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Abstract Forced convection in unsteady boundary layer flow of nanofluid over a permeable

shrinking sheet in the presence of thermal radiation is studied. A variable magnetic field is applied

normal to the sheet. The nanofluid model includes Brownian motion and thermophoresis effects.

The governing momentum, energy and nanofluid solid volume fraction equations are solved numer-

ically using fourth order Runge–Kutta method with shooting technique. The effects of various

physical parameters on dimensionless velocity, temperature, nanoparticle volume fraction, as well

as the skin friction, local Nusselt and local Sherwood numbers are analyzed. The numerical results

indicate that dual solutions exist for certain values of the magnetic parameter ðMÞ, wall mass suc-

tion (s) and unsteadiness parameter (A). It is found that both magnetic field and wall mass suction

widen the range of unsteadiness parameter for which the solution exists. The skin friction coeffi-

cient, local Nusselt and Sherwood numbers increase for the first solution and decrease for the sec-

ond solution with the increase in M.
ª 2014 Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University.
1. Introduction

The boundary layer flow of an electrically conducting fluid in
the presence of magnetic field has wide applications in many

engineering problems such as MHD generator, plasma studies,
nuclear reactors, geothermal energy extraction, and oil

exploration. Also, radiative heat transfer in the boundary layer
flow is very important from application point of view, because
the quality of the final product is very much dependent on the

rate of heat transfer of the ambient fluid particles. Again
unsteady flows, such as start-up process and periodic fluid
motion, are very much important in engineering practices. In

many engineering problems, such as helicopter rotor, the ship
propeller, the cascades of blades of turbo-machinery unsteady
environment occurs. Hence it is very much important to
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Nomenclature

A nondimensional unsteadiness parameter

B variable magnetic field
B0 uniform magnetic field
c constant proportional to the shrinking velocity
cf skin friction coefficient

cp specific heat at constant pressure
C nanoparticle volume fraction
Cw nanoparticle volume fraction at the surface

C1 nanoparticle volume fraction in the free stream
DB Brownian diffusion coefficient
DT thermophoresis diffusion coefficient

fðgÞ dimensionless stream function
K1 mean absorption coefficient
Le Lewis number
M dimensionless magnetic parameter

Nb dimensionless Brownian motion parameter
Nt dimensionless Thermophhoresis motion parameter
Nux local Nusselt number

Pr Prandtl number
Preff effective Prandtl number
qm wall mass flux

qw wall heat flux
R thermal radiation parameter

Rex local Reynolds number

s mass suction parameter
Shx local Sherwood number
T temperature of the fluid
Tw temperature of the fluid at the sheet

T1 temperature of the fluid in the free stream
u; v velocity components along x and y axes, respec-

tively

uw velocity of the shrinking sheet
vw velocity of mass transfer

Greek symbols
am thermal diffusivity

/ðgÞ rescaled nanoparticle volume fraction
g similarity variable
h dimensionless temperature of the fluid

m kinematic viscosity of the fluid
k dimensional unsteadiness parameter
qf density of the base fluid

s ratio of the effective heat capacity of the nanopar-
ticle material and the ordinary fluid

w stream function
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investigate the simultaneous effects of thermal radiation, mag-
netic field and unsteadiness.

Various industries such as chemical production, power gen-
eration in a power plant, production of microelectronics,
advanced nuclear systems demand an efficient heat exchanger

device. Classical heat transfer fluids such as water, ethylene
glycol, engine oil have a limitation in heat transfer efficiency.
In contrast, metals are very good conductors. To overcome

this disadvantage of fluids, it would be desired to combine met-
als and fluids to produce a heat transfer medium that behaves
like a fluid, but has the thermal conductivity of a metal. The
necessity for improving the thermal conductivity and enhanc-

ing the heat transfer has led to the utilization of nanoparticles
in the fluid.

A liquid containing suspension of a metallic (such as Cu,

Al, Fe, Hg and Ti) or a non-metallic (such as metal oxide)
nanometer-sized (generally less than 100 nm) solid particles
or fibers is termed as nanofluid. The main characteristics of

the nanofluid are the enhancement of the thermal conductivity
of the base fluid, minimal clogging in few passage, long term
stability and homogeneity (see Choi [1], Choi et al. [2]).
Because of the wide range of applications of nanofluids, signif-

icant research has been carried out in recent years by the
researchers to study the heat transfer characteristics of these
fluids.

Buongiorno [3] was the first who formulated the nanofluid
model taking into account the effects of Brownian motion and
thermophoresis. In his work, he has pointed that although

there are some elements those affect nanofluid flow such as
inertia, Brownian diffusion, thermophoresis, Magnus effect,
fluid drainage, diffusiophoresis and gravity; only Brownian

diffusion and thermophoresis are important mechanisms in
nanofluid. It should be mentioned that a lot of researchers
(see [4–6]) have used the mathematical nanofluid model pro-
posed by Buongiorno [3] to study different problems under dif-

ferent physical situations.
Bachok et al. [7] investigated the forced convective bound-

ary layer flow of nanofluid over a moving plate and they con-

cluded that dual solutions exist when the plate and free stream
move in opposite directions. Khan and Pop [8] analyzed the
boundary layer flow and heat transfer of nanofluid over a

stretching surface. The effect of magnetic field on free convec-
tion flow of nanofluid past a vertical flat plate was considered
by Hamad [9]. The boundary layer flow and heat transfer in a
viscous fluid containing metallic nanoparticles over a nonlin-

ear stretching sheet are investigated by Hamad and Ferdows
[10]. They studied different types of nanoparticles and found
that the behavior of the fluid flow changes with the change

of type of the nanoparticles. Numerous recent studies on nano-
fluids can be found in [11–15].

Recently, the boundary layer flow near a shrinking sheet

gets attention due to increasing engineering applications. The
existence and uniqueness of steady viscous flow due to a
shrinking sheet was established by Miklavcic and Wang [16]
and they concluded that for some specific value of suction at

the sheet, dual solutions exist and also in certain range of value
of suction, no boundary layer solution exists. On the other
hand, Wang [17] investigated the stagnation point flow toward

a shrinking sheet and obtained dual solutions for some values
of the ratio of shrinking and stagnation flow rates. Following
these works, some very important investigations in this direc-

tion were made (see [18–23]).
The problem of boundary layer flow over a shrinking sheet

with mass transfer is investigated by Fang et al. [24]. In that

paper, they reported that boundary layer solution exists only
for mass suction parameter s P 2 and for the unsteadiness
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parameter b 6 0. Later, Bachok et al. [25] analyzed the
unsteady three dimensional boundary layer flow due to a per-
meable shrinking sheet. In another paper, Bachok et al. [26]

studied the unsteady boundary layer flow and heat transfer
of a nanofluid over a permeable stretching/shrinking sheet
and they concluded that the unsteadiness parameter as well

as the mass suction parameter widen the range of stretching/
shrinking parameter for which the boundary layer solution
exists. Very recently, the unsteady flow and heat transfer over

an unsteady shrinking sheet with suction in a nanofluid was
analyzed by Rohni et al. [27] and it was found that dual solu-
tions exist for a certain range of wall mass suction, unsteadi-
ness and nanofluid parameters.

The aim of the present paper (which is an extension of
Rohni et al. [27]) is to study the simultaneous effect of the mag-
netic field and thermal radiation on the flow and heat transfer

due to the unsteady, two-dimensional laminar flow of a viscous
nanofluid caused by a permeable shrinking sheet. In this paper,
a similarity analysis is performed to reduce the governing

equations to ordinary differential equations which are subse-
quently solved numerically using fourth order Runga–Kutta
method with shooting technique. Results presented focus on

how the magnetic field, surface mass transfer, Brownian
motion, thermophoresis and thermal radiation affect the heat
and mass transfer characteristics of the flow. The present study
is of immediate interest to all those which are highly affected

with heat enhancement concept.

2. Flow analysis

Consider unsteady two-dimensional laminar boundary-layer
flow of incompressible electrically conducting viscous nano-
fluid past a permeable shrinking sheet. The flow is subjected

to a transverse magnetic field of strength B which is assumed
to be applied in the positive y-direction, normal to the surface.
It is assumed that the velocity of the shrinking sheet is uwðx; tÞ
and the velocity of the mass transfer is vwðx; tÞ, where x is the
coordinate measured along the shrinking sheet and t is the
time. It is also assumed that the constant surface temperature

and concentration of the sheet are Tw and Cw, while the uni-
form temperature and concentration far from the sheet are
T1 and C1, respectively.

Under these assumptions, the unsteady boundary-layer

equations governing the flow, heat and mass transfer are
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where u and v are the velocity components in the x and

y-directions respectively, m is the kinematic viscosity, r is the
electrical conductivity (assumed constant), qf is the density
of the base fluid, am is the thermal diffusivity, DB is the

Brownian diffusion coefficient, DT is the thermophoresis diffu-
sion coefficient and cp is the specific heat at constant pressure.
Here s is the ratio of the effective heat capacity of the nanopar-

ticle material and the heat capacity of the ordinary fluid, T is
the fluid temperature and C is the nanoparticle volume
fraction.

The term rB2

qf
u in the R.H.S. of Eq. (2) is the Lorentz force

which arises due to the interaction of the fluid velocity and the
applied magnetic field. In writing Eq. (2), we have neglected
the induced magnetic field since the magnetic Reynolds num-

ber for the flow is assumed to be very small. This assumption
is justified for flow of electrically conductive fluids such as
liquid metals e.g. mercury, liquid sodium, etc. (see Shercliff

[28]). Eq. (3) depicts that heat can be transported in a nano-
fluid by convection, by conduction and also by virtue of nano-

particle diffusion and radiation. The term u @T
@x
þ v @T

@y
is the heat

convection, the term am
@2T
@y2

is the heat conduction; the term

sDB
@C
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is the thermal energy transport due to Brownian dif-

fusion, the term s DT

T1
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@y

� �2
is the energy transport due to ther-

mophoretic effect and 1
qfcp

@qr
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is the nanoparticle heat diffusion

by radiation. Eq. (4) shows that the nanoparticles can move

homogeneously within the fluid (by the term u @C
@x
þ v @C

@y
), but

they also possess a slip velocity relative to the fluid due to

Brownian diffusion DB
@2C
@y2

and the thermophoresis DT

T1
@2T
@y2

.

Here the boundary conditions are

u¼ uwðx; tÞ ¼�
cx

1� kt
;v¼ vwðx; tÞ;T¼Tw; C¼Cw at y¼ 0;

u! 0; T!T1; C!C1 as y!1; ð5Þ

The wall mass transfer velocity then becomes

vwðx; tÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cm

1� kt

r
s; ð6Þ

where s is the constant wall mass transfer parameter with s > 0

for suction and s < 0 for injection, respectively. Using
Rosseland’s approximation for radiation (see Brewster [29]),
we can write

qr ¼ �
4r1

3K1

@T4

@y
; ð7Þ

where r1 is the Stefan–Boltzmann constant and K1 is the mean

absorption coefficient. Assuming the temperature difference
within the flow is such that T4 may be expanded in a Taylor
series about T1 and neglecting higher order terms we get

T4 � 4T3
1T� 3T4

1. Hence from Eq. (7), using the above result,
we have
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¼ � 16r1T

3
1
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To attain the similarity solutions of the Eqs. (1)–(4) with the
boundary conditions (5), we take the transverse unsteady
magnetic field strength applied to the sheet is of the form

B ¼ B0=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kt
p

, where B0 is constant. This form of B0ðtÞ
has also been considered by Vajravelu et al. [30] while
analyzing the MHD flow and heat transfer over an unsteady

stretching sheet. The stream function and dimensionless
variable can be taken as



Table 1 Comparison of the critical values of unsteadiness

parameter Ac for several values of suction parameter s with

M ¼ 0.

s Present study Rohni et al. [27]

2.10 �1:654850 �1:6550
2.15 �3:860346 �3:8605
2.20 �8:349103 �8:3488
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w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cm

1� kt

r
xfðgÞ; hðgÞ ¼ T� T1
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;
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
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r
; ð9Þ

where the stream function w is defined in the usual way
u ¼ @w=@y and v ¼ �@w=@x. Substituting (9) into Eqs. (1)–

(4), we obtain the following ordinary differential equations
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: ð13Þ

Here M is the dimensionless magnetic parameter, A is the
unsteadiness parameter, Preff is the effective Prandtl number,
R is the thermal radiation parameter, Pr is the Prandtl num-

ber, m is the kinematic viscosity of the fluid, Nb is the Brownian
motion parameter, Nt is the thermophoresis parameter and Le
is the Lewis number.

It is worth noting that the temperature actually does not

depend on Prandtl number (Pr) and the thermal radiation
parameter ðRÞ independently, but depends only on a combina-
tion of them termed as effective Prandtl number Preff which is

directly proportional to the Prandtl number and inversely pro-
portional to the thermal radiation parameter.

The corresponding boundary conditions are

fð0Þ ¼ s; f0ð0Þ ¼ �1; hð0Þ ¼ 1; /ð0Þ ¼ 1

f0ð1Þ ¼ 0; hð1Þ ¼ 0; /ð1Þ ¼ 0: ð14Þ

The physical quantities of interest are the skin friction coeffi-

cient Cf, the local Nusselt number Nux and the local Sherwood
number Shx which are defined as

Cf ¼
sw

qfu
2
w

; Nux ¼
xqw

kðTw � T1Þ
;Shx

¼ xqm
DBðCw � C1Þ

; ð15Þ

where sw is the shear stress at the stretching surface, qw and qm
are the wall heat and mass fluxes, respectively.

Hence using Eq. (10) we get

Re1=2x Cf ¼ f00ð0Þ; NuxRe
�1=2
x ¼ �h0ð0Þ; ShxRe

�1=2
x

¼ �/0ð0Þ ð16Þ

where Rex ¼ uwðx; tÞx=m is the local Reynolds number based
on the stretching velocity uwðx; tÞ.

3. Numerical solution

By using a similarity transformation, the governing equations
of the problem are reduced to a system of coupled, non-linear

ordinary differential equations, which are solved numerically
by fourth order Runga–Kutta method with shooting technique
(see for details Gladwell and Sayers [31]). For the sake of
brevity, further details of the solution process are not pre-
sented here. Since the physical domain in this problem is
unbounded, whereas the computational domain has to be

finite, we apply the far field boundary conditions for the sim-
ilarity variable g at a finite value denoted by gmax. In all our
computations we have used the value of gmax ¼ 12 which is suf-

ficient to satisfy the far field boundary conditions asymptoti-
cally for all values of the physical parameters considered in
this problem. For these numerical computations, a uniform

step size Dg ¼ 0:01 is taken and the solutions are obtained with
an absolute error tolerance of 10�6 in all cases.

4. Results and discussion

The analysis of the results obtained by the applied numerical
scheme explores the condition for which the boundary layer

solutions are possible. Following Fang et al. [24] and Rohni
et al. [27], we have considered the decelerating shrinking sheet
only (i.e., A 6 0). To assess the accuracy of the present results,
comparison of the critical values of A (i.e Ac, beyond which the

boundary layer solution is not possible) between the present
results and the previously published results are made for spe-
cial cases (in the absence of magnetic field and thermal radia-

tion) and found excellent agreement. This gives us confidence
of our numerical results (see Table 1).

Numerical computations are carried out for several sets of

values of the governing parameters, namely, unsteadiness
parameter (A), magnetic parameter (M), thermal radiation
parameter (R), effective Prandtl number (Preff), Brownian
motion parameter (Nb), thermophoresis parameter (Nt), Lewis

number (Le) and suction parameter (s) using the numerical
procedure discussed in the previous section. In order to illus-
trate the salient features of the model, the numerical results

are presented in Figs. 1–15.
Fig. 1 shows that the dual solutions of skin friction coeffi-

cient f 00ð0Þ with the unsteadiness parameter Að< 0Þ for several
values of the magnetic parameter M. It reveals that it is possi-
ble to get dual solutions of the boundary layer equations for
A < 0. These dual solutions are in the range Ac 6 A < 0 and

no solution exists for A < Ac < 0, where Ac is the minimum
value of A for which the solution exists. The value of Ac for
different values of M are shown in figure. It is observed that
the value of jAcj increases as the strength of the magnetic

parameter increases. This shows that as the value of M
increases the range of the values of A for which the solution
of the boundary layer equations exists, also increases. Also,

for a certain mass suction parameter (s ¼ 2:1), in the case of
upper solution branch, f 00ð0Þ increases with the increase of
M. However, for the lower solution branch, opposite trend is

observed. The variation of f 00ð0Þ with Að< 0Þ for different val-
ues of mass suction parameter s are depicted in Fig. 2. The fig-



Figure 3 Variation of �h0ð0Þ with A for several values of M

when s ¼ 2:1; Le ¼ 2:0; Nb ¼ 0:5; Nt ¼ 0:5 and Preff ¼ 1:0.

Figure 6 Variation of f0ðgÞ for several values of A when s ¼ 2:1;

M ¼ 0:2; Le ¼ 2:0; Nb ¼ 0:5; Nt ¼ 0:5 and Preff ¼ 0:71.

Figure 5 Variation of f0ðgÞ for several values of M when s ¼ 2:1;

A ¼ �1:0; Le ¼ 2:0; Nb ¼ 0:5; Nt ¼ 0:5 and Preff ¼ 0:71 .

Figure 4 Variation of �/0ð0Þ with A for several values of M

when s ¼ 2:1; Le ¼ 2:0; Nb ¼ 0:5; Nt ¼ 0:5 and Preff ¼ 1:0.

Figure 2 Dual solutions of skin friction coefficient f00ð0Þ with
Að< 0Þ for several values of s when M ¼ 0:1 .

Figure 1 Dual solutions of skin friction coefficient f00ð0Þ with
Að< 0Þ for several values of M when s ¼ 2:1 .
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Figure 7 Variation of f0ðgÞ for several values of s when A ¼ �1:0;
M ¼ 0:2; Le ¼ 2:0; Nb ¼ 0:5; Nt ¼ 0:5 and Preff ¼ 0:71.

Figure 8 Variation of hðgÞ for several values of M when s ¼ 2:0;

A ¼ �1:0; Le ¼ 2:0; Nb ¼ 0:5; Nt ¼ 0:5 and Preff ¼ 0:71.

Figure 11 Variation of hðgÞ for several values ofNt when s ¼ 2:0;

M ¼ 1:0; A ¼ �2:0; Le ¼ 2:0; Nb ¼ 0:5, and Preff ¼ 0:71.

Figure 9 Variation of hðgÞ for several values of A when s ¼ 2:1;

M ¼ 0:2; Le ¼ 2:0; Nb ¼ 0:5; Nt ¼ 0:5 and Preff ¼ 0:71.

Figure 10 Variation of hðgÞ for several values of s whenM ¼ 1:0;

A ¼ �2:0; Le ¼ 2:0; Nb ¼ 0:5; Nt ¼ 0:5 and Preff ¼ 0:71.

Figure 12 Variation of hðgÞ for several values of Nb when

s ¼ 2:1; A ¼ �1:0; M ¼ 0:5, Le ¼ 2:0, Nt ¼ 0:5 and Preff ¼ 0:71.
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Figure 15 Variation of /ðgÞ for several values ofMwhen s ¼ 2:0;

A ¼ �2:0; Le ¼ 2:0; Nt ¼ 0:5; Nb ¼ 0:5, and Preff ¼ 0:71.

Figure 13 Variation of hðgÞ for several values of Preff when

s ¼ 2:0; M ¼ 1:0; A ¼ �2:0; Le ¼ 2:0; Nb ¼ 0:5, and Nt ¼ 0:5.

Figure 14 Variation of/ðgÞ for several values ofLewhen s ¼ 2:0;

M ¼ 1:0; A ¼ �2:0; Nt ¼ 0:5; Nb ¼ 0:5, and Preff ¼ 0:71.
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ure reveals that as the wall mass suction parameter increases,
the solution domain expands with the critical value of A mov-
ing to the left.

The numerical result reveals that dual solutions exist for
certain values of the physical parameters. In order to ascertain
which of the two solutions is expected to appear physically, the

stability analysis of the dual solutions is required. Based on the
stability analysis, only the first solution (upper branch) is sta-
ble and corresponds to the physically meaningful solution. On

the other hand, the second solution (lower branch) is unstable
and not physically meaningful. The relevant procedure can be
found in studies reported by Merkin [32], Weidman et al. [33],
Mahapatra et al. [34] and very recently by Rosca and Pop [35].

The novel result that emerges from the analysis is that, though
two solutions exist mathematically, only the stable solution is
physically meaningful and can be realized physically.

The variation of the heat transfer rate �h0ð0Þ and the con-
centration rate �/0ð0Þ with Að< 0Þ for several values of the
magnetic parameter M with fixed values of the other parame-

ters is shown in Figs. 3 and 4 respectively. The dual nature of
the solutions are also seen in these figures. From these figures,
we can see that for the upper solution branch, due to an incre-

ment in value of M, both the heat transfer and the concentra-
tion rates increase. However for the lower solution branch, the
opposite trend is observed.

Figs. 5–7 are drawn to analyze the influence of magnetic

parameter (M), unsteadiness parameter (A) and wall mass suc-
tion parameter (s) on the horizontal velocity component f0ðgÞ.
Fig. 5 displays the variation of f0ðgÞ with g for several values of

M. It is seen that horizontal velocity at a point increases with
increase in M for the first solution and the opposite is true for
the second solution. In fig. 6, the effect of unsteadiness param-

eter on the velocity profiles is shown for both the solution
branches with fixed values of sð¼ 2:1Þ and Mð¼ 0:2Þ. The fig-
ure reveals that for both the solution branches, the velocity

profiles are not monotonic. For the first solution branch, as
the magnitude of the unsteadiness parameter (i.e, jAj)
increases, jf0ðgÞj decreases up to a point near the sheet but
beyond this point opposite trend is observed. Fig. 7 illustrates

the effect of the mass transfer parameter s on the horizontal
velocity profile f0ðgÞ for two solution branches with A ¼ �1:0
and M ¼ 0:2. The figure reveals that the velocity penetration

into the fluid becomes shorter with the increase of s for the
upper solution branch and the velocity profiles penetrate dee-
per for a higher mass suction parameter.

The variation of hðgÞ with g is shown in Fig. 8 for several
values of M with fixed values of the other parameters. It is
observed that temperature at a point decreases with increase
in M for the first solution and the temperature increases with

increase in M for the second solution. This is a consequence
of the fact that the temperature field is influenced by the advec-
tion of the fluid velocity above the sheet. Fig. 9 shows the var-

iation of temperature hðgÞ with g for several values of the
unsteadiness parameter Að< 0Þ. The figure reveals that the
temperature at a point decreases as the magnitude of the

unsteadiness parameter increases. This is due to the fact that
the heat transfer rate increases with the increase in unsteadi-
ness parameter which in turn reduces the temperature of the

fluid. The temperature profiles for various mass suction
parameter (s) are shown in Fig. 10. From the figure it is seen
that the thermal boundary layer thickness decreases with
increasing s. Physically this can be explained as follows; Due
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to mass suction, the fluid is brought closer to the surface and
consequently it prevents the vorticity diffusion. Also it is
observed that, the thermal boundary layer thickness for the

first solution is always thinner than that of the second solution.
The effects of thermophoresis parameter (Nt) and Brownian

motion parameter (Nb) on the temperature profiles for selected

values of parameters are shown in Figs. 11 and 12, respectively.
As the parameters Nt and Nb increase, the temperature at a
point increases. As a consequence, the thickness of the thermal

boundary layer increases with the increase of Nt and Nb. The
thermophoresis phenomenon describes the fact that small
micron sized particles suspended in a non-isothermal gas will
acquire a velocity in the direction of decreasing temperature.

An increase in Nt results in an increase of the temperature dif-
ference between the sheet and the ambient fluid and conse-
quently the thermal boundary layer thickness increases.

Fig. 13 represents the influence of the effective Prandtl number
ðPreffÞ on the dimensionless temperature profile. The tempera-
ture and the thermal boundary layer thickness reduce with

Preff. The physical reason is that, due to increase in Prandtl
number ðPrÞ, the thermal conductivity of the fluid reduces
and consequently thermal boundary layer thickness decreases.

The effect of Lewis number (Le) on the dimensionless
rescaled nanoparticle volume fraction /ðgÞ is shown in
Fig. 14. It is observed that the concentration boundary layer
thickness decreases with increasing Le. This is due to the

decrease in mass diffusivity or the Brownian motion of the
nanoparticle. Fig. 15 shows the variation of the dimensionless
rescaled nanoparticle volume fraction /ðgÞ with magnetic

parameter M in the concentration boundary layer. It is seen
that the concentration boundary layer thickness decreases with
magnetic parameter for the first solution and the opposite

trend is observed for the second solution.

5. Concluding remark

The effects of magnetic, suction, thermal radiation, thermo-
phoresis, Brownian motion and Lewis number parameters on
the boundary layer flow and heat transfer of nanofluid over

a shrinking sheet are investigated numerically using fourth
order Runge–Kutta method with shooting technique. The
effects of these parameters on dimensionless velocity, temper-
ature, rescaled nanoparticle volume fraction, skin friction,

rescaled Nusselt and Sherwood numbers can be summarized
as follows:

1. The dual solutions are found to exist for the flow over a
shrinking sheet.

2. The range of the existence of the solutions to the problem

increases with increasing magnetic and suction parameters.
3. The dimensionless velocity increases with increasing mag-

netic and suction parameters for the first solution and
decreases for the second solution.

4. The dimensionless temperature and the rescaled nanoparti-
cle volume fraction both decrease with increasing M for the
first solution and increase for the second solution.

5. The dimensionless temperature decreases with increasing
values of unsteadiness, suction and effective Prandtl param-
eters but increases with increasing values of Nt and Nb.

6. The dimensionless rescaled nanoparticle volume fraction
decreases with increasing Lewis number.
7. The magnitude of skin friction increases with increasing

magnetic and suction parameters for the first solution and
opppsite is true for the second solution.

8. The local Nusselt and Sherwood numbers increase with

increase magnetic parameter for the first solution and
decrease for the second solution.
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