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ABSTRACT. — The notion of index, classical in number theory and its calculation by P. Lelong (1997)
for plurisubharmonic functions, allows to define an indicator which is applied to the study of the Monge—
Ampere operator and a pluricomplex Green functiorklsevier, Paris

1. Introduction

We recall some local notions wich are often used in various investigations.

(a) The index! (F, x°, a) of a zerox? e £2 of a holomorphic functior € Hol(£2), wheres2
is a domain ofC", is used in important results of number theory [18]F, x°, a) is defined by
means of the seb € N of n-tuples(i) = (i1, . . ., i) such thatD® F (x%) # 0. Given a direction
(@)= (ax > 0; 1<k <n) eR",

(1) 1(F,x%a)= i{])f(a, i) for(a,i)= Zakik > 0and() € w.
! X

(b) In fact, the index/ (F,x%,a) is a property (function oz and x°) of the current of
integration[W] = dd° log| F| over the analytic seW = {x € £2: F(x) = 0}, whered = 3 + 9
andd® = (27i)~1(d — 3). We denote byPSH(£2) the class of plurisubharmonic functions in a
domains2 of C" and by®, (§2) the class of positive closed currents represented by homogeneous
forms ofdxy, dxx, 1< k < n, of bidegregn — p, n — p). The Lelong number (T, x°) atxC € 2
for T € ©,(£2) is related to the trace measurelof

) or =T A Bp,
whereg, = (p!)—lﬂ{’ is the volume element aE?. By the definition,

(3) w(T,x% = Iim0 (tzprZP)_laT[BZ"(xO, r].

wherery,, is the volume of the unit balB?” (0, 1) of C”. In (3), the trace measurg- belongs to
the remarkable clasB, (£2) of positive measures characterized by the property that the quotient

1 E-mail: {rashkovskii;rashkovs}@ilt.kharkov.ua.
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in the right hand side of (3) is an increasing function-dfee [16]). Another definition of the
numbenv (T, x°) is derived from (2) and (3) by setting (x) = log|x — x9|:

(4) v(T,x% = lim / T A (ddg1)”.
t——00
{p1<t}
(c) By replacing in (4)p1 with a functionp € PSH($2) such that exp is continuous and the

set{p(x) = —oo} is relatively compact, C.O. Kiselman (see [10] and [11]) and J.-P. Demailly
(see [4] and [5]) have found new important applications of (4). The choice of the function

(5) a(x) =s]ljpa;1 log |xx — x?|

which is circled with the center® and such thatg, (x) = —oo} is reduced tor, allows us to
put into this framework the notion of index F, x°, a) of a zero of a holomorphic functioh at
x0, see [5].

(6) I(F,xo,a) = (al'az...an)v[T,xO,goa(x —xo)]

for T =ddlog|F| € ©®1(£2). It can be extended to arbitrary plurisubharmonic functions by
setting for f € PSH2) andx? € £2,

@) n(f, %9, a) =(a1-az...a) v[ddcf, %, Va (x - xo)],
so that
(8) I(F,xo,a)zn(f,xo,a) for f =log|F]|.

(d) In the recent paper [19}( f, x°, a) has appeared in a simpler form given {6r= 0 by the
relation

(9) n(f,0,a)= Iimo(logw)—lf(w,x,a), O0<w<l xeR\A4A,

wheref (w, x,a) = f(w*x1, ..., w"x,) andA is an algebric set fof =log|F|. In the general
case, forf € PSH(£2), A is of zero measure and

n(f,0,a) =lim i%f(logw)_lf(w, x,a)

outside a sef’ C A which is pluripolar ins2.

In the first part of the present paper we will suppgse PSH($2) and D € 2, where D
is the unit polydisk{x € C": sup|xx| < 1}; we denote byPSH_(D) the class off satisfying
sudf(x): x € D} <0 and f £ —oco. The domainD as well as the weightg, in (5) being
circled, it is natural to work with a circled imagg. of f and then with its convex image
on the spac®” of u; =log|xk|, 1 < k < n. Developing the results of J.-P. Demailly [5] and
C.O. Kiselman [10] we get the valug f, 0, a) which produces, via; = —log|yx|, a function
¥ o(y), the local indicator off at 0, which is plurisubharmonicif,), the unit polydisk in the
spaceC’). It satisfies the Monge—Ampére equation:

(10) (ddWs0)" =17(0)8(0), 77(0)>0,
wheres (0) is the Dirac measure at the origin of, and
(11) (@dc f)" = 77 (x°)8(x°)
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for f € PSH($2) such thatidd® f)" is well defined, and? € 2. Moreover, there is the relation
Tr(x%) = [W(T,x9)]" for T =dd° f € ©,_1(R2).

Then we consider a class of plurisubharmonic functionfonith singularities on a finite set
{x1,...,xN}, controlled by given indicator#,,, 1 < m < N. We construct a plurisubharmonic
functionG vanishing o §2 and such tha¥g ,» = ¥,,, 1< m < N, and

(dch)" = Z ImS(xm)

with 7, the mass ofdd“¥,,)". We prove thatG is the unique plurisubharmonic function with
these properties. For the cagg(x) = v, log|x — x™|, it coincides with the pluricomplex Green
function with weighted poles at!, ..., x [17]. We prove a variant of comparison theorem for
plurisubharmonic functions with controlled singularities and study a Dirichlet problem for this
class of functions.

A part of the results of Section 3 are close to those from [20] where a weighted pluricomplex
Green function with infinite singular set was introduced and the corresponding Dirichlet problem
was studied.

2. Circled functions and convex projections

We will consider here the cas€ = 0 and f € PSH(2) supposing G D € £2, whereD is
the unit polydisk{x € C": sup|x| < 1}, and f € PSH_(D), that is f(x) < 0 for x € D and
f#—o0.

A setA c C"is called Ocircled (or justcircled) if x = (x) € A impliesx’ = (xe'%) € A for
0 < 6 < 21, 1< k< n. We will say that a functiory' (x) defined o4, is circled if it is invariant
with respect to the rotations, — xie'%, 1<k < n.

Given a functionf € PSH(£2), £2 being a circled domain, we consider a circled function
f. € PSH(£) equal to the mean value gf(x;e'%) with respect to 6< 6, < 27, 1<k < n.
In what follows, we will also use another circled functigh> f., equal to the maximum of
£ (xre'%) for 0 < 6y < 2, 1< k < n. Note that the differential operators, namé)y, d = 3+
andd® = (27i)~1(d — ), commute with the mapping — f., so(3f). = df., however it is not
the case forf - f/.

To a Radon measure on a circled domain2, we relate a circled measuee defined by
o.(f) = a(f) for continuous functionsf. In the same way, to a currefit € ©,(£2) we
associate a circled curreif which is defined on homogeneous formef bidegree(p, p) by
T.(A) = T (A.), where\. are obtained by replacing the coefficients\afvith their mean values
with respect ta@y. In particular, ifT =dd° f, f € PSH($2) ands2 circled, T, = dd° f,. It gives
us a specific property of the valug f, 0, a) defined by (4) and (6), and of the indé&F, 0, a).

PROPOSITION 1. — Let£2 be a0-circled domain and” € ©,(£2). For everyO-circled weight
o, v(T, ) =v(T., ¢). In particular, since the weight, defined by(5) for x° = 0, is circled, the
numbem(f, 0, a) in (7)for f € PSH($2) at the origin can be calculated by replacinfgwith f,:
n(f,0,a) =n(f,0,a),and the numbet(f, O, a) is calculated on the convex imagé) of f,
g(u) = flexplux + ib)]:

n(f,0,a) = lim U_lg(uk + agv).
vV—>—0
For f € PSH_(D), as was shown in [19],

n(f,0,a) = Iim0 (log w)_lf(walxl, e, w””xn),
w—>
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236 P. LELONG, A. RASHKOVSKII

for almost allx € D. The limit exists for allx € D when replacingf (x) by f.(x) or by f/(x).
Indeed, forkR > 1

(12) fc(X)<fC/(x)<VR fe(Rx) <0
with yg = (R — 1)"(R + 1)~ which satisfies - ¢ < yg <1 for R > Rp(e).

The calculation ofi(f, 0, a) for f € PSH_(D) uses the convex imaggr (1) = f.[exp(uy +
i6y)] or g} (u) = f/lexp(ux +i6;)] obtained by setting; = exp(ux + i6x), the functiong ; and
g/f being defined olR” = {—oco < u; < 0}.

PROPOSITION 2. — In order that a functiomi(uy, ..., u,):R"” — R_ be the image off
PSH_ (D) obtained byx; = exp(uy + i6;) and

fx) = flexpug +i6)] = hw),
it is necessary and sufficient thatbe convex ofi € R” , increasing in each;, —oo < uy <0,
andh(u) # —oo, h(u) < 0.

The necessity condition results from the classic propertieg efPSH_(D). To show the
sufficiency, we remark that convexity éfimplies its continuity orR” . On the other hand, we
have (the derivatives being taken in the sense of distributions), fok &®”,

2 2

3 — —
(13) 4y T vy =mekxj

where i = x,:lxk. Let A C D be the union of the subspacés, =0} in D. By (13), f €
PSH(D \ A). The conditionf (x) < 0 implies thatf extends by upper semicontinuity #, so
f €PSH_(D) for f(x) =h(log|x1],...,log|x,]).

DEFINITION. —We denote by ConfR"™) the class of function&(uq,...,u,;) <0, —oo <
uy < 0, satisfying the conditions listed in Propositién

PROPOSITION 3. — Leth € Con\R™) be the image of
f () = h[ explug + i6;)] € PSH_(D).

Then
(@ 5
lim v_lh(ul—{-v,...,un—i—v): lim a—h(ul—i—v,...,un+v)=v(f,0),
v

V—>—00 V—>—00

wherev( f, 0) is the Lelong number of at x = 0. More generally,

(14) lim U_lh(ul—i—alv,...,u,,+a,,v):n(f, 0,a)

V—>—00

is independent afy;

(b) limy— —oo v A1 + v, uo, ..., uy) = vi(f,0) is independent ofi; and is the generic
Lelong numbefcf.[7]) of the currentT = dd°¢ f along the varietyD; = {x € D: x1 = 0}.
Moreover, forx] = (x2, ..., x,), the function

2
hi(ry, x7) = (271)_1/ f(rie'®, x7) doy,
0
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LOCAL INDICATORS FOR PLURISUBHARMONIC FUNCTIONS 237

has the property

IimO(Iog w) " hy(wry, x5) = v1(f,0)

for x] € D1 with exception of a pluripolar subset fy;
(©) 1 v (£, 0) <v(f, 0).

Proof. —Existence and equality of the limits in (a) follow from the increasing with respect to
v, —o0 < v < 0, and from the conditioh < 0. Moreover, if/(p) is the mean value of (x) over
the spheréx| = p, then

Al 1
(15) v(f,0) —/!@0 3logp —;I)@O(Iogp) L(p).

We compare the mean values with respedit@ver the circled domaing(0, p) and D(p) =
{sup|xx| < p < 1} for the imagée: (1) of the circled functiony. (x), for uy =logp — %Iogn and
u, =logp, 1<k <n:

h(u) < I(logp) < h(u),

sinceD(p/+/n) C B(0, p) C D(p). This gives us (14) and (a).
Statement (b) is known (cf. [16]). The limit

—1
(16) —c(x) = Iim0 (Iog }> h(r,x7) <0
r— r

for r \( O exists and is obtained by increasing negative values, the second term of (16) belonging
to PSH(Dy) for r > 0. If c(x}) = 0 for a pointx; € D1, thenc(x}) = 0 except for a pluripolar
subset ofD and the statement is proved. Otherwise, consider thedgét) € D1 andco =
supc(xy) for x] € D1(r) and apply the preceding argument to

1\ -1
rIiL‘no|:(Iog;) h(r,x’l)+co:|.

The statement foh € Conv(R™) follows from this precise property of the plurisubharmonic
image.

To establish (c), we observe that fore R” and i(u) the image inConv(R™) of f €
PSH_(D),

D s+ =3 Py +v)
5 U1+v,...,U, +v)= 4 Bir ULt v, ..., u, +v)),

the derivatives are positive and decreasing/fog —oo, and the limit of

oh
—(u1+v,uz, ..., uy)
duy

is equal tovy (£, 0), the Lelong number add® f alongD1. Therefore
8 n
SohWi o, ) > lemf, 0),

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES



238 P. LELONG, A. RASHKOVSKII

so takingv \, —oo we get by (a):

(17) v(£,0) =Y u(f,0).
1

O

Remark— Actually, by a theorem of Y.T. Siu, (17) is a particular case of the following
statement: the number(f, 0) is at least equal to the sum of the generic numbgig;) for
T =dd° f along analytic varietie/; of codimension 1 containing the origin.

In what follows, we will use a special subclass of circled plurisubharmonic functfoas
PSH_(D) that have the following “conic” property: the convex imagge(u) of f satisfies the
equation

(18) gr(cuy=cgys(u) foreveryc>0.
Such a functiory will be called anindicator. For example, the weights, in (5) are indicators.
PROPOSITION 4. — Let f € PSH_(D) be an indicator. Theridd® f)" =0 on

Do={xeD: x1...x, #0}.

Proof. —It is sufficient to show that the domaify can be foliated by one-dimensional
analytic varieties/, such that the restriction of to each leafy, is harmonic ony,. So, given
y = (|ykle’%) e Do, consider an analytic variety,, the image ofC under the holomorphic
mappingi = (A1, ..., Ax) With A (¢) = |yk|*e’%. Note thaty = A(1) € y,. As f is circled, the
function f,(¢) = f(A(¢)), the restriction off to y,, depends only on Re. By (18), f,(¢)
satisfiesf,(c¢) =c fy(¢) forall ¢ > 0. Therefore, it is linear and thus harmonicgn O

3. Indicator of a plurisubharmonic function

Given a functionf € PSH($2) and a pointx® € £2, we will construct a functionlfﬁxo(y)
related to local properties of atx©. We will have¥ o € PSH.(D), D being the unit polydisk
in the spacé:{’y), and¥; ,o(y) <0in D ifand only if the Lelong number of atx? is strictly
positive, otherwis& ; ,o(y) = 0.

DEFINITION. —The local indicator (or just indicaton ¥ of a function f € PSH_(D),

D c C,,, atx?=0is defined fory € D C C{,, by

Wyo(y) =—n(f,0,—log|yxl).
Referring to (9) withR = —logw, 0 < R < 400, we rewrite this as:
(19) Uro(y)=  lim R f[exp(ux + 6 + Rlog|yxl)].

The limit (19) existsalmost everywhertor x; = exp(ux + i6x), however (see Introduction) the
valuen(f, 0, a) can be calculated as well by replacifigr) with the circled functionsf, (x) or
f/(x). One can then substitute them f6rin (19) to get¥o. At x0£0, the function; .o(y)

is defined by means of[x? + exp(ux + i6 + Rlog|yk))].
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LOCAL INDICATORS FOR PLURISUBHARMONIC FUNCTIONS 239

If fis replaced byf.[explux + i0x)] = gr(ux) or by fllexpuy + i6x)] = g/f(uk), the limit
exists, by Proposition 3, f@veryu = (u;) € R": '

(20) Wro(y)= lim R g(ux + Rlog|yl),
R—+o00

and does not depend an

PROPOSITION 5. — Let f € PSH_(D). Then

(a) ¥ro(y) e PSH_(D) and isO-circled,

(b) the convex imaggy («) in R™ has the conic propertyy (c u) = c gy (1) for everyc > 0,
i.e., ¥y o is an indicatog

(c)
(21) ro(y) = fi(») = f(y), VyeD

(d) the mappingf — ¥y is a projection ¥, o(y) is its own indicator at the origin
(e) the indicatory g is the least indicator majorizing on D;
(f) if fj(x;) is the restriction off to the complex subspa¢e, =0, Vs # j} and

(22) fi(xj) # —o0,

then¥,o(y) > v;logly;l, v; being the Lelong number ¢f; (x;) at the origin
(9) if (22) holds for eachy, then the Monge—Ampére operai@id“¥,0)" is well defined on
the whole polydisliD and

(23) (ddWs0)" =0
on D\ {0}

Proof. —Statement (a) follows from (20)(R log|y|) being a convex negative function for
R > 0, and the limit of the quotient is obtained by increasing negative values. When setting
vr = log|yk| = —ak, the image of¥;o belongs toConR™) and ¥ o(y) is a O-circled
plurisubharmonic function.

The property (b), essential for the indicatér o, results from the equality(f,0,ca) =
cn(f,0,a)forall ¢ > 0.

Relations (c) are a consequence of (20) where is the convex imagg} (u) of

fL(x) = sup f (xee'™).
Ok

We haveg/f(log|yk|) > f(y). On the other hand, the quotient(R) = R—lg}(RIog|yk|),
R > Rp > 1, is a convex, negative and increasing functio®Rdbr |y;| < 1. Therefore,

lim m(R) >mQ),
R—+o00

and by (20),

0> ¥ro(y) = gy (loglyl) = f()

fory e D.

Statement (d) follows from (20) fof = ¥ 0 and from relation (b).

To prove (e), consider any indicat¢n(y) > f(y) on D. Then¥y o(y) = ¥r0(y), and by (d),
Yyo=1,80¥(y) =2 ¥ro(y) Vy € D.
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The bound in (f) results from (c) and the maximum principle for plurisubharmonic functions,
since (forj =1)

Wro(y) > sup f(yee'™) = sup f(y1e'™,0,...,0)
Ok 61

and for|y1| \ O the quotien'(log|y1|)—lsu991 f1(y1€'1) for the restrictionf; to the complex
subspacéx; =0, Vs > 1}, decreases to;.

Finally, in the assumptions of (g), the functi@n:q(y) is locally bounded orD \ {0} by
(f), so the operato(dd“¥y )" is well defined onD. Equation (23) is valid on the domain
D\ {y: y1y2...y» = 0} by Proposition 4 and then ob \ {0}, because the Monge—-Ampére
measure of a bounded plurisubharmonic function has zero mass on any pluripolar set (see
[2). O

Remark— Statement (d) of Proposition 5 is, in other words, that all the directional numbers

v(dd“¥ro, 9a) Of ¥ro coincide with the directional numbens(dd® f, ¢,) of the original
function f, Va e R}..

The above construction is in fact of local character and Proposition 5 remains valid for the
indicatory, o of any functionf (x) plurisubharmonic in a neighbourhoacbf a pointx® e C”,
with the the following change in the statement (c): (21) should be replaced by

(24) lI/f,xo(x —xo) > fx)+b:ye D(xo, r)} Vx € D(xo,r),

whereD(x%,r) = {x: |xx —xQ| <r, 1<k <n}; bis a constant depending ghandr; r > 0
and is such that the polydisR(x, r) € w. And of course the restrictioff; in (22) should be
taken to the subspaces, = x0, Vs # j}.

Let now f(x) € PSHw) be locally bounded o \ {x%}. Then its indicato® ;.o satisfies the
equation:

(25) (dd“w; 0)" =17(x%)8(0)

with some numbetf(xo) > 0, §(0) the Dirac measure at 0, angl(xo) > 0 if and only if the
Lelong number of the functiorf at x° is strictly positive. And now we relate this value to
(dd“ f)".

THEOREM 1. — Let f € PSHw) be locally bounded out of a poifite w. Then
(26) (dd° )" = 74(0)5(0).
Proof. —In view of (24), the functionf satisfies

Yy o(x) <

X 4.

27 li
@7 SHACLINTE)

By the Comparison theorem of Demailly [7, Theorem 5.9] this implies

(ddcq/.ﬁo)n|{0} < (ddcf)n|{0}'

On the other hand,
(dd“Wy0)"| g = (dd°Wr0)" = 17(0)3(0)
by (25), that gives us (26) and the theorem is proved.

TOME 78 — 1999 N° 3



LOCAL INDICATORS FOR PLURISUBHARMONIC FUNCTIONS 241

Remark— It is well known that for any plurisubharmonic functiorwith isolated singularity
at 0, there is the relation

(28) (ddv)" > [v(ddv,0)]"5(0).

By the Remark after the proof of Propositiom&dd° f, 0) is equal tov(dd“¥ o, 0). Applying
(28) tov =¥ o we get, in view of Theorem 1,

(dd° f)" = (dd“¥s0)" > [v(dd“¥0,0)]" =[v(dd® £, 0)]",

S0 (26) is an improvement of (28).
For example, iff (x) = log(|x1|¥ + |x2|*2) with 0 < k1 < k>, then

(dd° £)? =77(0)8(0) = kik28(0) > k38(0) = [v(dd* £,0)]°5(0),

and thusc£(0) > [v(dd® f, 0)]2.
More generally, ifF' is a holomorphic mapping t6”" with an isolated zero at 0 of multiplicity
wo, andf =log| F|, then
[v(da‘ £,0)]" < z7(0) < po.
In fact, relation (27) makes it possible to obtain extra boundsddf f)" in case of exfy e

C(£2). Such a functiory’ can be then considered as a plurisubharmonic weidbt Demailly’s
generalized numbeisT, ¢) of a closed positive currefit of bidimensionp, p), 1< p<n—-1

[71:
I c \P __ c \P
(T @)= lim / T A (dd¢)” =T A (ddp)”| -
p<s)

Moreover, the function¥so is such a weight, too. By Comparison theorem from [7],
Theorem 5.1, relation (27) implies

(29) v(T, ¥ro) <Vv(T, f).

Take
Ty = (dd° f)" A (dd°Wro)" ™Y 1<k<n—1

These currents are well defined on a neighbourhood of 0 and are of bidiméhslpnApplying
(29) toT = T; we obtain

T AddC flioy = Ti Add¥ 00},
that gives us
PROPOSITION 6. —Let f € PSH_(£2) be locally bounded out gD} andexpf € C(£2). Then
-1
(ddcf)n|{0} > (ddcf)n
> (dd“ 1)

AN ddc'pf,0|{0} >

n—k A (ddc'pf,O)kho} > > (ddcqff,o)n.

4. Dirichlet problem with local indicators

Let 2 be a bounded pseudoconvex domaindf and K be a compact subset ¢?. By
PSH($2, K) we denote the class of plurisubharmonic functiongdthat are locally bounded
onf2\ K.
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242 P. LELONG, A. RASHKOVSKII

Let K = {x1,...,xN} c 2 and{¥,,} be N indicators, i.e., circled functions iRSH_(D)
whose convex images satisfy (18). In the sequel we assum&thatPSH(D, {0}). Then by
Proposition 4,

(30) (dd°Wy)" =18(0), 1<m<N.
Let us fix the systen® = {(x1, ¥1), ..., (x", ¥y)} and consider a positive measufg on
$2, defined as
(31) Te = Z T8 (x™).
1<m<N

Each function®,, can be extended from a neighbourhood of the origin to a funalipre
PSH(C", {0}), and the indicators of the functions

(32) lﬁ(x):ZlI?m(x—xm)—f—A,

atx™ are equal tay,,, 1 <m < N, for any real numbeA. So the class
(33) No o ={vePSH.(2,K): ¥y xn < ¥y, L<m < N}

is not empty.
Theorem 1 implies:

THEOREM 2. — (dd°f)">2Te¢ VfeNo q.

Now we introduce the function

(34) Go,0(x) =sup{v(x): ve Np o}

THEOREM 3. — Let £2 be a hyperconvex domain @'. Then the functiol’ = G4 ¢ has the
following properties

(@) G e PSH_(2, K):

(b) G(x) > 0asx — 082;

(C) qu,x’” =¥, 1<m<N,

(d) (dd°G)" =Ty, the measurdy being defined by31);

(e) GeC(R\K).

Remark— In the case wher#;,, = v, log|x|, the functionG¢. g, the pluricomplex Green
function with several weighted poles, was introduced in [17]. A situation with infinite number
of poles was considered in [20], by A. Zeriahi, where a funct@p, was introduced as
the upper envelope of the clags € PSH_(£2, K): v(dd‘v,x) > v(dd‘ f, x), Vx}, f being
a plurisubharmonic function with the following propertied: is continuous,f ~1(—o0) is a
compact subset a2, and the sefx: v(dd¢ f, x) > 0} is dense inf ~1(—o0). Our proof is much
the same as of the corresponding statements of [20].

Proof of Theorem 3. SinceNg, o # ¥, the functionG = G, is well defined and

G* = limsupG(y) € PSH_(£2, K).

y—=x

The function¥ in (32) can be modified in a standard way ¥d € PSH_(£2, K) such
that ¥'(x) = @ p(x) in a neighbourhood 062, o being a positive number and a bounded
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exhaustion function o2, and¥’(x) = ¥ (x) — B on a neighbourhood df . It shows us that
(35) G >

It implies, in particular, that

(36) Wi am 2 W on =W, 1<m<N.

Since¥supv,w),x < SURWy x, Yw,x} for any plurisubharmonic functionsandw, there exists
an increasing sequence of functianse Ngo o such thatlim_., v; =v < G andv* = G*.
The indicator ofv; atx™ is the limit of R_lgvjyxm (Rlog|yk|) for R — 400, the function

gv;.xm(u) being the convex image of the mean valuev pfx;" + e“+i%) with respect ta;, for
uy < logdist(x™, 852), 1< k < n, and the limit is obtained by the increasing values. It gives us

(37) Ry, wn(R10g|yil) < W, xn (3) < ¥ ().

The functionsy; increase taG* out of a pluripolar seX = {x € 22: v(x) < v*(x)}. Since the
restriction ofX to the distinguished boundary of any polydisk is of zero Lebesgue measure [15],
(37) implies that

R™"gG+ xn (R10gykl) < Wi (y)
and thus, takin®R — +o0,
(38) Uos om KWy, 1<m<N.
As G* € PSH_(£2), the functionG* belongs to the clas¥  and so

(39) G*=G.

By (36) and (38) Wi xm = ¥,,. It proves statements (a) and (c); statement (b) follows from
inequality (35).

Continuity of G can be proved exactly as in [20].

To prove (d), observe that in view of (35) and (3%), < G. By the Comparison theorem of
Demailly [5, Theorem 2.1], this implies

(ddG)" |, < (dd“W')"| oy < [dd“W(x —x™)]",  L<m <N,
and therefore

(40) (dd°G)"|
On the other hand, by Theorem 2,

K<T¢.

(dd°G)" > Top.
Being comparing to (40) this provides
(dd°G)" |, =To.
Finally, the equalitydd“G)" =0 on £2 \ K can be proved in a standard way by showing it is
maximal on®2 \ K (see [1,6]), that proves (d).

The theorem is proved.O

As a consequence, we get an “indicator” variant of the Schwarz type lemma (see [17,20]):
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THEOREM 4. — Let the indicator of a functiory € PSH(£2) at x™ does not exceed,,,
1<m<N,andletg(x) <M on2.Theng(x) < M+ Gop.o(x), Vx € 2.

Now we are going to show that the functighy ¢ is the unique plurisubharmonic function
with the properties (a)—(d) of Theorem 3. It is known that for unbounded plurisubharmonic
functionsu, the Dirichlet problem

ddv)"=p >0 ong,
(41)

v=nh onoas2,

need not have a unique solution even in a simple gases(0), h = 0. However, a solution is
unigue under some regularity assumptions on the functioR®r example, as was established
in [20], (41) has a unique solution for

(42) = [v(das fxm)] o(x"),

with f(x) specified in the remark after the statement of Theorem 3, if the functionse
PSH_(£2, K) have to satisfy

(43) v(ddcv, xm) = v(ddcf, x’"), 1<m<N.
These additional relations mean that
(44) v(x) ~v(ddv,x")log[x —x™] nearx”

(v has regular densities at its poles, in the terminology of [17]).
In our situation,

(45) /Jv:Tf:ZTmS(xm)»

wherer,, are defined by (30) witl¥,, = ¥ .», and we are going to replace condition (43) by
qjv,x’" = 'I/fyxm, 1 < m < N.

To prove the uniqueness, we need a variant of the comparison theorem for unbounded plurisub-
harmonic functions (see [13,3,6,12,20] for different classes of plurisubharmonic functions).

THEOREM 5. — Let f e PSH(2, K), K = {x1,...,x™}, and

(46) (dd® )" | =Ty,

lx

the measurd’y being given by (45). Lat € PSH($2, K) satisfy the conditions
(1) liminfy_s0(f(x) —v(x)) = 0;
(2) (ddv)" > (dd°f)" on2\ K;
(3) Wy am < lIlf,x’"a l<m<N.

Thenv < f on 2.

The proof is just as of Theorem 3.3 of [20], and we omit it here.

COROLLARY. —Under the conditions of Theore8) the functionG¢ ; is the unique pluri-
subharmonic function with the propertiés)—(d)of that theorem.

Remarks— 1. Condition (46) is essential. Indeed, let
1 4 1 2 4
f(x):ilog(lxll + |x1+x2| ). v(x)zélog(lxll + |x2|*) +m
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with m =inf{f(x): |x| =1} > —o0. Thenv(x) < f(x) for [x| =1,
(dd* f)* = (dd“v)* =00on{0 < |x| < 1},

and ¥, o(x) = ¥yo(x) = log max{|x1|, |x2|?}. However, forx, =t € (0,e™), x1 = —x2,
f(x)=2logr < logr +m < v(x). The reason here is thatd® )2 = 48(0) > 25(0) = Ty.
2. By Comparison theorem of Demailly [5], relation (46) means that

fx)~Wpm(x—x™) nearx™,

a weaker than (44) but still controlled regularity.
3. By Proposition 5, an indicata¥ possesses the properties (a)—(diief o from Theorem 3
with £2 = D, the unit polydisk, an@ = ({0}, ¥). Therefore¥ =Gp ¢.

Theorems 3 and 5 allow us also to state the following result.

THEOREM 6. — Let £2 be a bounded strictly pseudoconvex domain= {x1, ..., x™}, and
let a functionf € PSH($2, K) satisfy

(dacf)" =Ty.
Then the Dirichlet problem

(dd°v)" =T; ong,
llfv,xm = lI/f’xm fOI’ 1 < m < N,
v=nh onos2,

has a unique solution in the class P8R, K) for each functiom: € C(0£2). This solution is
continuous o2 \ K.

Proof. —Let @ = {(x™, ¥;,)} with ¥, = ¥ .». Consider the class
Npjp= {u € PSH2, K): Wyon < Wpom ¥m, lim v(x) = h(y) ¥y € arz}.
xX—y

Letug(x) be the unique solution of the corresponding homogeneous problem

{ dd‘u)" =0 ons$2,
u=nh onoas.

Thenuo+ Go . € Ny¢n, SONy ) # @.
The desired solutiong is given as

vo(x) = Sup{v(x): Ve Nf,h}.

Just as in the proof of Theorem 3, one can showthaloes solve the problem and is continuous
on £2 \ K. The uniqueness follows from Theorem 53

Remark— Theorem 6 can be related to the following question wich was one of the motivations
of the present study. Ldt: 2 — C" be a holomorphic mapping with isolated zefa$'} C 2
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of multiplicities u,,. Then the functiory (x) = log| F (x)| solves the Dirichlet problem

{ (ddv)y" =3, umé(x™) ons2,
v=f onos2.

Under what extra conditions on, the functionf is the unique solution of the problem? By
Theorem 6, iff has regular behaviour at* with respect to its indicators, i.e., if

(ddWsn)" = umd(x™), 1<m<N,
it gives the unique solution for the problem

ddv)" =Y umé(x™) ong,

Wy, ym = lIlf,x’" 1<m<N,
v=f onos2.
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