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ABSTRACT. – The notion of index, classical in number theory and its calculation by P. Lelong (1997)
for plurisubharmonic functions, allows to define an indicator which is applied to the study of the Monge–
Ampère operator and a pluricomplex Green function. Elsevier, Paris

1. Introduction

We recall some local notions wich are often used in various investigations.
(a) The indexI (F,x0, a) of a zerox0 ∈Ω of a holomorphic functionF ∈Hol(Ω), whereΩ

is a domain ofCn, is used in important results of number theory [13];I (F,x0, a) is defined by
means of the setω ∈Nn of n-tuples(i)= (i1, . . . , in) such thatD(i)F (x0) 6= 0. Given a direction
(a)= (ak > 0; 16 k 6 n) ∈Rn,

I
(
F,x0, a

)= inf
(i)
(a, i) for (a, i)=

∑
k

akik > 0 and(i) ∈ ω.(1)

(b) In fact, the indexI (F,x0, a) is a property (function ofa and x0) of the current of
integration[W ] = ddc log|F | over the analytic setW = {x ∈Ω : F(x)= 0}, whered = ∂ + ∂̄
anddc = (2πi)−1(∂ − ∂̄). We denote byPSH(Ω) the class of plurisubharmonic functions in a
domainΩ of Cn and byΘp(Ω) the class of positive closed currents represented by homogeneous
forms ofdxk, dx̄k, 16 k 6 n, of bidegree(n−p,n−p). The Lelong numberν(T , x0) atx0 ∈Ω
for T ∈Θp(Ω) is related to the trace measure ofT ,

σT = T ∧ βp,(2)

whereβp = (p!)−1β
p

1 is the volume element ofCp. By the definition,

ν(T , x0)= lim
r→0

(
τ2pr

2p)−1
σT
[
B2n(x0, r

)]
,(3)

whereτ2p is the volume of the unit ballB2p(0,1) of Cp . In (3), the trace measureσT belongs to
the remarkable classPp(Ω) of positive measures characterized by the property that the quotient
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234 P. LELONG, A. RASHKOVSKII

in the right hand side of (3) is an increasing function ofr (see [16]). Another definition of the
numberν(T , x0) is derived from (2) and (3) by settingϕ1(x)= log|x − x0|:

ν(T , x0)= lim
t→−∞

∫
{ϕ1<t}

T ∧ (ddcϕ1
)p
.(4)

(c) By replacing in (4)ϕ1 with a functionϕ ∈ PSH(Ω) such that expϕ is continuous and the
set{ϕ(x)= −∞} is relatively compact, C.O. Kiselman (see [10] and [11]) and J.-P. Demailly
(see [4] and [5]) have found new important applications of (4). The choice of the function

ϕa(x)= sup
k

a−1
k log

∣∣xk − x0
k

∣∣(5)

which is circled with the centerx0 and such that{ϕa(x)= −∞} is reduced tox0, allows us to
put into this framework the notion of indexI (F,x0, a) of a zero of a holomorphic functionF at
x0, see [5].

I
(
F,x0, a

)= (a1 · a2 . . . an)ν
[
T ,x0, ϕa

(
x − x0)](6)

for T = ddc log|F | ∈ Θ1(Ω). It can be extended to arbitrary plurisubharmonic functions by
setting forf ∈ PSH(Ω) andx0 ∈Ω ,

n
(
f,x0, a

)= (a1 · a2 . . . an) ν
[
ddcf, x0, ϕa

(
x − x0)],(7)

so that

I
(
F,x0, a

)= n(f,x0, a
)

for f = log|F |.(8)

(d) In the recent paper [19],n(f,x0, a) has appeared in a simpler form given forx0= 0 by the
relation

n(f,0, a)= lim
w→0

(logw)−1f (w,x, a), 06w 6 1, x ∈Ω \A,(9)

wheref (w,x, a)= f (wa1x1, . . . ,w
anxn) andA is an algebric set forf = log|F |. In the general

case, forf ∈ PSH(Ω),A is of zero measure and

n(f,0, a)= lim inf
w→0

(logw)−1f (w,x, a)

outside a setA′ ⊂A which is pluripolar inΩ .
In the first part of the present paper we will supposef ∈ PSH(Ω) andD b Ω , whereD

is the unit polydisk{x ∈ Cn: sup|xk| < 1}; we denote byPSH−(D) the class off satisfying
sup{f (x): x ∈ D} 6 0 andf 6≡ −∞. The domainD as well as the weightsϕa in (5) being
circled, it is natural to work with a circled imagefc of f and then with its convex image
on the spaceRn− of uk = log|xk|, 16 k 6 n. Developing the results of J.-P. Demailly [5] and
C.O. Kiselman [10] we get the valuen(f,0, a) which produces, viaak =− log|yk|, a function
Ψf,0(y), the local indicator off at 0, which is plurisubharmonic inD(y), the unit polydisk in the
spaceCny . It satisfies the Monge–Ampère equation:(

ddcΨf,0
)n = τf (0)δ(0), τf (0) > 0,(10)

whereδ(0) is the Dirac measure at the origin ofCny , and(
ddcf

)n > τf (x0)δ(x0)(11)
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LOCAL INDICATORS FOR PLURISUBHARMONIC FUNCTIONS 235

for f ∈ PSH(Ω) such that(ddcf )n is well defined, andx0 ∈Ω . Moreover, there is the relation
τf (x

0)> [ν(T , x0)]n for T = ddcf ∈Θn−1(Ω).

Then we consider a class of plurisubharmonic functions onΩ with singularities on a finite set
{x1, . . . , xN }, controlled by given indicatorsΨm, 16m6N . We construct a plurisubharmonic
functionG vanishing on∂Ω and such thatΨG,xm =Ψm, 16m6N , and(

ddcG
)n =∑

m

τmδ
(
xm
)

with τm the mass of(ddcΨm)n. We prove thatG is the unique plurisubharmonic function with
these properties. For the caseΨm(x)= νm log|x− xm|, it coincides with the pluricomplex Green
function with weighted poles atx1, . . . , xN [17]. We prove a variant of comparison theorem for
plurisubharmonic functions with controlled singularities and study a Dirichlet problem for this
class of functions.

A part of the results of Section 3 are close to those from [20] where a weighted pluricomplex
Green function with infinite singular set was introduced and the corresponding Dirichlet problem
was studied.

2. Circled functions and convex projections

We will consider here the casex0 = 0 andf ∈ PSH(Ω) supposing 0∈D bΩ , whereD is
the unit polydisk{x ∈ Cn: sup|xk| < 1}, andf ∈ PSH−(D), that isf (x) 6 0 for x ∈ D and
f 6≡ −∞.

A setA⊂Cn is called 0-circled (or justcircled) if x = (xk) ∈A impliesx ′ = (xkeiθk ) ∈A for
06 θk 6 2π , 16 k 6 n. We will say that a functionf (x) defined onA, is circled if it is invariant
with respect to the rotationsxk 7→ xke

iθk , 16 k 6 n.
Given a functionf ∈ PSH(Ω), Ω being a circled domain, we consider a circled function

fc ∈ PSH(Ω) equal to the mean value off (xkeiθk ) with respect to 06 θk 6 2π, 16 k 6 n.
In what follows, we will also use another circled functionf ′c > fc, equal to the maximum of
f (xke

iθk ) for 06 θk 6 2π , 16 k 6 n. Note that the differential operators, namely∂, ∂̄ , d = ∂+ ∂̄
anddc = (2πi)−1(∂ − ∂̄), commute with the mappingf 7→ fc, so(∂f )c = ∂fc, however it is not
the case forf 7→ f ′c .

To a Radon measureσ on a circled domainΩ , we relate a circled measureσc defined by
σc(f ) = σ(fc) for continuous functionsf . In the same way, to a currentT ∈ Θp(Ω) we
associate a circled currentTc which is defined on homogeneous formsλ of bidegree(p,p) by
Tc(λ)= T (λc), whereλc are obtained by replacing the coefficients ofλ with their mean values
with respect toθk. In particular, ifT = ddcf , f ∈ PSH(Ω) andΩ circled,Tc = ddcfc. It gives
us a specific property of the valuen(f,0, a) defined by (4) and (6), and of the indexI (F,0, a).

PROPOSITION 1. – LetΩ be a0-circled domain andT ∈Θp(Ω). For every0-circled weight
ϕ, ν(T ,ϕ)= ν(Tc,ϕ). In particular, since the weightϕa defined by(5) for x0= 0, is circled, the
numbern(f,0, a) in (7) for f ∈PSH(Ω) at the origin can be calculated by replacingf with fc:
n(f,0, a)= n(fc,0, a), and the numbern(f,0, a) is calculated on the convex imageg(u) of fc,
g(u)= f [exp(uk + iθk)]:

n(f,0, a)= lim
v→−∞ v

−1g(uk + akv).

Forf ∈ PSH−(D), as was shown in [19],

n(f,0, a)= lim
w→0

(logw)−1f
(
wa1x1, . . . ,w

anxn
)
,
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236 P. LELONG, A. RASHKOVSKII

for almost allx ∈D. The limit exists for allx ∈D when replacingf (x) by fc(x) or by f ′c(x).
Indeed, forR > 1

fc(x)6 f ′c(x)6 γR fc(Rx)6 0(12)

with γR = (R− 1)n(R + 1)−n which satisfies 1− ε 6 γR 6 1 forR >R0(ε).
The calculation ofn(f,0, a) for f ∈ PSH−(D) uses the convex imagegf (u)= fc[exp(uk +

iθk)] or g′f (u)= f ′c[exp(uk + iθk)] obtained by settingxk = exp(uk + iθk), the functionsgf and
g′f being defined onRn− = {−∞6 uk 6 0}.

PROPOSITION 2. – In order that a functionh(u1, . . . , un) : Rn− → R− be the image off ∈
PSH−(D) obtained byxk = exp(uk + iθk) and

f (x)= f [exp(uk + iθk)
]= h(u),

it is necessary and sufficient thath be convex ofu ∈ Rn−, increasing in eachuk, −∞6 uk 6 0,
andh(u) 6≡ −∞, h(u)6 0.

The necessity condition results from the classic properties off ∈ PSH−(D). To show the
sufficiency, we remark that convexity ofh implies its continuity onRn−. On the other hand, we
have (the derivatives being taken in the sense of distributions), for anyλ ∈Cn,

4
∑ ∂2

∂xk∂x̄j
λkλj =

∑ ∂2

∂uk∂uj
λ′kλ′j(13)

whereλ′k = x−1
k λk . Let A ⊂ D be the union of the subspaces{xk = 0} in D. By (13), f ∈

PSH(D \ A). The conditionf (x)6 0 implies thatf extends by upper semicontinuity toA, so
f ∈PSH−(D) for f (x)= h(log|x1|, . . . , log|xn|).

DEFINITION. – We denote by Conv(Rn−) the class of functionsh(u1, . . . , un) 6 0, −∞ 6
uk 6 0, satisfying the conditions listed in Proposition2.

PROPOSITION 3. – Leth ∈Conv(Rn−) be the image of

f (xk)= h
[
exp(uk + iθk)

] ∈ PSH−(D).

Then
(a)

lim
v→−∞ v

−1h(u1+ v, . . . , un+ v)= lim
v→−∞

∂

∂v
h(u1+ v, . . . , un+ v)= ν(f,0),

whereν(f,0) is the Lelong number off at x = 0. More generally,

lim
v→−∞ v

−1h(u1+ a1v, . . . , un + anv)= n(f,0, a)(14)

is independent ofuk;
(b) limv→−∞ v−1h(u1 + v,u2, . . . , un) = ν1(f,0) is independent ofuk and is the generic

Lelong number(cf. [7]) of the currentT = ddcf along the varietyD1= {x ∈D: x1= 0}.
Moreover, forx ′1= (x2, . . . , xn), the function

h1
(
r1, x

′
1

)= (2π)−1

2π∫
0

f
(
r1e

iθ1, x ′1
)
dθ1,
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LOCAL INDICATORS FOR PLURISUBHARMONIC FUNCTIONS 237

has the property

lim
w→0

(logw)−1h1(wr1, x
′
1)= ν1(f,0)

for x ′1 ∈D1 with exception of a pluripolar subset ofD1;
(c)

∑n
1 νk(f,0)6 ν(f,0).

Proof. –Existence and equality of the limits in (a) follow from the increasing with respect to
v,−∞< v 6 0, and from the conditionh6 0. Moreover, ifl(ρ) is the mean value off (x) over
the sphere|x| = ρ, then

ν(f,0)= lim
ρ→0

∂ l(ρ)

∂ logρ
= lim
ρ→0

(logρ)−1l(ρ).(15)

We compare the mean values with respect toθk over the circled domainsB(0, ρ) andD(ρ) =
{sup|xk|6 ρ < 1} for the imageh(u) of the circled functionfc(x), for uk = logρ − 1

2 logn and
u′k = logρ, 16 k 6 n:

h(u)6 l(logρ)6 h(u′),
sinceD(ρ/

√
n)⊂ B(0, ρ)⊂D(ρ). This gives us (14) and (a).

Statement (b) is known (cf. [16]). The limit

−c(x ′1)= lim
r→0

(
log

1

r

)−1

h
(
r, x ′1

)
6 0(16)

for r↘ 0 exists and is obtained by increasing negative values, the second term of (16) belonging
to PSH(D1) for r > 0. If c(x̂ ′1)= 0 for a pointx̂ ′1 ∈D1, thenc(x ′1)= 0 except for a pluripolar
subset ofD and the statement is proved. Otherwise, consider the setD1(r) b D1 and c0 =
supc(x ′1) for x ′1 ∈D1(r) and apply the preceding argument to

lim
r→0

[(
log

1

r

)−1

h(r, x ′1)+ c0

]
.

The statement forh ∈ Conv(Rn−) follows from this precise property of the plurisubharmonic
image.

To establish (c), we observe that foru ∈ Rn− and h(u) the image inConv(Rn−) of f ∈
PSH−(D),

∂

∂v
h(u1+ v, . . . , un+ v)=

n∑
1

∂h

∂uk
(u1+ v, . . . , un+ v),

the derivatives are positive and decreasing forv↘−∞, and the limit of

∂h

∂uk
(u1+ v,u2, . . . , un)

is equal toν1(f,0), the Lelong number ofddcf alongD1. Therefore

∂

∂v
h(u1+ v, . . . , un + v)>

n∑
1

νk(f,0),
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238 P. LELONG, A. RASHKOVSKII

so takingv↘−∞ we get by (a):

ν(f,0)>
n∑
1

νk(f,0).(17)

2
Remark. – Actually, by a theorem of Y.T. Siu, (17) is a particular case of the following

statement: the numberν(f,0) is at least equal to the sum of the generic numbersν(Wi) for
T = ddcf along analytic varietiesWj of codimension 1 containing the origin.

In what follows, we will use a special subclass of circled plurisubharmonic functionsf ∈
PSH−(D) that have the following “conic” property: the convex imagegf (u) of f satisfies the
equation

gf (c u)= c gf (u) for everyc > 0.(18)

Such a functionf will be called anindicator. For example, the weightsϕa in (5) are indicators.

PROPOSITION 4. – Letf ∈ PSH−(D) be an indicator. Then(ddcf )n = 0 on

D0= {x ∈D: x1 . . . xn 6= 0}.

Proof. –It is sufficient to show that the domainD0 can be foliated by one-dimensional
analytic varietiesγy such that the restriction off to each leafγy is harmonic onγy . So, given
y = (|yk|eiθk ) ∈ D0, consider an analytic varietyγy , the image ofC under the holomorphic
mappingλ= (λ1, . . . , λn) with λk(ζ )= |yk|ζ eiθk . Note thaty = λ(1) ∈ γy . As f is circled, the
function fy(ζ ) = f (λ(ζ )), the restriction off to γy , depends only on Reζ . By (18), fy(ζ )
satisfiesfy(c ζ )= c fy(ζ ) for all c > 0. Therefore, it is linear and thus harmonic onγy . 2

3. Indicator of a plurisubharmonic function

Given a functionf ∈ PSH(Ω) and a pointx0 ∈ Ω , we will construct a functionΨf,x0(y)

related to local properties off atx0. We will haveΨf,x0 ∈PSH−(D),D being the unit polydisk
in the spaceCn(y), andΨf,x0(y) < 0 inD if and only if the Lelong number off at x0 is strictly
positive, otherwiseΨf,x0(y)≡ 0.

DEFINITION. – The local indicator(or just indicator) Ψf,0 of a function f ∈ PSH−(D),
D ⊂Cn

(x)
, atx0= 0 is defined fory ∈D ⊂Cn

(y)
by

Ψf,0(y)=−n
(
f,0,− log|yk|

)
.

Referring to (9) withR =− logw, 0<R <+∞, we rewrite this as:

Ψf,0(y)= lim
R→+∞ R

−1f
[
exp

(
uk + iθk +R log|yk|

)]
.(19)

The limit (19) existsalmost everywherefor xk = exp(uk + iθk), however (see Introduction) the
valuen(f,0, a) can be calculated as well by replacingf (x) with the circled functionsfc(x) or
f ′c(x). One can then substitute them forf in (19) to getΨf,0. At x0 6= 0, the functionΨf,x0(y)

is defined by means off [x0
k + exp(uk + iθk +R log|yk|)].
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LOCAL INDICATORS FOR PLURISUBHARMONIC FUNCTIONS 239

If f is replaced byfc[exp(uk + iθk)] = gf (uk) or by f ′c[exp(uk + iθk)] = g′f (uk), the limit
exists, by Proposition 3, foreveryu= (uk) ∈Rn−:

Ψf,0(y)= lim
R→+∞ R

−1g
(
uk +R log|yk|

)
,(20)

and does not depend onu.

PROPOSITION 5. – Letf ∈ PSH−(D). Then
(a) Ψf,0(y) ∈ PSH−(D) and is0-circled;
(b) the convex imagegψ(u) in Rn− has the conic propertygψ(c u)= c gψ(u) for everyc > 0,

i.e.,Ψf,0 is an indicator;
(c)

Ψf,0(y)> f ′c(y)> f (y), ∀y ∈D;(21)

(d) the mappingf 7→ Ψf,0 is a projection,Ψf,0(y) is its own indicator at the origin;
(e) the indicatorΨf,0 is the least indicator majorizingf onD;
(f) if fj (xj ) is the restriction off to the complex subspace{xs = 0, ∀s 6= j} and

fj (xj ) 6≡ −∞,(22)

thenΨf,0(y)> νj log|yj |, νj being the Lelong number offj (xj ) at the origin;
(g) if (22) holds for eachj , then the Monge–Ampère operator(ddcΨf,0)n is well defined on

the whole polydiskD and (
ddcΨf,0

)n = 0(23)

onD \ {0}.
Proof. –Statement (a) follows from (20),g(R log|yk|) being a convex negative function for

R > 0, and the limit of the quotient is obtained by increasing negative values. When setting
vk = log|yk| = −ak, the image ofΨf,0 belongs toConv(Rn−) and Ψf,0(y) is a 0-circled
plurisubharmonic function.

The property (b), essential for the indicatorΨf,0, results from the equalityn(f,0, c a) =
c n(f,0, a) for all c > 0.

Relations (c) are a consequence of (20) whereg(u) is the convex imageg′f (u) of

f ′c(x)= sup
θk

f
(
xke

iθk
)
.

We haveg′f (log|yk|) > f (y). On the other hand, the quotientm(R) = R−1g′f (R log|yk|),
R >R0> 1, is a convex, negative and increasing function ofR for |yk|< 1. Therefore,

lim
R→+∞ m(R)>m(1),

and by (20),

0> Ψf,0(y)> g′f
(
log|yk|

)
> f (y)

for y ∈D.
Statement (d) follows from (20) forf =Ψf,0 and from relation (b).
To prove (e), consider any indicatorψ(y)> f (y) onD. ThenΨψ,0(y)>Ψf,0(y), and by (d),

Ψψ,0=ψ , soψ(y)> Ψf,0(y) ∀y ∈D.
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240 P. LELONG, A. RASHKOVSKII

The bound in (f) results from (c) and the maximum principle for plurisubharmonic functions,
since (forj = 1)

Ψf,0(y)> sup
θk

f
(
yke

iθk
)
> sup

θ1

f
(
y1e

iθ1,0, . . . ,0
)

and for|y1| ↘ 0 the quotient(log|y1|)−1 supθ1 f1(y1e
iθ1) for the restrictionf1 to the complex

subspace{xs = 0, ∀s > 1}, decreases toν1.
Finally, in the assumptions of (g), the functionΨf,0(y) is locally bounded onD \ {0} by

(f), so the operator(ddcΨf,0)n is well defined onD. Equation (23) is valid on the domain
D \ {y: y1y2 . . . yn = 0} by Proposition 4 and then onD \ {0}, because the Monge–Ampère
measure of a bounded plurisubharmonic function has zero mass on any pluripolar set (see
[2]). 2

Remark. – Statement (d) of Proposition 5 is, in other words, that all the directional numbers
ν(ddcΨf,0, ϕa) of Ψf,0 coincide with the directional numbersν(ddcf,ϕa) of the original
functionf , ∀a ∈Rn+.

The above construction is in fact of local character and Proposition 5 remains valid for the
indicatorΨf,x0 of any functionf (x) plurisubharmonic in a neighbourhoodω of a pointx0 ∈Cn,
with the the following change in the statement (c): (21) should be replaced by

Ψf,x0

(
x − x0)> f (x)+ b: y ∈D(x0, r

)} ∀x ∈D(x0, r
)
,(24)

whereD(x0, r)= {x: |xk − x0
k |< r, 16 k 6 n}; b is a constant depending onf andr; r > 0

and is such that the polydiskD(x0, r) b ω. And of course the restrictionfj in (22) should be
taken to the subspaces{xs = x0

s , ∀s 6= j}.
Let nowf (x) ∈ PSH(ω) be locally bounded onω \ {x0}. Then its indicatorΨf,x0 satisfies the

equation: (
ddcΨf,x0

)n = τf (x0) δ(0)(25)

with some numberτf (x0) > 0, δ(0) the Dirac measure at 0, andτf (x0) > 0 if and only if the
Lelong number of the functionf at x0 is strictly positive. And now we relate this value to
(ddcf )n.

THEOREM 1. – Letf ∈PSH(ω) be locally bounded out of a point0∈ ω. Then(
ddcf

)n > τf (0) δ(0).(26)

Proof. –In view of (24), the functionf satisfies

lim sup
x→0

Ψf,0(x)

f (x)
6 1.(27)

By the Comparison theorem of Demailly [7, Theorem 5.9] this implies(
ddcΨf,0

)n∣∣{0} 6 (ddcf )n∣∣{0}.
On the other hand, (

ddcΨf,0
)n∣∣{0} = (ddcΨf,0)n = τf (0)δ(0)

by (25), that gives us (26) and the theorem is proved.2
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Remark. – It is well known that for any plurisubharmonic functionv with isolated singularity
at 0, there is the relation (

ddcv
)n > [ν(ddcv,0)]nδ(0).(28)

By the Remark after the proof of Proposition 5,ν(ddcf,0) is equal toν(ddcΨf,0,0). Applying
(28) tov =Ψf,0 we get, in view of Theorem 1,(

ddcf
)n > (ddcΨf,0)n > [ν(ddcΨf,0,0)]n = [ν(ddcf,0)]n,

so (26) is an improvement of (28).
For example, iff (x)= log(|x1|k1 + |x2|k2) with 0< k1< k2, then(

ddcf
)2= τf (0) δ(0)= k1k2 δ(0) > k2

1 δ(0)=
[
ν
(
ddcf,0

)]2
δ(0),

and thusτf (0) > [ν(ddcf,0)]2.
More generally, ifF is a holomorphic mapping toCn with an isolated zero at 0 of multiplicity

µ0, andf = log|F |, then [
ν
(
ddcf,0

)]n 6 τf (0)6µ0.

In fact, relation (27) makes it possible to obtain extra bounds for(ddcf )n in case of expf ∈
C(Ω). Such a functionf can be then considered as a plurisubharmonic weightϕ for Demailly’s
generalized numbersν(T ,ϕ) of a closed positive currentT of bidimension(p,p), 16 p 6 n−1
[7]:

ν(T ,ϕ)= lim
s→−∞

∫
{ϕ<s}

T ∧ (ddcϕ)p = T ∧ (ddcϕ)p∣∣{0}.
Moreover, the functionΨf,0 is such a weight, too. By Comparison theorem from [7],
Theorem 5.1, relation (27) implies

ν(T ,Ψf,0)6 ν(T ,f ).(29)

Take

Tk =
(
ddcf

)k ∧ (ddcΨf,0)n−k−1
, 16 k 6 n− 1.

These currents are well defined on a neighbourhood of 0 and are of bidimension(1,1). Applying
(29) toT = Tk we obtain

Tk ∧ ddcf |{0} > Tk ∧ ddcΨf,0|{0},
that gives us

PROPOSITION 6. –Letf ∈PSH−(Ω) be locally bounded out of{0} andexpf ∈C(Ω). Then(
ddcf

)n∣∣{0} > (ddcf )n−1∧ ddcΨf,0
∣∣{0} > · · ·

>
(
ddcf

)n−k ∧ (ddcΨf,0)k∣∣{0} > · · ·> (ddcΨf,0)n.
4. Dirichlet problem with local indicators

Let Ω be a bounded pseudoconvex domain inCn andK be a compact subset ofΩ . By
PSH(Ω,K) we denote the class of plurisubharmonic functions onΩ that are locally bounded
onΩ \K.
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Let K = {x1, . . . , xN } ⊂ Ω and {Ψm} beN indicators, i.e., circled functions inPSH−(D)
whose convex images satisfy (18). In the sequel we assume thatΨm ∈ PSH(D, {0}). Then by
Proposition 4, (

ddcΨm
)n = τmδ(0), 16m6N.(30)

Let us fix the systemΦ = {(x1,Ψ1), . . . , (x
N,ΨN)} and consider a positive measureTΦ on

Ω , defined as

TΦ =
∑

16m6N
τmδ

(
xm
)
.(31)

Each functionΨm can be extended from a neighbourhood of the origin to a functionΨ̃m ∈
PSH(Cn, {0}), and the indicators of the functions

Ψ̃ (x)=
∑
m

Ψ̃m
(
x − xm)+A,(32)

atxm are equal toΨm,16m6N , for any real numberA. So the class

NΦ,Ω =
{
v ∈PSH−(Ω,K): Ψv,xm 6 Ψm, 16m6N

}
(33)

is not empty.
Theorem 1 implies:

THEOREM 2. – (ddcf )n > TΦ ∀f ∈NΦ,Ω.
Now we introduce the function

GΦ,Ω(x)= sup
{
v(x): v ∈NΦ,Ω

}
.(34)

THEOREM 3. – LetΩ be a hyperconvex domain inCn. Then the functionG=GΦ,Ω has the
following properties:

(a) G ∈PSH−(Ω,K);
(b) G(x)→ 0 asx→ ∂Ω ;
(c) ΨG,xm =Ψm, 16m6N ;
(d) (ddcG)n = TΦ , the measureTΦ being defined by(31);
(e) G ∈C(Ω \K).
Remark. – In the case whereΨm = νm log|x|, the functionGΦ,Ω , the pluricomplex Green

function with several weighted poles, was introduced in [17]. A situation with infinite number
of poles was considered in [20], by A. Zeriahi, where a functionGf,Ω was introduced as
the upper envelope of the class{v ∈ PSH−(Ω,K): ν(ddcv, x) > ν(ddcf, x), ∀x}, f being
a plurisubharmonic function with the following properties:ef is continuous,f−1(−∞) is a
compact subset ofΩ , and the set{x: ν(ddcf, x) > 0} is dense inf−1(−∞). Our proof is much
the same as of the corresponding statements of [20].

Proof of Theorem 3. –SinceNΦ,Ω 6= ∅, the functionG=GΦ,Ω is well defined and

G∗ = lim sup
y→x

G(y) ∈ PSH−(Ω,K).

The function Ψ̃ in (32) can be modified in a standard way tõΨ ′ ∈ PSH−(Ω,K) such
that Ψ̃ ′(x) = α ρ(x) in a neighbourhood of∂Ω , α being a positive number andρ a bounded
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exhaustion function onΩ , andΨ̃ ′(x)= Ψ̃ (x)− β on a neighbourhood ofK. It shows us that

G∗ > Ψ̃ ′.(35)

It implies, in particular, that

ΨG∗,xm >ΨΨ̃ ′,xm =Ψm, 16m6N.(36)

SinceΨsup{v,w},x 6 sup{Ψv,x,Ψw,x} for any plurisubharmonic functionsv andw, there exists
an increasing sequence of functionsvj ∈NΦ,Ω such that limj→∞ vj = v 6G andv∗ =G∗.

The indicator ofvj at xm is the limit of R−1gvj ,xm(R log|yk|) for R→+∞, the function
gvj ,xm(u) being the convex image of the mean value ofvj (x

m
k + euk+iθk ) with respect toθk for

uk < logdist(xm, ∂Ω), 16 k 6 n, and the limit is obtained by the increasing values. It gives us

R−1gvj ,xm
(
R log|yk|

)
6 Ψvj ,xm(y)6 Ψm(y).(37)

The functionsvj increase toG∗ out of a pluripolar setX = {x ∈Ω : v(x) < v∗(x)}. Since the
restriction ofX to the distinguished boundary of any polydisk is of zero Lebesgue measure [15],
(37) implies that

R−1gG∗,xm
(
R log|yk|

)
6 Ψm(y)

and thus, takingR→+∞,

ΨG∗,xm 6 Ψm, 16m6N.(38)

AsG∗ ∈PSH−(Ω), the functionG∗ belongs to the classNΦ,Ω and so

G∗ ≡G.(39)

By (36) and (38),ΨG,xm = Ψm. It proves statements (a) and (c); statement (b) follows from
inequality (35).

Continuity ofG can be proved exactly as in [20].
To prove (d), observe that in view of (35) and (39),Ψ̃ ′ 6G. By the Comparison theorem of

Demailly [5, Theorem 2.1], this implies(
ddcG

)n∣∣{xm} 6 (ddcΨ̃ ′)n∣∣{xm} 6 [ddcΨm(x − xm)]n, 16m6N,

and therefore (
ddcG

)n∣∣
K
6 TΦ.(40)

On the other hand, by Theorem 2, (
ddcG

)n > TΦ.
Being comparing to (40) this provides(

ddcG
)n∣∣

K
= TΦ.

Finally, the equality(ddcG)n = 0 onΩ \K can be proved in a standard way by showing it is
maximal onΩ \K (see [1,6]), that proves (d).

The theorem is proved.2
As a consequence, we get an “indicator” variant of the Schwarz type lemma (see [17,20]):
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THEOREM 4. – Let the indicator of a functiong ∈ PSH(Ω) at xm does not exceedΨm,
16m6N , and letg(x)6M onΩ . Theng(x)6M +GΦ,Ω(x), ∀x ∈Ω .

Now we are going to show that the functionGΦ,Ω is the unique plurisubharmonic function
with the properties (a)–(d) of Theorem 3. It is known that for unbounded plurisubharmonic
functionsu, the Dirichlet problem{

(ddcv)n =µ> 0 onΩ,

v = h on∂Ω ,
(41)

need not have a unique solution even in a simple caseµ = δ(0), h≡ 0. However, a solution is
unique under some regularity assumptions on the functionsv. For example, as was established
in [20], (41) has a unique solution for

µ=
∑[

ν
(
ddcf, xm

)]n
δ
(
xm
)
,(42)

with f (x) specified in the remark after the statement of Theorem 3, if the functionsv(x) ∈
PSH−(Ω,K) have to satisfy

ν
(
ddcv, xm

)= ν(ddcf, xm), 16m6N.(43)

These additional relations mean that

v(x)∼ ν(ddcv, xm) log
[
x − xm] nearxm(44)

(v has regular densities at its poles, in the terminology of [17]).
In our situation,

µ= Tf =
∑
m

τmδ
(
xm
)
,(45)

whereτm are defined by (30) withΨm = Ψf,xm , and we are going to replace condition (43) by
Ψv,xm =Ψf,xm, 16m6N .

To prove the uniqueness, we need a variant of the comparison theorem for unbounded plurisub-
harmonic functions (see [13,3,6,12,20] for different classes of plurisubharmonic functions).

THEOREM 5. – Letf ∈PSH(Ω,K),K = {x1, . . . , xm}, and(
ddcf

)n∣∣
K
= Tf ,(46)

the measureTf being given by (45). Letv ∈ PSH(Ω,K) satisfy the conditions
(1) lim infx→∂Ω(f (x)− v(x))> 0;
(2) (ddcv)n > (ddcf )n onΩ \K;
(3) Ψv,xm 6 Ψf,xm , 16m6N .

Thenv 6 f onΩ .

The proof is just as of Theorem 3.3 of [20], and we omit it here.

COROLLARY. – Under the conditions of Theorem3, the functionGΦ,Ω is the unique pluri-
subharmonic function with the properties(a)–(d)of that theorem.

Remarks. – 1. Condition (46) is essential. Indeed, let

f (x)= 1

2
log

(|x1|4+
∣∣x1+ x2

2

∣∣2), v(x)= 1

2
log

(|x1|2+ |x2|4
)+m
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with m= inf {f (x): |x| = 1}>−∞. Thenv(x)6 f (x) for |x| = 1,(
ddcf

)2= (ddcv)2= 0 on
{
0< |x|< 1

}
,

and Ψv,0(x) = Ψf,0(x) = log max{|x1|, |x2|2}. However, for x2 = t ∈ (0, em), x1 = −x2
2,

f (x)= 2 logt < logt +m< v(x). The reason here is that(ddcf )2= 4δ(0) > 2δ(0)= Tf .
2. By Comparison theorem of Demailly [5], relation (46) means that

f (x)∼Ψf,xm
(
x − xm) nearxm,

a weaker than (44) but still controlled regularity.
3. By Proposition 5, an indicatorΨ possesses the properties (a)–(d) ofGΦ,Ω from Theorem 3

with Ω =D, the unit polydisk, andΦ = ({0},Ψ ). Therefore,Ψ =GD,Φ .

Theorems 3 and 5 allow us also to state the following result.

THEOREM 6. – LetΩ be a bounded strictly pseudoconvex domain,K = {x1, . . . , xm}, and
let a functionf ∈ PSH(Ω,K) satisfy (

ddcf
)n = Tf .

Then the Dirichlet problem: 
(ddcv)n = Tf onΩ ,

Ψv,xm =Ψf,xm for 16m6N ,
v = h on∂Ω,

has a unique solution in the class PSH(Ω,K) for each functionh ∈ C(∂Ω). This solution is
continuous onΩ \K.

Proof. –LetΦ = {(xm,Ψm)} with Ψm =Ψf,xm . Consider the class

Nf,h =
{
v ∈PSH(Ω,K): Ψv,xm 6 Ψf,xm ∀m, lim

x→y v(x)= h(y) ∀y ∈ ∂Ω
}
.

Let u0(x) be the unique solution of the corresponding homogeneous problem{
(ddcu)n = 0 onΩ ,

u= h on∂Ω.

Thenu0+GΦ,Ω ∈Nf,h, soNf,h 6= ∅.
The desired solutionv0 is given as

v0(x)= sup
{
v(x): v ∈Nf,h

}
.

Just as in the proof of Theorem 3, one can show thatv0 does solve the problem and is continuous
onΩ \K. The uniqueness follows from Theorem 5.2

Remark. – Theorem 6 can be related to the following question wich was one of the motivations
of the present study. LetF :Ω→ Cn be a holomorphic mapping with isolated zeros{xm} ⊂Ω
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of multiplicitiesµm. Then the functionf (x)= log|F(x)| solves the Dirichlet problem{
(ddcv)n =∑m µmδ(x

m) onΩ ,

v = f on∂Ω.

Under what extra conditions onv, the functionf is the unique solution of the problem? By
Theorem 6, iff has regular behaviour atxm with respect to its indicators, i.e., if(

ddcΨf,xm
)n =µmδ(xm), 16m6N,

it gives the unique solution for the problem
(ddcv)n =∑µmδ(x

m) onΩ ,

Ψv,xm =Ψf,xm 16m6N ,

v = f on∂Ω.
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