) = (L321, N27), (V89, V49), and (K397/K400,
K3) [214]. Ten years later, an atomic structure of SERCA/PLN complex
was determined at 2.8 Å resolution by X-ray crystallography [215].
The transmembrane interaction between SERCA and PLN is close to
those in Toyoshima's model, while the cytoplasmic information is miss-
ing in the crystal structure due to the truncation of PLN.
The effect of phosphorylation at Ser16 was also investigated compu-
tationally by MD simulations [78], T-REMD in water [76], and T-REMD
with the HDGB implicit membrane model to fully sample the dynamics
of the flexible cytoplasmic domain at the membrane surface [80]. The
simulation results suggested that phosphorylation at Ser16 increases
the flexibility of PLN [76], and the simulation results are in good agree-
ment with the experimental observation [216]. The PLN monomer was
also simulated using T-REMD in the HDGB implicit membrane models
with four different membrane thicknesses, again taking advantage of
the implicitmembrane to easily change themembrane thickness simply
by changing the dielectric profile [79]. In thicker membranes, the popu-
lation of T-shape structure, in which the cytoplasmic helix tightly inter-
acts with membranes, increases, whereas the interhelical angle is
greater in thinner membranes (Fig. 4). Since a thinner membrane may
be representative of detergents such as C12E8, the simulations suggested
that the fully extended conformation of PLN is sampled only in C12E8
detergent condition. Furthermore, this implies that the SS-crosslink
between K397/K400 in SERCA and K3 in PLN is a result of the particular
detergent that was used in the experiment.

4.3. Amyloid precursor protein (APP)

Alzheimer's disease (AD) causes dementia in many elderly people.
Aggregation of amyloid β peptide (Aβ) in the brain is considered to be
the primary element in the pathogenesis of AD [217]. In the initial pro-
cess, amyloid precursor protein (APP), a type-I membrane protein, is
cleaved on the extracellular β-site by β-secretase, which produces
APP-C99, the remaining APP after the cleavage. γ-Secretase then
cleaves the transmembrane γ-site (Gly38–Thr43), which produces Aβ
peptides, primarily, Aβ1-40 and Aβ1-42 that aggregate in the later process
[218–220].



Fig. 4. Effect of membrane thickness in phospholambanmonomer structures. Dielectric/nonpolar profile thicknesses in the HDGB implicit membranemodels are (a) 24.5/24 Å, (b) 25.5/24 Å,
(c) 26/26 Å, and (d) 26.5/27 Å, respectively.
Reprinted with permission from [79]. Copyright 2010, Biophysical Society.
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Structural information on the TM domain of APP-C99 is important
for understanding the molecular mechanisms underlying the Aβ
production. Although its secondary structure was determined in
2008 [221] (Fig. 5a), the detailed atomic structure was not resolved.
Miyashita et al. carried out T-REMD simulations of Aβ1-40, Aβ1-42, and
Aβ1-55 (or APP-C991-55) in the GBSWMEMB model to predict their struc-
tures [82]. Aβ1-40 and Aβ1-42 in a membrane environment take similar
structure, in which two helical domains A(13-22), B(30-35), and a
type I β-turn at 23-27 exist in a membrane interface. The transmem-
brane domain of APP-C991-55 consists of a helix kinked at Gly37–
Gly38 (‘GG-kink’) (Fig. 5b). This structure is in good agreement with
the solution NMR structure (PDB ID: 2LP1) and has been confirmed by
all-atom membrane simulations [222]. Multi-scale simulations of APP-
C9915-55, where microsecond time scale CGMD simulations using
MARTINI models were followed by 100-ns time-scale all-atomMD sim-
ulations using all-atom the CHARMM36 force field, confirmed the pre-
diction by the T-REMD/GBSWMEMB simulations [83]. In particular, the
NMR solution structure in micelle was in good agreement with the
MD simulations in the same (detergent micelle) conditions [222] (Fig.
5c–e).

APP has three consecutive GxxxG motifs (G25xxxG29xxxG33xxxG38)
in its juxtamembrane and TM regions. Munter et al. first suggested that
G29xxxG33 plays a key role on the TM helix dimerization [223], whereas
Kienlen-Campart et al. suggested that G33xxxG38 is the contact interface
[224]. They also examined the effect of hydrophobic mutations at the
G33xxxG38 motif, namely L33xxxL38 and I33xxxI38, on the APP dimeriza-
tion. Although themutation increases dimerization of APP TM domains,
it leads to a drastic reduction of Aβ1–40 andAβ1–42 secretion. To examine
the ability of TM helix dimer in APP wild type and the difference of di-
merization between wild type and L33xxxL38 mutant, Miyashita et al.
carried out T-REMD simulations of the wild type APP and its L33xxxL38
mutant using the IMM1 model [81]. The simulations showed that the
wild type APP forms a dimer via the backbone interaction at
G33xxxG38 (Fig. 6a), as shown by Kielen-Campart et al., while the inter-
face of the mutant APP is the hydrophobic sidechain interactions at
L33xxxL38 (Fig. 6b). Interestingly, the γ-cleavage site of the mutant is
shifted downward by 3 Å along the bilayer normal, suggesting that
the mutation causes a mismatch between the γ-cleavage site in APP
and the active site of γ-secretase, causing the reduction of Aβ1–40 and
Aβ1–42 secretion.

In 2012, a dimer structure of APP TM domain in micelle environ-
mentswasdetermined by solutionNMR (Fig. 6c) [225]. In this structure,
two G33xxxG38 motifs do not face each other, which contradict the pre-
vious experiment and simulations. Dominguez et al. performed again
multi-scale simulations of an APP dimer (APP1–55) in a DPC micelle
and a POPC bilayer [84]. They carried out 50 individual 1.5-μs CGMD



Fig. 5. The experimental and computational approaches for APP-C99monomer structures. (a) The secondary structure information, (b) the predicted structure of APP-C991-55 by T-REMD/
GBSWMEMB simulations, (c) the solution NMR structure in micelles, (d) the predicted structure of APP-C991-55 in a POPC bilayer, and (e) in DPC micelles by multi-scale approaches.
For Fig. 5d and e, reprinted with permission from [83]. Copyright 2013, American Chemical Society.
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simulations and a 100-ns all-atomMD simulation. Based on the relative
rotational angles, they classified the APP TMdimer structures into three
types: Gly-in, Gly-out, and Gly-side. In ‘Gly-in’, both of two G33xxxG38
Fig. 6. The experimental and computational approaches for APP dimer structures. (a) The predi
simulations, (c) the solution NMR structure in micelles, (d) the predicted structure of APP-C99
For Fig. 6d and e, reprinted with permission from [84]. Copyright 2014, American Chemical So
face each other at the TM contact interface, whereas both of them face
outsides in ‘Gly-out’. In ‘Gly-side’, only one G33xxxG38 faces inside
while the other faces outside. The simulations suggested that Gly-in is
cted structure of wild type APP-C991-55, (b) L33xxxL38 mutant structure by T-REMD/IMM1
1-55 in a POPC bilayer, and (e) in DPC micelles by multi-scale simulations.
ciety.
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the most stable TM helix dimer structure in a POPC lipid bilayer (Fig.
6d), while Gly-out and Gly-side are dominant in micelle environments
(Fig. 6e). This result agrees with all the experimental and simulation re-
sults, suggesting that a membrane environment greatly affects the
dimer structure of APP.

4.4. Mixed lipid bilayers

Mixed lipid systems are the major structural component of biologi-
cal membranes. They are involved in a number of cellular processes
like signal transduction, membrane trafficking, and immune responses.
However, it is difficult to predict membrane structures with multiple
components, because lateral diffusion of lipid molecules is very slow
(10−9–10−7 cm2 s−1) and it takes longer time to obtain an equilibrated
structure in all-atom MD simulation [226]. Thus, enhanced sampling
methods can play an important role in studying such heterogeneous
bilayer systems.

Wang et al. examined acceleration of lateral diffusion and mixing of
two lipid components by using the aMD method [85]. In their method,
the dihedral potential was boosted, which enhances trans-gauche isom-
erization of lipid acyl chains during the simulation. They simulated
mixed POPC/DMPC lipid bilayers from a state in which two lipid phases
are completely separated, and analyzed structural change of lipid
molecules as well as lipid lateral diffusion. They found that in aMD,
trans-gauche isomerization occurred 7.7- and 5.3-fold faster in POPC
and DMPC, respectively, compared to the conventional MD. In addition,
aMD showed two- to three-fold speedup in lipid mixing. They also sug-
gested that Ecut and α in the boost potential is important to determine
the speedup in lipid lateral diffusion. Increasing Ecut was especially ef-
fective for enhancing the diffusion. Changingα affects structural change
of acyl chains in POPC rather than DMPC.

REST simulations were also applied to a mixed lipid bilayer system
for a similar purpose by Huang and Garcia [86]. The simulation system
contained 144 DPPC, 144 cholesterol, and ~14,000 water molecules.
DPPC lipids were chosen as the tempered solute. They estimated that
Fig. 7.Mixing of lipids by different REMDmethods. (a) Snapshots in the conventionalMD simul
molecules as a function of time, (c) histogram of degree of mixing (see the details in the origin
For Figs. 7b and c, reprinted with permission from [87]. Copyright 2015, Wiley.
12 replicas are enough in REST to cover the same temperature range
(323 to 600 K) with T-REMD, while full T-REMD needs ~100 replicas.
In the REST simulations, they found that lipid lateral diffusion is
enhanced by an order of magnitude compared to the conventional
MD, and observed faster convergence in the radial distribution function
of cholesterol. They suggested that REST is useful for investigating
membrane lateral heterogeneity.

Mori et al. simulatedmixed POPC/DMPC bilayers by usingγT-REMD,
T-REMD, γ-REMD, and MD simulations, and examined the effect of the
surface tension on themembrane structures withmultiple components
[87]. In their simulations, they observed that some replicas in γT-REMD
showed accelerated mixing of two lipids compared to MD (Fig. 7a).
They analyzed the mean–square displacement of POPC and DMPC, and
found that all REMD simulations showed accelerated lipid lateral diffu-
sion but the degree to which acceleration was achieved followed the
following order: T-REMD N γT-REMD N γ-REMD NMD (Fig. 7b). The en-
hanced lateral diffusion in T-REMD is simply due to high temperature,
and those in γ-REMD are due to free-area effects. Since diffusion and
mixing are actually not identical in the mixed lipid-bilayer systems,
they also quantified the degree of mixing of two lipid components
by analyzing the number of contact pairs between POPC and DMPC
(Fig. 7c). They found that mixing was enhanced in T-REMD compared
toMD, while it was suppressed in γ-REMD. In γT-REMD, both enhance-
ment and suppressionwere observed, presumably becausemixing is ac-
celerated at high temperature while it is suppressed under high surface
tension. From these enhanced sampling simulations, they concluded
that surface tension suppresses mixing of two lipid components, while
temperature has the opposite effect.

5. Conclusions and perspectives

We have reviewed various molecular models and enhanced
conformational sampling algorithms for biomembrane simulations
and contrasted their advantages and disadvantages. For example, the
GB models offer significant advantages for studying the dynamics of
ation (top) and the γT-REMD (bottom). (b)Mean square displacement of POPC and DMPC
al article).
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membrane embedded proteins, especially in combination with REMD,
but they are the most useful for relatively small molecules, where the
computational advantage over explicit solvent models is greatest.
Furthermore, the GB models may miss functionally relevant specific in-
teractions between protein and solvent.With respect to enhanced sam-
pling methods, the REMD methods do not need empirical parameters,
but many replicas are required for explicit solvent systems, and sam-
pling is not guided in a specific way to overcome system barriers.
REUS targets barriers more specifically, but needs appropriate reaction
coordinates to compute the free energy landscape in a complex system.
REST can reduce the number of replicas in explicit solvent simulations,
while scaling of protein–protein interactions may generate unnatural
protein structures in high temperature replicas. Finally, aMD is less
straightforward to use because it requires trial-and-error optimization
to obtain reasonable parameters (Ecut and α) for effective accelerated
conformational sampling. The enhanced sampling schemes also vary
in the requirement of large parallel computer resources when many
replica simulations have to be run simultaneously.

We would like to briefly introduce two other important algorithms
for biomembrane simulations. One is the use of reaction path method,
like the string method [227]. Moradi et al. extensively searched a num-
ber of pathways that describe large conformational changes of mem-
brane transporters by multiple targeted MD simulations [228]. Using
the pathway whose free-energy change is smaller than other ones,
they refined the conformational transition pathway by applying the
string method. Finally, they carried out REUS (or bias-exchange MD)
using the collective variables that can describe the transition pathway.
This approach is a promising way for simulating conformational chang-
es of large membrane proteins. So far, ABC transporter and glycerol-3-
phosphate:phosphate antiporter were simulated by this approach for
understanding not only the conformational changes [229] but also the
free-energy profiles upon the ligand-induced conformational changes
[230]. Another important work is the use of Markov state model
(MSM) for long-timescale processes from large number of independent
MD simulations [231]. MSM has been used to understand protein fold-
ing, conformational change, and protein–ligand docking [232]. Recently,
Kohlhoff et al. applied this method to explore ligand modulation of
GPCR activation pathways [233]. They carried out tens of thousands of
individual ~10-nsMD simulations of β2AR in explicit solvent andmem-
brane, and found that the activation of β2AR takes place along multiple
pathways consisting of metastable intermediate states.

As illustrated with the recent simulation studies of GpA, PLN, and
APP, the implicit models can be combined successfully with T-REMD
or REUS to enhance conformational sampling. The advantage of this ap-
proach is that one could examine physical properties of membranes or
protein/membrane interactions using relatively modest computational
resources. The predicted GpA, PLN, and APP structures by this approach
compare favorably with experiment, suggesting that the model and
simulation approaches are sufficiently accurate. The next challenge
would be the application to the study of dynamics in larger membrane
proteins where there are many unresolved questions, in particular
with respect to membrane protein association, membrane protein fold-
ing, membrane protein–ligand binding interaction, large conformation-
al changes of membrane transporter, and other topics. The extensive
use of GPUs is a key step for such applications requiring that implicit
membrane models and enhanced sampling schemes are implemented
efficiently on such platforms.

The enhanced mixing of lipids with T-REMD, REST, and aMD is a
benefit for explicit lipid/solvent simulations but the large degrees of
freedom in systems where large proteins are embedded in explicit
bilayers greatly increase the number of replicas, especially in the
T-REMD scheme. In some of those cases, the use of aMD may be a
good alternative, since aMD requires less computational resources com-
pared to the other methods as evidenced in several recent publications
where the conformational changes of membrane proteins were
enhanced by this method [234,235]. On the other hand, T-REMD
simulations of large membrane proteins may not be practical in near
future. However, similar to an approach taken by the Straub's group
for studying APP [81–84], multi-scale simulations combined with
T-REMD/Implicit solvent, CGMD, and all-atomMDmay be a good strat-
egy for tackling complex biological phenomena like membrane protein
folding.

We expect that advanced computational methods that take advan-
tage of enhanced sampling and/or efficient representations of
membrane environments will continue to explore increasingly wider
conformational space to drive and complement experiments with the
ultimate goal of fully understand relationships between structure,
dynamics, and function of membrane proteins.
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