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Abstract

A new fermionic formula for the unrestricted Kostka polynomials of type A
(1)
n−1 is presented. This

formula is different from the one given by Hatayama et al. and is valid for all crystal paths based on
Kirillov–Reshetikhin modules, not just for the symmetric and antisymmetric case. The fermionic formula
can be interpreted in terms of a new set of unrestricted rigged configurations. For the proof a statistics pre-
serving bijection from this new set of unrestricted rigged configurations to the set of unrestricted crystal
paths is given which generalizes a bijection of Kirillov and Reshetikhin.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The Kostka numbers Kλμ, indexed by the two partitions λ and μ, play an important role
in symmetric function theory, representation theory, combinatorics, invariant theory and mathe-
matical physics. The Kostka polynomials Kλμ(q) are q-analogs of the Kostka numbers. There
are several combinatorial representations of the Kostka polynomials. For example, Lascoux
and Schützenberger [17] proved that the Kostka polynomials are generating functions of semi-
standard tableaux of shape λ and content μ with charge statistic. In [19] the Kostka poly-
nomials are expressed as generating function over highest-weight crystal paths with energy
statistics. Crystal paths are elements in tensor products of finite-dimensional crystals. Dropping
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the highest-weight condition yields unrestricted Kostka polynomials [6–8,26]. In the A
(1)
1 set-

ting, unrestricted Kostka polynomials or q-supernomial coefficients were introduced in [25] as
q-analogs of the coefficient of xa in the expansion of

∏N
j=1(1+x +x2 +· · ·+xj )Lj . An explicit

formula for the A
(1)
n−1 unrestricted Kostka polynomials for completely symmetric and completely

antisymmetric crystals was proved in [7,11]. This formula is called fermionic as it is a manifestly
positive expression.

In this paper we give a new explicit fermionic formula for the unrestricted Kostka polynomi-
als for all Kirillov–Reshetikhin crystals of type A

(1)
n−1. This fermionic formula can be naturally

interpreted in terms of a new set of unrestricted rigged configurations for type A
(1)
n−1. Rigged

configurations are combinatorial objects originating from the Bethe Ansatz, that label solutions
of the Bethe equations. The simplest version of rigged configurations appeared in Bethe’s orig-
inal paper [3] and was later generalized by Kerov, Kirillov and Reshetikhin [12,13] to models
with GL(n) symmetry. Since the solutions of the Bethe equations label highest weight vectors,
one expects a bijection between rigged configurations and semi-standard Young tableaux in the
GL(n) case. Such a bijection was given in [13,14]. Here we extend this bijection to a bijection Φ

between the new set of unrestricted rigged configurations and unrestricted paths. The definition
of Φ is given by an algorithm which recursively builds a path from a given rigged configuration
by extending the construction of [13,14]. In [22] the bijection is established in a different man-
ner by constructing a crystal structure on the set of rigged configurations. Using that a bijection
exists for highest weight elements by [13,14] the equivalent crystal structure forces the bijection
for all unrestricted elements. To prove that Φ preserves the statistics, we use the analogous result
for highest weight vectors [14] and show that the crystal structures of [22] are compatible under
the algorithmically defined Φ .

Recently, fermionic expressions for generating functions of unrestricted paths for type A
(1)
1

have also surfaced in connection with box-ball systems. Takagi [28] establishes a bijection be-
tween box-ball systems and a new set of rigged configurations to prove a fermionic formula for
the q-binomial coefficient. His set of rigged configurations coincides with our set in the type
A

(1)
1 case. There is a generalization of Takagi’s bijection to type A

(1)
n−1 case [16]. Hence this

generalization gives a box-ball interpretation of the unrestricted rigged configurations.
One of the motivations to seek an explicit expression for unrestricted Kostka polynomials is

their appearance in generalizations of the Bailey lemma [2]. Bailey’s lemma is a very powerful
method to prove Rogers–Ramanujan-type identities. In [26] a type An generalization of Bailey’s
lemma was conjectured which was subsequently proven in [29]. A type A2 Bailey chain, which
yields an infinite family of identities, was given in [1]. The new fermionic formulas of this paper
might trigger further progress towards generalizations of the Bailey lemma.

The bijection Φ has been implemented as a C++ program [4] and has been incorporated into
the combinatorics package of MuPAD-Combinat by Francois Descouens [18].

This paper is structured as follows. In Section 2 we review crystals of type A
(1)
n−1, unrestricted

paths and the definition of unrestricted Kostka polynomials as generating functions of unre-
stricted paths with energy statistics. In Section 3 we give our new definition of unrestricted rigged
configurations (see Definition 3.3) and derive from this a fermionic expression for the generating
function of unrestricted rigged configurations graded by cocharge (see Section 3.2). The statistic
preserving bijection between unrestricted paths and unrestricted rigged configurations is estab-
lished in Section 4 (see Definition 4.6 and Theorem 4.1). As a corollary this yields the equality of
the unrestricted Kostka polynomials and the fermionic formula of Section 3 (see Corollary 4.2).
The result that the crystal structures on paths and rigged configurations are compatible under Φ
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is stated in Theorem 4.13. Most of the technical proofs are relegated to three appendices. An
extended abstract of this paper can be found in [5].

2. Unrestricted paths and Kostka polynomials

2.1. Crystals Br,s of type A
(1)
n−1

Kashiwara [9] introduced the notion of crystals and crystal graphs as a combinatorial means
to study representations of quantum algebras associated with any symmetrizable Kac–Moody
algebra. In this paper we only consider the Kirillov–Reshetikhin crystal Br,s of type A

(1)
n−1 and

hence restrict to this case here.
As a set, the crystal Br,s consists of all column-strict Young tableaux of shape (sr ) over the

alphabet {1,2, . . . , n}. As a crystal associated to the underlying algebra of finite type An−1, Br,s

is isomorphic to the highest weight crystal with highest weight (sr ). We will define the classical
crystal operators explicitly here. The affine crystal operators e0 and f0 are given explicitly in [27].
Since we do not use these operators in this paper we will omit the details.

Let I = {1,2, . . . , n−1} be the index set for the vertices of the Dynkin diagram of type An−1,
P the weight lattice, {Λi ∈ P | i ∈ I } the fundamental roots, {αi ∈ P | i ∈ I } the simple roots,
and {hi ∈ HomZ(P,Z) | i ∈ I } the simple coroots. As a type An−1 crystal, B = Br,s is equipped
with maps ei, fi :B → B ∪ {0} and wt :B → P for all i ∈ I satisfying

fi(b) = b′ ⇔ ei(b
′) = b if b, b′ ∈ B,

wt
(
fi(b)

) = wt(b) − αi if fi(b) ∈ B,〈
hi,wt(b)

〉 = ϕi(b) − εi(b),

where 〈·,·〉 is the natural pairing. The maps fi , ei are known as the Kashiwara operators. Here
for b ∈ B ,

εi(b) = max
{
k � 0 | ek

i (b) 	= 0
}
,

ϕi(b) = max
{
k � 0 | f k

i (b) 	= 0
}
.

Note that for type An−1, P = Z
n and αi = εi − εi+1 where {εi | i ∈ I } is the standard basis in P .

Here wt(b) = (μ1, . . . ,μn) is the weight of b where μi counts the number of letters i in b.
Following [10] let us give the action of ei and fi for i ∈ I . Let b ∈ Br,s be a tableau of shape

(sr ). The row word of b is defined by word(b) = wr · · ·w2w1 where wk is the word obtained by
reading the kth row of b from left to right. To find fi(b) and ei(b) we only consider the subword
consisting of the letters i and i + 1 in the word of b. First view each i + 1 in the subword
as an opening bracket and each i as a closing bracket. Then we ignore each adjacent pair of
matched brackets successively. At the end of this process we are left with a subword of the form
ip(i + 1)q . If p > 0 (respectively q > 0) then fi(b) (respectively ei(b)) is obtained from b by
replacing the unmatched subword ip(i + 1)q by ip−1(i + 1)q+1 (respectively ip+1(i + 1)q−1).
If p = 0 (respectively q = 0) then fi(b) (respectively ei(b)) is undefined and we write fi(b) = 0
(respectively ei(b) = 0).

A crystal B can be viewed as a directed edge-colored graph whose vertices are the elements
of B , with a directed edge from b to b′ labeled i ∈ I , if and only if fi(b) = b′. This directed
graph is known as the crystal graph.

Example 2.1. The crystal graph for B = B1,1 is given in Fig. 1.
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Fig. 1. Crystal B1,1.

Given two crystals B and B ′, we can also define a new crystal by taking the tensor product
B ⊗ B ′. As a set B ⊗ B ′ is just the Cartesian product of the sets B and B ′. The weight function
wt for b ⊗ b′ ∈ B ⊗ B ′ is wt(b ⊗ b′) = wt(b) + wt(b′) and the Kashiwara operators ei , fi are
defined as follows:

ei(b ⊗ b′) =
{

eib ⊗ b′ if εi(b) > ϕi(b
′),

b ⊗ eib
′ otherwise,

fi(b ⊗ b′) =
{

fib ⊗ b′ if εi(b) � ϕi(b
′),

b ⊗ fib
′ otherwise.

This action of fi and ei on the tensor product is compatible with the previously defined action
on word(b ⊗ b′) = word(b)word(b′), but is different from Kashiwara’s convention [9].

Example 2.2. Let i = 2 and

b = 1 2
2 3

⊗
2 3
3 4
4 5

.

Then word(b) = 2312453423, the relevant subword is 23 − 2 − −3 − 23, and the unmatched
subword is 2 − − − − − − − −3. Hence

f2(b) = 1 2
3 3

⊗
2 3
3 4
4 5

and e2(b) = 1 2
2 3

⊗
2 2
3 4
4 5

.

2.2. Unrestricted paths

A
(1)
n−1-unrestricted Kostka polynomials or supernomial coefficients were first introduced

in [26] as generating functions of unrestricted paths graded by an energy function. An unre-
stricted path is an element in the tensor product of crystals B = Brk,sk ⊗Brk−1,sk−1 ⊗· · ·⊗Br1,s1 .

Let λ = (λ1, λ2, . . . , λn) be an n-tuple of nonnegative integers. The set of unrestricted paths
is defined as

P(B,λ) = {
b ∈ B | wt(b) = λ

}
.

Example 2.3. For B = B1,1 ⊗ B2,2 ⊗ B3,1 of type A3 and λ = (2,3,1,2) the path

b = 2 ⊗ 1 2
2 4

⊗
1
3
4

is in P(B,λ).
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There exists a crystal isomorphism R :Br,s ⊗ Br ′,s′ → Br ′,s′ ⊗ Br,s , called the combinatorial
R-matrix. Combinatorially it is given as follows. Let b ∈ Br,s and b′ ∈ Br ′,s′

. The product b · b′
of two tableaux is defined as the row Schensted insertion of b′ into b. Then R(b ⊗ b′) = b̃′ ⊗ b̃

is the unique pair of tableaux such that b · b′ = b̃′ · b̃.
The local energy function H :Br,s ⊗ Br ′,s′ → Z is defined as follows. For b ⊗ b′ ∈ Br,s ⊗

Br ′,s′
, H(b ⊗ b′) is the number of boxes of the shape of b · b′ outside the shape obtained by

concatenating (sr ) and (s′r ′
).

Example 2.4. For

b ⊗ b′ = 1 2
2 4

⊗
1
3
4

we have

b · b′ =
1 1 3
2 2 4
4

=
1
2
4

· 1 3
2 4

= b̃′ · b̃

so that

R(b ⊗ b′) = b̃′ ⊗ b̃ =
1
2
4

⊗ 1 3
2 4

.

Since the concatenation of and is , the local energy function H(b ⊗ b′) = 0.

Now let B = Brk,sk ⊗ · · · ⊗ Br1,s1 be a k-fold tensor product of crystals. The tail energy
function

←−
D :B → Z is given by

←−
D(b) =

∑
1�i<j�k

Hj−1Rj−2 · · ·Ri+1Ri(b),

where Hi (respectively Ri ) is the local energy function (respectively combinatorial R-matrix)
acting on the ith and (i + 1)th tensor factors of b ∈ B .

Definition 2.5. The q-supernomial coefficient or the unrestricted Kostka polynomial is the gen-
erating function of unrestricted paths graded by the tail energy function

X(B,λ) =
∑

b∈P(B,λ)

q
←−
D(b).

3. Unrestricted rigged configurations and fermionic formula

Rigged configurations are combinatorial objects invented to label the solutions of the Bethe
equations, which give the eigenvalues of the Hamiltonian of the underlying physical model [3].
Motivated by the fact that representation theoretically the eigenvectors and eigenvalues can also
be labeled by Young tableaux, Kirillov and Reshetikhin [13] gave a bijection between tableaux
and rigged configurations. This result and generalizations thereof were proven in [14].
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In terms of crystal base theory, the bijection is between highest weight paths and rigged con-
figurations. The new result of this paper is an extension of this bijection to a bijection between
unrestricted paths and a new set of rigged configurations. The new set of unrestricted rigged con-
figurations is defined in this section, whereas the bijection is given in Section 4. In [22], a crystal
structure on the new set of unrestricted rigged configurations is given, which provides a different
description of the bijection.

3.1. Unrestricted rigged configurations

Let B = Brk,sk ⊗ · · · ⊗ Br1,s1 and denote by L = (L
(a)
i | (a, i) ∈ H) the multiplicity array

of B , where L
(a)
i is the multiplicity of Ba,i in B . Here H = I × Z>0 and I = {1,2, . . . , n − 1}

is the index set of the Dynkin diagram An−1. The sequence of partitions ν = {ν(a) | a ∈ I } is a
(L,λ)-configuration if∑

(a,i)∈H
im

(a)
i αa =

∑
(a,i)∈H

iL
(a)
i Λa − λ, (3.1)

where m
(a)
i is the number of parts of length i in partition ν(a). Note that we do not require λ to

be a dominant weight here. The (quasi-)vacancy number of a configuration is defined as

p
(a)
i =

∑
j�1

min(i, j)L
(a)
j −

∑
(b,j)∈H

(αa | αb)min(i, j)m
(b)
j .

Here (· | ·) is the normalized invariant form on the weight lattice P such that (αi | αj ) is the
Cartan matrix. Let C(L,λ) be the set of all (L,λ)-configurations. We call p

(a)
i quasivacancy

number to indicate that they can actually be negative in our setting. For the rest of the paper we
will simply call them vacancy numbers.

When the dependence of m
(a)
i and p

(a)
i on the configuration ν is crucial, we also write m

(a)
i (ν)

and p
(a)
i (ν), respectively.

In the usual setting a rigged configuration (ν, J ) consists of a configuration ν ∈ C(L,λ) to-
gether with a double sequence of partitions J = {J (a,i) | (a, i) ∈H} such that the partition J (a,i)

is contained in a m
(a)
i × p

(a)
i rectangle. In particular this requires that p

(a)
i � 0. For unrestricted

paths we need a bigger set, where the lower bound on the parts in J (a,i) can be less than zero.
To define the lower bounds we need the following notation. Define the partition λpart as λpart =

(c1, c2, . . . , cn−1)
t where ck = λk+1 +λk+2 +· · ·+λn and t denotes the transpose of the partition

(c1, c2, . . . , cn−1). We also set c0 = c1. Let A(λpart) be the set of tableaux of shape λpart such that
the entries in column k are from the set {1,2, . . . , ck−1} and are strictly decreasing along each
column.

Example 3.1. For n = 4 and λ = (0,1,1,1), the set A(λpart) consists of the following tableaux:

3 3 2
2 2
1

3 3 2
2 1
1

3 2 2
2 1
1

3 3 1
2 2
1

3 3 1
2 1
1

3 2 1
2 1
1

.

Note that each t ∈ A(λpart) is weakly decreasing along each row. This is due to the fact that
tj,k � ck − j + 1 since column k of height ck is strictly decreasing and ck − j + 1 � tj,k+1 since
the entries in column k + 1 are from the set {1,2, . . . , ck}.
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Given t ∈ A(λpart), we define the lower bound as

M
(a)
i (t) = −

ca∑
j=1

χ(i � tj,a) +
ca+1∑
j=1

χ(i � tj,a+1),

where tj,a denotes the entry in row j and column a of t , and χ(S) = 1 if the statement S is true
and χ(S) = 0 otherwise.

Definition 3.2. Let M,p,m ∈ Z such that m � 0. A (M,p,m)-quasipartition μ is a tuple of inte-
gers μ = (μ1,μ2, . . . ,μm) such that M � μm � μm−1 � · · · � μ1 � p. Each μi is called a part
of μ. Note that for M = 0 this would be a partition with at most m parts each not exceeding p.

Definition 3.3. An unrestricted rigged configuration (ν, J ) associated to a multiplicity array L

and weight λ is a configuration ν ∈ C(L,λ) together with a sequence J = {J (a,i) | (a, i) ∈ H}
where J (a,i) is a (M

(a)
i (t),p

(a)
i ,m

(a)
i )-quasipartition for some t ∈ A(λpart). Denote the set of all

unrestricted rigged configurations corresponding to (L,λ) by RC(L,λ).

Remark 3.4.

(1) Note that this definition is similar to the definition of level-restricted rigged configura-
tions [23, Definition 5.5]. Whereas for level-restricted rigged configurations the vacancy
number had to be modified according to tableaux in a certain set, here the lower bounds are
modified.

(2) For type A1 we have λ = (λ1, λ2) so that A = {t} contains just the single tableau

t =
λ2

λ2 − 1
...

1

.

In this case Mi(t) = −∑λ2
j=1 χ(i � tj,1) = −i. This agrees with the findings of [28].

The quasipartition J (a,i) is called singular if it has a part of size p
(a)
i . It is often useful to

view an (unrestricted) rigged configuration (ν, J ) as a sequence of partitions ν where the parts of
size i in ν(a) are labeled by the parts of J (a,i). The pair (i, x) where i is a part of ν(a) and x is a
part of J (a,i) is called a string of the ath rigged partition (ν, J )(a). The label x is called a rigging.

Example 3.5. Let n = 4, λ = (2,2,1,1), L
(1)
1 = 6 and all other L

(a)
i = 0. Then

(ν, J ) = −2
0

0 −1

is an unrestricted rigged configuration in RC(L,λ), where we have written the parts of J (a,i)

next to the parts of length i in partition ν(a). For example, ν(1) = (3,1), ν(2) = (2), ν(3) = (1),
J (1,1) = (0), J (1,3) = (−2), J (2,2) = (0), and J (3,1) = (−1). To see that the riggings form quasi-
partitions, let us write the vacancy numbers p

(a)
i next to the parts of length i in partition ν(a):

0 0 −1.

3
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This shows that the labels are indeed all weakly below the vacancy numbers. For

4 4 1
3 3
2
1

∈ A
(
λpart)

we get the lower bounds

−2
−1

0 −1,

which are less or equal to the riggings in (ν, J ).

Let B = Brk,sk ⊗ · · · ⊗ Br1,s1 and L the corresponding multiplicity array. Let (ν, J ) ∈
RC(L,λ). Note that rewritting (3.1) we get

∣∣ν(a)
∣∣ =

∑
j>a

λj −
k∑

j=1

sj max(rj − a,0). (3.2)

Hence for large i, by definition of vacancy numbers we have

p
(a)
i = ∣∣ν(a−1)

∣∣ − 2
∣∣ν(a)

∣∣ + ∣∣ν(a+1)
∣∣ +

∑
j

min(i, j)L
(a)
j = λa − λa+1 (3.3)

and

M
(a)
i (t) = −

ca∑
j=1

χ(i � tj,a) +
ca+1∑
j=1

χ(i � tj,a+1) = −ca + ca+1 = −λa+1. (3.4)

For a given t ∈ A(λpart) define

Δp
(a)
i (t) = p

(a)
i − M

(a)
i (t).

We write Δp
(a)
i for Δp

(a)
i (t) when there is no cause of confusion. For large i, Δp

(a)
i (t) = λa .

From the definition of p
(a)
i one may easily verify that

−p
(a)
i−1 + 2p

(a)
i − p

(a)
i+1 � m

(a−1)
i − 2m

(a)
i + m

(a+1)
i . (3.5)

Let t·,a denote the ath column of t . Then it follows from the definition of M
(a)
i (t) that

M
(a)
i (t) = M

(a)
i−1(t) − χ(i ∈ t·,a) + χ(i ∈ t·,a+1).

Hence (3.5) can be rewritten as

−Δp
(a)
i−1 + 2Δp

(a)
i − Δp

(a)
i+1 − χ(i ∈ t·,a) + χ(i ∈ t·,a+1)

+ χ(i + 1 ∈ t·,a) − χ(i + 1 ∈ t·,a+1) � m
(a−1)
i − 2m

(a)
i + m

(a+1)
i . (3.6)

Lemma 3.6. Suppose that for some t ∈ A(λpart), Δp
(a)
i (t) � 0 for all a ∈ I and i such that

m
(a)

> 0. Then there exists a t ′ ∈A(λpart) such that Δp
(a)

(t ′) � 0 for all i and a.
i i



L. Deka, A. Schilling / Journal of Combinatorial Theory, Series A 113 (2006) 1435–1461 1443
Proof. By definition Δp
(a)
0 (t) = 0 and Δp

(a)
i (t) = λa � 0 for large i. By (3.6)

Δp
(a)
i (t) � 1

2

{
Δp

(a)
i−1(t) + Δp

(a)
i+1(t) + χ(i ∈ t·,a) − χ(i ∈ t·,a+1)

− χ(i + 1 ∈ t·,a) + χ(i + 1 ∈ t·,a+1) + m
(a−1)
i + m

(a+1)
i

}
(3.7)

when m
(a)
i = 0. Hence Δp

(a)
i (t) < 0 is only possible if m

(a−1)
i = m

(a+1)
i = 0, column a of t

contains i + 1 but no i, and column a + 1 of t contains i but no i + 1. Let k be minimal such that
Δp

(k)
i (t) < 0. Note that k > 1 since the first column of t contains all letters 1,2, . . . , c1. Let k′ � k

be minimal such that Δp
(a)
i (t) = 0 for all k′ � a < k. Then inductively for a = k−1, k−2, . . . , k′

it follows from (3.7) that m
(a−1)
i = 0 and column a of t contains i + 1 but no i. Construct a new

t ′ from t by replacing all letters i + 1 in columns k′, k′ + 1, . . . , k by i. This accomplishes that
Δp

(a)
j (t ′) � 0 for all j and 1 � a < k, Δp

(k)
i (t ′) � 0, and Δp

(a)
j (t ′) � 0 for all a � k such that

m
(a)
j > 0. Repeating the above construction, if necessary, eventually yields a new tableau t ′′ such

that finally Δp
(a)
j (t ′′) � 0 for all j and a. �

3.2. Fermionic formula

The following statistics can be defined on the set of unrestricted rigged configurations. For
(ν, J ) ∈ RC(L,λ) let

cc(ν, J ) = cc(ν) +
∑

(a,i)∈H

∣∣J (a,i)
∣∣,

where |J (a,i)| is the sum of all parts of the quasipartition J (a,i) and

cc(ν) = 1

2

∑
a,b∈I

∑
j,k�1

(αa | αb)min(j, k)m
(a)
j m

(b)
k .

Definition 3.7. The RC polynomial is defined as

M(L,λ) =
∑

(ν,J )∈RC(L,λ)

qcc(ν,J ).

The RC polynomial is in fact Sn-symmetric in the weight λ, that is, M(L,λ) = M(L,σ(λ))

for σ ∈ Sn, where σ(λ) = (λσ(1), λσ(2), . . . , λσ(n)). This is not obvious from its definition as
both (3.1) and the lower bounds are not symmetric with respect to λ, but follows from Corol-
lary 4.2 and the fact that X(B,λ) is symmetric in λ [7,26].

Let SA(λpart) be the set of all nonempty subsets of A(λpart) and set

M
(a)
i (S) = max

{
M

(a)
i (t) | t ∈ S

}
for S ∈ SA

(
λpart

)
.

By inclusion–exclusion arguments analogous to [23], the set of all allowed riggings for a given
ν ∈ C(L,λ) is⋃

S∈SA(λpart)

(−1)|S|+1{J | J (a,i) is a
(
M

(a)
i (S),p

(a)
i ,m

(a)
i

)
-quasipartition

}
.

The q-binomial coefficient
[

m+p
m

]
, defined as
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[
m + p

m

]
= (q)m+p

(q)m(q)p

where (q)n = (1 − q)(1 − q2) · · · (1 − qn), is the generating function of partitions with at most
m parts each not exceeding p. Hence the polynomial M(L,λ) may be rewritten as

M(L,λ) =
∑

S∈SA(λpart)

(−1)|S|+1
∑

ν∈C(L,λ)

qcc(ν)+∑
(a,i)∈H m

(a)
i M

(a)
i (S)

×
∏

(a,i)∈H

[
m

(a)
i + p

(a)
i − M

(a)
i (S)

m
(a)
i

]

called fermionic formula. In [7,11] a fermionic formula for the same polynomial was given in the
special case when L is the multiplicity array of B = B1,sk ⊗· · ·⊗B1,s1 or B = Brk,1 ⊗· · ·⊗Br1,1.
However, the form of the fermionic formulas are different and a direct link between the rigged
configurations of this paper and those of [20] is not yet known.

4. Bijection

In this section we define the bijection Φ :P(B,λ) → RC(L,λ) from paths to unrestricted
rigged configurations algorithmically. The algorithm generalizes the bijection of [14] to the un-
restricted case. The main result is summarized in the following theorem.

Theorem 4.1. Let B = Brk,sk ⊗ · · · ⊗ Br1,s1 , L the corresponding multiplicity array and
λ = (λ1, . . . , λn) a sequence of nonnegative integers. There exists a bijection Φ :P(B,λ) →
RC(L,λ) which preserves the statistics, that is,

←−
D(b) = cc(Φ(b)) for all b ∈P(B,λ).

A different proof of Theorem 4.1 is given in [22] by proving directly that the crystal structure
on rigged configurations and paths coincide. The results in [22] hold for all simply-laced types,
not just type A

(1)
n−1. Hence Theorem 4.1 holds whenever there is a corresponding bijection for the

highest weight elements (for example, for type D
(1)
n for symmetric powers [24] and antisymmet-

ric powers [21]). Using virtual crystals and the method of folding Dynkin diagrams, these results
can be extended to other affine root systems. In this paper we use the crystal structure to prove
that the statistics is preserved. It follows from Theorem 4.13 that the algorithmic definition for
Φ of this paper and the definition of [22] agree.

An immediate corollary of Theorem 4.1 is the relation between the fermionic formula for the
RC polynomial of Section 3 and the unrestricted Kostka polynomials of Section 2.

Corollary 4.2. With the same assumptions as in Theorem 4.1, X(B,λ) = M(L,λ).

4.1. Operations on crystals

To define Φ we first need to introduce certain maps on paths and rigged configurations. These
maps correspond to the following operations on crystals:

(1) If B = B1,1 ⊗ B ′, let lh(B) = B ′. This operation is called left-hat.
(2) If B = Br,s ⊗B ′ with s � 2, let ls(B) = Br,1 ⊗Br,s−1 ⊗B ′. This operation is called left-split.
(3) If B = Br,1 ⊗ B ′ with r � 2, let lb(B) = B1,1 ⊗ Br−1,1 ⊗ B ′. This operation is called box-

split.
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In analogy we define lh(L) (respectively ls(L), lb(L)) to be the multiplicity array of lh(B) (re-
spectively ls(B), lb(B)), if L is the multiplicity array of B . The corresponding maps on crystal
elements are given by:

(1) Let b = c ⊗ b′ ∈ B1,1 ⊗ B ′. Then lh(b) = b′.
(2) Let b = c ⊗ b′ ∈ Br,s ⊗ B ′, where c = c1c2 · · · cs and ci denotes the ith column of c. Then

ls(b) = c1 ⊗ c2 · · · cs ⊗ b′.
(3) Let

b =
b1
b2
...

br

⊗ b′ ∈ Br,1 ⊗ B ′,

where b1 < · · · < br . Then

lb(b) = br ⊗
b1
...

br−1

⊗ b′.

In the next subsection we define the corresponding maps on rigged configurations, and give
the bijection in Section 4.3.

4.2. Operations on rigged configurations

Suppose L
(1)
1 > 0. The main algorithm on rigged configurations as defined in [13,14] for

admissible rigged configurations can be extended to our setting. For a tuple of nonnegative
integers λ = (λ1, . . . , λn), let λ− be the set of all nonnegative tuples μ = (μ1, . . . ,μn) such
that λ − μ = εr for some 1 � r � n where εr is the canonical r th unit vector in Z

n. Define
δ : RC(L,λ) → ⋃

μ∈λ− RC(lh(L),μ) by the following algorithm. Let (ν, J ) ∈ RC(L,λ). Set

�(0) = 1 and repeat the following process for a = 1,2, . . . , n− 1 or until stopped. Find the small-
est index i � �(a−1) such that J (a,i) is singular. If no such i exists, set rk(ν, J ) = a and stop.
Otherwise set �(a) = i and continue with a + 1. Set all undefined �(a) to ∞.

The new rigged configuration (ν̃, J̃ ) = δ(ν, J ) is obtained by removing a box from the se-
lected strings and making the new strings singular again. Explicitly

m
(a)
i (ν̃) = m

(a)
i (ν) +

⎧⎨
⎩

1 if i = �(a) − 1,

−1 if i = �(a),

0 otherwise.

The partition J̃ (a,i) is obtained from J (a,i) by removing a part of size p
(a)
i (ν) for i = �(a),

adding a part of size p
(a)
i (ν̃) for i = �(a) − 1, and leaving it unchanged otherwise. Then

δ(ν, J ) ∈ RC(lh(L),μ) where μ = λ − εrk(ν,J ).

Proposition 4.3. δ is well defined.

The proof is given in Appendix A.
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Example 4.4. Let L be the multiplicity array of B = B1,1 ⊗B2,1 ⊗B2,3 and λ = (2,2,2,1,1,1).
Then

(ν, J ) = −1
0

−1
0

−1
0 −1 −1 ∈ RC(L,λ).

Writing the vacancy numbers next to each part instead of the riggings we get

−1
0

−1
0

−1
1 −1 −1

Hence �(1) = �(2) = 1 and all other �(a) = ∞, so that

δ(ν, J ) = −1 −1
0 0 −1 −1.

Also cc(ν, J ) = 2.

The inverse algorithm of δ denoted by δ−1 is defined as follows. Let L
(1)
1 = L̄

(1)
1 + 1,

L
(k)
i = L̄

(k)
i for all i, k 	= 1. Let λ̄ be a weight and λ = λ̄ + εr for some 1 � r � n. Define

δ−1 : RC(L̄, λ̄) → RC(L,λ) by the following algorithm. Let (ν̄, J̄ ) ∈ RC(L̄, λ̄). Let s(r) = ∞.
For k = r − 1 down to 1, select the longest singular string in (ν̄, J̄ )(k) of length s(k) (possibly
of zero length) such that s(k) � s(k+1). With the convention s(0) = 0 we have s(0) � s(1) as well.
δ−1(ν̄, J̄ ) = (ν, J ) is obtained from (ν̄, J̄ ) by adding a box to each of the selected strings, and re-
setting their labels to make them singular with respect to the new vacancy number for RC(L,λ),
and leaving all other strings unchanged.

Proposition 4.5. δ−1 is well defined.

This proposition will also be proved in Appendix A.
Let s � 2. Suppose B = Br,s ⊗ B ′ and L the corresponding multiplicity array. Note that

C(L,λ) ⊂ C(ls(L),λ). Under this inclusion map, the vacancy number p
(a)
i for ν increases by

δa,rχ(i < s). Hence there is a well-defined injective map lsrc : RC(L,λ) → RC(ls(L),λ) given
by the identity map lsrc(ν, J ) = (ν, J ).

Suppose r � 2 and B = Br,1 ⊗ B ′ with multiplicity array L. Then there is an injection
lbrc : RC(L,λ) → RC(lb(L),λ) defined by adding singular strings of length 1 to (ν, J )(a) for
1 � a < r . Note that the vacancy numbers remain unchanged under lbrc.

4.3. Bijection

The map Φ :P(B,λ) → RC(L,λ) is defined recursively by various commutative diagrams.
Note that it is possible to go from B = Brk,sk ⊗ Brk−1,sk−1 ⊗ · · · ⊗ Br1,s1 to the empty crystal via
successive application of lh, ls and lb.

Definition 4.6. Define that map Φ :P(B,λ) → RC(L,λ) such that the empty path maps to the
empty rigged configuration and such that the following conditions hold:
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(1) Suppose B = B1,1 ⊗ B ′. Then the following diagram commutes:

P(B,λ)
Φ−−−−→ RC(L,λ)

lh

⏐⏐� ⏐⏐�δ⋃
μ∈λ−

P(lh(B),μ) −−−−→
Φ

⋃
μ∈λ−

RC(lh(L),μ)

(2) Suppose B = Br,s ⊗ B ′ with s � 2. Then the following diagram commutes:

P(B,λ)
Φ−−−−→ RC(L,λ)

ls

⏐⏐� ⏐⏐�lsrc

P(ls(B),λ) −−−−→
Φ

RC(ls(L),λ)

(3) Suppose B = Br,1 ⊗ B ′ with r � 2. Then the following diagram commutes:

P(B,λ)
Φ−−−−→ RC(L,λ)

lb

⏐⏐� ⏐⏐�lbrc

P(lb(B),λ) −−−−→
Φ

RC(lb(L),λ)

Proposition 4.7. The map Φ of Definition 4.6 is a well-defined bijection.

The proof is given in Appendix B.

Example 4.8. Let B = B1,1 ⊗ B2,1 ⊗ B2,3 and λ = (2,2,2,1,1,1). Then

b = 3 ⊗ 1
2

⊗ 1 2 3
4 5 6

∈ P(B,λ)

and Φ(b) is the rigged configuration (ν, J ) of Example 4.4. We have
←−
D(b) = cc(ν, J ) = 2.

Example 4.9. Let n = 4, B = B2,2 ⊗ B2,1 and λ = (2,2,1,1). Then the multiplicity array is
L

(2)
1 = 1,L

(2)
2 = 1 and L

(a)
i = 0 for all other (a, i). There are 7 possible unrestricted paths in

P(B,λ). For each path b ∈ P(B,λ) the corresponding rigged configuration (ν, J ) = Φ(b) to-
gether with the tail energy and cocharge is summarized below:

b = 1 1
2 2

⊗ 3
4

(ν, J ) = 0
−1
−1

0
←−
D(b) = 0 = cc(ν, J ),

b = 1 1
2 4

⊗ 2
3

(ν, J ) = −1
0
0 0

←−
D(b) = 1 = cc(ν, J ),

b = 1 2
2 3

⊗ 1
4

(ν, J ) = 0
0
0 −1

←−
D(b) = 1 = cc(ν, J ),

b = 1 2
2 4

⊗ 1
3

(ν, J ) = 0
0

0
←−
D(b) = 1 = cc(ν, J ),
−1
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b = 1 3
2 4

⊗ 1
2

(ν, J ) = 0
0
0 0

←−
D(b) = 2 = cc(ν, J ),

b = 1 1
2 3

⊗ 2
4

(ν, J ) = −1 0 −1
←−
D(b) = 0 = cc(ν, J ),

b = 1 2
3 4

⊗ 1
2

(ν, J ) = −1 1 −1
←−
D(b) = 1 = cc(ν, J ).

The unrestricted Kostka polynomial in this case is M(L,λ) = 2 + 4q + q2 = X(B,λ).

4.4. Crystal operators on unrestricted rigged configurations

Let B = Brk,ss ⊗ · · · ⊗ Br1,s1 and L be the multiplicity array of B . Let P(B) = ⋃
λP(B,λ)

and RC(L) = ⋃
λ RC(L,λ). Note that the bijection Φ of Definition 4.6 extends to a bijection

from P(B) to RC(L). Let fa and ea for 1 � a < n be the crystal operators acting on the paths
in P(B). In [22] analogous operators f̃a and ẽa for 1 � a < n acting on rigged configurations in
RC(L) were defined.

Definition 4.10. (See [22, Definition 3.3].)

(1) Define ẽa(ν, J ) by removing a box from a string of length k in (ν, J )(a) leaving all colabels
fixed and increasing the new label by one. Here k is the length of the string with the smallest
negative rigging of smallest length. If no such string exists, ẽa(ν, J ) is undefined.

(2) Define f̃a(ν, J ) by adding a box to a string of length k in (ν, J )(a) leaving all colabels fixed
and decreasing the new label by one. Here k is the length of the string with the smallest
nonpositive rigging of largest length. If no such string exists, add a new string of length
one and label −1. If the result is not a valid unrestricted rigged configuration f̃a(ν, J ) is
undefined.

Example 4.11. Let L be the multiplicity array of B = B1,3 ⊗ B3,2 ⊗ B2,1 and let

(ν, J ) = −3
−1

0
1

−1
−1

∈ RC(L).

Then

f̃3(ν, J ) = −3
−1

1
1

−2
−1

and

ẽ3(ν, J ) = −3
−1

−1
0

1.

Define ϕ̃a(ν, J ) = max{k � 0 | f̃a(ν, J ) 	= 0} and ε̃a(ν, J ) = max{k � 0 | ẽa(ν, J ) 	= 0}. The
following lemma is proven in [22].

Lemma 4.12. (See [22, Lemma 3.6].) Let (ν, J ) ∈ RC(L). For fixed a ∈ {1,2, . . . , n − 1}, let
p = p

(a)
i be the vacancy number for large i and let s � 0 be the smallest nonpositive label in

(ν, J )(a); if no such label exists set s = 0. Then ϕ̃a(ν, J ) = p − s.
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Theorem 4.13. Let B = Brk,sk ⊗· · ·⊗Br1,s1 and L the multiplicity array of B . Then the following
diagrams commute:

P(B)
Φ−−−−→ RC(L)

fa

⏐⏐� ⏐⏐�f̃a

P(B) −−−−→
Φ

RC(L)

P(B)
Φ−−−−→ RC(L)

ea

⏐⏐� ⏐⏐�ẽa

P(B) −−−−→
Φ

RC(L).

(4.1)

The proof of Theorem 4.13 is given in Appendix C. Note that Proposition 4.7 and Theo-
rem 4.13 imply that the operators f̃a, ẽa give a crystal structure on RC(L). In [22] it is shown
directly that f̃a and ẽa define a crystal structure on RC(L).

4.5. Proof of Theorem 4.1

By Proposition 4.7 Φ is a bijection which proves the first part of Theorem 4.1. By The-
orem 4.13 the operators f̃a and ẽa give a crystal structure on RC(L) induced by the crystal
structure on P(B) under Φ . The highest weight elements are given by the usual rigged configu-
rations and highest weight paths, respectively, for which Theorem 4.1 is known to hold by [14].
The energy function

←−
D is constant on classical components. By [22, Theorem 3.9] the statistics

cc on rigged configurations is also constant on classical components. Hence Φ preserves the
statistic.

4.6. Implementation

The bijection Φ and its inverse have been implemented as a C++ program. The code is avail-
able in [4]. In early stages of this project these programs have been invaluable to produce data
and check conjectures regarding the unrestricted rigged configurations. The programs have also
been incorporated into MuPAD-Combinat as a dynamic module by Francois Descouens [18]. For
example, the command

riggedConfigurations::RcPathsEnergy::

fromOnePath([[[3]],[[2],[1]],[[4,5,6],[1,2,3]]])

calculates Φ(b) with b as in Example 4.8.

Appendix A. Proof of Propositions 4.3 and 4.5

Propositions 4.3 and 4.5 state that δ is a well-defined bijection. Since the proofs are similar we
only give the proof of Proposition 4.3. The proof of Proposition 4.5 is available in the electronic
version of this paper math.CO/0509194 or Chapter 2 of [4].

To prove that δ is well defined it needs to be shown that (ν̄, J̄ ) = δ(ν, J ) ∈ RC(L̄, λ̄). Here L̄

is given by L̄
(1)
1 = L

(1)
1 − 1, L̄

(a)
i = L

(a)
i for all other i, a, and λ̄ = λ − εr where r = rk(ν, J ).

Let us first show that λ̄ indeed has nonnegative entries. Assume the contrary that λ̄r < 0.
This can happen only if λr = 0. Suppose t ∈ A(λpart) is such that M

(k)
j (t) � p

(k)
j (ν) for all

j, k. By (3.3), p
(r)
i (ν) = −λr+1 for large i. Let � be the size of the largest part in ν(r), so that

m
(r)

(ν) = 0 for j > �. By definition of vacancy numbers, p
(r)

(ν) � p
(r)

(ν) for i � j � �. Also
j i j
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we have M
(r)
j (t) � −λr+1 for all j . Hence, −λr+1 � M

(r)
j (t) � p

(r)
j (ν) � p

(r)
i (ν) = −λr+1

implies

M
(r)
i (t) = M

(r)
j (t) = p

(r)
j (ν) = p

(r)
i (ν) for all � � j � i. (A.1)

This means that the string of length � in (ν, J )(r) is singular and Δp
(r)
j (t) = 0 for all j � �. We

claim that m
(r−1)
j (ν) = 0 for j > �. By (3.6) we get

S := −χ(j ∈ t·,r ) + χ(j ∈ t·,r+1) + χ(j + 1 ∈ t·,r ) − χ(j + 1 ∈ t·,r+1)

� m
(r−1)
j (ν) + m

(r+1)
j (ν)

for j > �. Clearly, m
(r−1)
j (ν) = 0 unless 1 � S � 2. If S = 2 we have j + 1 ∈ t·,r and j ∈ t·,r+1

which implies M
(r)
j (t) = M

(r)
j+1(t) + 1, a contradiction to (A.1). Hence S = 2 is not possible.

Similarly, we can show that S = 1 is not possible. This proves that m
(r−1)
j (ν) = 0 for j > �.

Hence �(r−1) � � which contradicts the assumption that r = rk(ν, J ) since (ν, J )(r) has a singular
string of length �. Therefore λr > 0.

It remains to show that (ν̄, J̄ ) is admissible, which means that the parts of J̄ lie between the
corresponding lower bound for some t̄ ∈A(λ̄part) and the vacancy number. To prove this we need
the following preliminary results.

Remark A.1. Let (ν, J ) be admissible with respect to t ∈ A(λpart). Suppose that Δp
(k)
i−1(t) +

Δp
(k)
i+1(t) � 1 and Δp

(k)
i (t) = m

(k)
i (ν) = 0. Then by (3.6) there are five choices for the letters i

and i + 1 in columns k and k + 1 of t :

(1) i + 1 in column k;
(2) i + 1 in column k and k + 1, i in column k + 1;
(3) i in column k + 1;
(4) i in column k and k + 1, i + 1 in column k;
(5) i + 1 in column k, i in column k + 1.

In cases (1) and (2) we have m
(k−1)
i (ν) = 0. Changing letter i + 1 to i in column k to form a

new tableau t ′ has the effect M
(k)
i (t ′) = M

(k)
i (t) − 1, M

(k−1)
i (t ′) = M

(k−1)
i (t) + 1 and all other

lower bounds remain unchanged. In cases (3) and (4) we have m
(k+1)
i (ν) = 0. Changing letter

i to i + 1 in column k + 1 to form a new tableau t ′ has the effect M
(k)
i (t ′) = M

(k)
i (t) − 1,

M
(k+1)
i (t ′) = M

(k+1)
i (t) + 1 and all other lower bounds remain unchanged. Finally in case (5)

either m
(k−1)
i (ν) = 0 or m

(k+1)
i (ν) = 0. Changing i + 1 to i in column k (respectively i to i + 1

in column k + 1) has the same effect as in case (1) (respectively case (3)).
This shows that under the replacement t �→ t ′ we have Δp

(k)
i (t ′) > 0 and by Lemma 3.6 (ν, J )

is admissible with respect to some tableau t ′′.

Let λ be a weight such that λr > 0 for a given 1 � r � n. Set λ̄ = λ − εr . Recall that ck =
λk+1 + λk+2 + · · · + λn is the height of the kth column of t ∈ A(λpart). Let us define the map
Dr :A(λpart) → A(λ̄part) with t̄ = Dr (t) as follows. If t1,r < cr−1 then

t̄i,k =
{

ti+1,k for 1 � k � r − 1 and 1 � i < ck ,
(A.2)
ti,k for r � k � n and 1 � i � ck .
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If t1,r = cr−1 then there exists 1 � j � cr such that ti,r = ti−1,r − 1 for 2 � i � j and tj+1,r <

tj,r − 1 if j < cr . In this case

t̄i,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ti+1,k for 1 � k � r − 1 and 1 � i < ck ,

ti,r − 1 for k = r and 1 � i � j ,

ti,r for k = r and j < i � cr ,

ti,k for r < k � n and 1 � i � ck .

(A.3)

Note that by definition the entries of Dr (t) are strictly decreasing along columns. Let c̄k =
λ̄k+1 + · · · + λ̄n. Then we have c̄k = ck − 1 for 1 � k � r − 1 and c̄k = ck for r � k � n. Again
by definition t̄j,1 ∈ {1,2, . . . , c̄1} for all 1 � j � c̄1 and t̄j,k ∈ {1,2, . . . , c̄k−1} for all 2 � j � c̄k

and 1 � k � n. Therefore, Dr (t) ∈ A(λ̄part).

Example A.2. Let t =
3 3 2
2 1
1

and r = 3. Then Dr (t) = 2 1 1
1

.

We will use the following lemma and remark in the proofs.

Lemma A.3. Let B = Brl,sl ⊗ · · · ⊗ Br1,s1 with rl = 1 = sl . Let (ν̄, J̄ ) = δ(ν, J ) and let
rk(ν, J ) = r . For 1 < k < r let i = t1,k . Then one of the following conditions hold:

(1) m
(k)
i (ν) = 0, or

(2) m
(k)
i (ν) = 1, in which case δ selects the part of length i in ν(k).

Proof. Note that i = t1,k � ck . By (3.2) we have |ν(k)| � ck , so that either m
(k)
i (ν) = 0 or i = ck

and ν(k) consists of just one part of size i. In this case m
(k)
i (ν) = 1 and δ has to select this single

part. �
Remark A.4. By (3.2) we have

∣∣ν(r)
∣∣ = ∣∣ν(r−1)

∣∣ − λr +
∑
i�1

siχ(ri � r),

∣∣ν(r+1)
∣∣ = ∣∣ν(r−1)

∣∣ − λr − λr+1 + 2
∑
i�1

siχ(ri � r) −
∑
i�1

siδri ,r .

Note that for a > 0∑
i�1

min(a, i)L
(r)
i =

∑
i�1

siχ(si � a)δri ,r +
∑
i�1

aχ(si > a)δri ,r .

Then if |ν(r−1)| = cr−1 − k for some k � 0 it follows that

−2
∣∣ν(r)

∣∣ + ∣∣ν(r+1)
∣∣ +

∑
i�1

min(a, i)L
(r)
i = −2λr+1 − cr+1 + k −

∑
i�1

max(si − a,0)δri ,r .

Now we are ready to show that (ν̄, J̄ ) is admissible, which means that the parts of J̄ lie
between the corresponding lower bound for some t̄ ∈ A(λ̄part) and the vacancy number. Let
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t ∈ A(λpart) be such that (ν, J ) is admissible with respect to t . By the same arguments as in the
proof of Proposition 3.12 of [14] the only problematic case is when

m
(k)
�−1(ν) = 0, Δp

(k)
�−1(t) = 0, �(k−1) < � and � finite, (A.4)

where � = �(k).
Assume that Δp

(k)
�−2(t) + Δp

(k)
� (t) � 1 and (A.4) holds. By Remark A.1 with i = � − 1, there

exists a new tableau t ′ such that Δp
(k)
�−1(t

′) > 0 so that the problematic case is avoided.

Hence assume that Δp
(k)
�−2(t)+Δp

(k)
� (t) = 0 and (A.4) holds. Let �′ < � be maximal such that

m
(k)

�′ (ν) > 0. If no such �′ exists, set �′ = 0.

Suppose that there exists �′ < j < � such that Δp
(k)
j−1(t) > 0. Let i be the maximal such j .

Then by Remark A.1 we can find a new tableau t ′ such that Δp
(k)
i (t ′) > 0 and (ν, J ) is admis-

sible with respect to t ′. Repeating the argument we can achieve Δp
(k)
�−1(t

′′) > 0 for some new
tableau t ′′, so that the problematic case does not occur.

Hence we are left to consider the case Δp
(k)
i (t) = 0 for all �′ � i � �. If m

(k−1)
i (ν) = 0 for all

�′ < i < �, then by the same arguments as in the proof of Proposition 3.12 of [14] we arrive at a
contradiction since �(k−1) � �′, but the string of length �′ in (ν, J )(k) is singular which implies
that �(k) � �′ < �. Hence there must exist �′ < i < � such that m

(k−1)
i (ν) > 0 and �(k−1) = i. By

(3.6) the same five cases as in Remark A.1 occur as possibilities for the letters i and i + 1 in
columns k and k + 1 of t . In cases (3), (4) and case (5) if m

(k−1)
i (ν) = 2, we have m

(k+1)
i (ν) = 0.

Replace i in column k + 1 by i + 1 in t to get a new tableau t ′. In all other cases m
(k−1)
i (ν) = 1;

replace the letter i + 1 in column k by i to obtain t ′. The replacement t �→ t ′ yields Δp
(k)
i (t ′) > 0

in all cases. The change of lower bound M
(k−1)
i (t ′) = M

(k−1)
i (t)+1 in cases (1), (2) and (5) when

m
(k−1)
i (ν) 	= 2 will not cause any problems since m

(k−1)
i (ν) = 1 so that after the application of δ

there is no part of length i in the (k − 1)th rigged partition. Then again repeated application of
Remark A.1 achieves Δp

(k)
�−1(t

′′) > 0 for some tableau t ′′, so that the problematic case does not
occur.

Let t ′′ be the tableau we constructed so far. Note that in all constructions above, either a letter
i + 1 in column k is changed to i, or a letter i in column k + 1 is changed to i + 1. In the latter
case i + 1 � � � |ν(k)| � ck . Hence t ′′ satisfies the constraint that t ′′i,k ∈ {1,2, . . . , ck−1} for all
i, k.

Now let t̄ = Dr (t
′′). We know t̄ ∈ A(λ̄part). We will show that the parts of J̄ lie between the

corresponding lower bound with respect to t̄ ∈ A(λ̄part) and the vacancy number.
If t ′′1,r < cr−1 then by Lemma A.3 M

(k)
i (t̄) � M

(k)
i (t ′′) for all k and i such that m

(k)
i (ν̄) > 0.

Hence by Lemma 3.6 we have that (ν̄, J̄ ) is admissible with respect to t̄ .
Let t ′′1,r = cr−1. Then there exists j as in the definition of Dr . We claim that

(i) m
(r−1)
i (ν) = 0 for i > cr−1 − j and m

(r−1)
cr−1−j (ν) � 1,

(ii) if m
(r−1)
cr−1−j (ν) = 1, then �(r−1) = cr−1 − j .

Note that M
(r−1)
i (t̄ ) = M

(r−1)
i (t ′′) + 1 for cr−1 − j � i < cr−1 and M

(k)
i (t̄) � M

(k)
i (t ′′) for

all other k and i such that m
(k)

(ν̄) > 0. Hence if the claim is true using Lemma A.3 we have
i
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M
(k)
i (t̄) � M

(k)
i (t ′′) for all k and i such that m

(k)
i (ν̄) > 0. Therefore by Lemma 3.6 we have that

(ν̄, J̄ ) is admissible with respect to t̄ .
It remains to prove the claim. Note that if |ν(r−1)| < cr−1 − j then our claim is trivially true.

Let |ν(r−1)| = cr−1 − k for some 0 � k � j . If all parts of ν(r−1) are strictly less than cr−1 − j ,
again our claim is trivially true. Let the largest part in ν(r−1) be cr−1 − p � cr−1 − j for some
k � p � j . Let a be the largest part in ν(r).

First suppose a > cr−1 − p and a = cr − q for some 0 � q < cr . Then a = cr−1 − (λr + q)

which implies that

M(r)
a (t ′′) � −(cr − λr − q) + (cr+1 − q) = λr − λr+1.

This means p
(r)
a (ν) � M

(r)
a (t ′′) since p

(r)
b (ν) � p

(r)
a (ν) for all b � a and p

(r)
b = λr − λr+1 for

large b. If p
(r)
a (ν) < M

(r)
a (t ′′), it contradicts that p

(r)
a (ν) � M

(r)
a (t ′′). If p

(r)
a (ν) = M

(r)
a (t ′′), it

contradicts the fact that r = rk(ν, J ) since we get a singular part of length a in ν(r) which is
larger than the largest part in ν(r−1). Therefore a > cr−1 − p is not possible.

Hence a � cr−1 − p. Using Remark A.4 we get,

p(r)
a (ν) = Qa

(
ν(r−1)

) − 2
∣∣ν(r)

∣∣ + Qa

(
ν(r+1)

) +
∑
i�1

min(a, i)L
(r)
i

� a + p − k − 2
∣∣ν(r)

∣∣ + ∣∣ν(r+1)
∣∣ +

∑
i�1

min(a, i)L
(r)
i

= a + p − 2λr+1 − cr+1 −
∑
i�1

max(si − a,0)δri ,r . (A.5)

Since p
(r)
a (ν) � M

(r)
a (t ′′) � −λr+1 we get

cr −
(

p −
∑
i�1

max(si − a,0)δri ,r

)
� a � cr .

Hence a = cr − q for 0 � q � p − ∑
i�1 max(si − a,0)δri ,r . Then from (A.5) with a = cr − q

we get

p(r)
a (ν) � p − q − λr+1 −

∑
i�1

max(si − a,0)δri ,r � λr − λr+1, (A.6)

where we used that 0 � p − q � λr which follows from a = cr − q � cr−1 − p.
If a > cr−1 − j , as in the case a > cr−1 − p we have

M(r)
a (t ′′) � −(cr − λr − q) + (cr+1 − q) = λr − λr+1 � p(r)

a (ν).

Hence we get a contradiction unless p
(r)
a (ν) = M

(r)
a (t ′′). By (A.6) and the fact that 0 � p − q �

λr we know p
(r)
a (ν) = λr −λr+1 happens only when p−q = λr and

∑
i�1 max(si −a,0)δri ,r =

0. This means the largest part in ν(r−1) is of length cr−1 − p = cr − q = a. Since we have a
singular string of length a in ν(r) this contradicts the fact that r = rk(ν, J ).

If a � cr−1 − j then M
(r)
a (t ′′) � −(cr − j) + (cr+1 − q) = j − q − λr+1 � p

(r)
a (ν) because

of (A.6) and the fact that j � p. Again we get a contradiction unless p
(r)
a (ν) = M

(r)
a (t ′′). But

this happens only when p
(r)
a (ν) = j − q − λr+1 which gives p = j because p

(r)
a (ν) attains the

right-hand side of (A.6). This means the largest part in ν(r−1) is cr−1 − j . Furthermore, for large
i we have p

(r) = λr − λr+1 � j − q − λr+1 + (cr−1 − j − a) = λr − λr+1 which shows that
i



1454 L. Deka, A. Schilling / Journal of Combinatorial Theory, Series A 113 (2006) 1435–1461
besides cr−1 − j all parts in ν(r−1) have to be less than or equal to a. But the part of length a in
ν(r) is singular, so we have to have cr−1 − j > a and �(r−1) = cr−1 − j else it will contradict the
fact that r = rk(ν, J ). This proves our claim.

Hence (ν̄, J̄ ) is admissible with respect to t̄ ∈ A(λ̄part) and therefore δ is well defined.

Example A.5. Let L be the multiplicity array of B = (B1,1)⊗4 and λ = (0,1,0,1,2). Let

(ν, J ) = −1
2

0
0

−1
−1

−1 ∈ RC(L,λ).

Let

t =
4 4 3 3
3 2 2 2
2 1 1
1

be the corresponding lower bound tableau. Then

δ(ν, J ) = −1 0 −1 −1.

Note that in this example � = �(4) = 2 and it satisfies (A.4) with k = 4. Also Δp
(4)
�−2(t) +

Δp
(4)
� (t) = 0 with Δp

(4)
i (t) = 0 for all 0 � i � �. Since m

(3)
1 (ν) = 1 and 2 ∈ t.,4 this is an ex-

ample where we get the new tableau t ′ by replacing the 2 ∈ t.,4 by 1 and then the corresponding
lower bound tableau for δ(ν, J ) is

D5(t
′) =

3 2 2 1
2 1 1
1

.

Appendix B. Proof of Proposition 4.7

In this section a proof of Proposition 4.7 is given stating that the map Φ of Definition 4.6 is a
well-defined bijection.

The proof proceeds by induction on B using the fact that it is possible to go from B = Brk,sk ⊗
Brk−1,sk−1 ⊗ · · · ⊗ Br1,s1 to the empty crystal via successive application of lh, ls and lb. Suppose
that B is the empty crystal. Then both sets P(B,λ) and RC(L,λ) are empty unless λ is the
empty partition, in which case P(B,λ) consists of the empty partition and RC(L,λ) consists
of the empty rigged configuration. In this case Φ is the unique bijection mapping the empty
partition to the empty rigged configuration.

Consider the commutative diagram (4.6) of Definition 4.6. By induction

Φ:
⋃

μ∈λ−
P

(
lh(B),μ

) →
⋃

μ∈λ−
RC

(
lh(L),μ

)

is a bijection. By Propositions 4.3 and 4.5 δ is a bijection, and by definition it is clear that lh is a
bijection as well. Hence Φ = δ−1 ◦ Φ ◦ lh is a well-defined bijection.

Suppose that B = Br,1 ⊗ B ′ with r � 2. By induction Φ is a bijection for lb(B) = B1,1 ⊗
Br−1,1 ⊗ B ′. Hence to prove that (4.6) uniquely determines Φ for B it suffices to show that
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Φ restricts to a bijection between the image of lb :P(B,λ) → P(lb(B),λ) and the image of
lbrc : RC(L,λ) → RC(lb(L),λ). Let

b = br ⊗
b1
...

br−1

⊗ b′ ∈ P
(
lb(B),λ

)

with br−1 < br . Let (ν, J ) = Φ(b) which is in RC(lb(L),λ). We will show that (ν, J )(a) has a
singular string of length one for 1 � a � r − 1.

By induction we know for (ν̄, J̄ ) = Φ(b̄) where

b̄ = br−1 ⊗
b1
...

br−2

⊗ b′ ∈ lb
(
Br−1,1 ⊗ B ′)

with br−2 < br−1, (ν̄, J̄ )(a) has a singular string of length one for 1 � a � r − 2. Let

b̄′ =
b1
...

br−1

⊗ b′ and (ν̄′, J̄ ′) = Φ(b̄′).

This “unsplitting” on the rigged configuration side removes the singular string of length one from
(ν̄, J̄ )(a) for 1 � a � r − 2 yielding (ν̄′, J̄ ′).

Let s̄(a) be the length of the selected strings by δ−1 associated with br−1. Note that s̄(a) = 0
for 1 � a � r −2. Now let s(a) be the selected strings by δ−1 associated with br . Since br−1 < br

we have by construction that s(a+1) � s̄(a). In particular s(r−1) � s̄(r−2) = 0 and therefore,
s(r−1) = 0. This implies that s(a) = 0 for 1 � a � r − 1. Hence (ν, J )(a) has a singular string
of length one for 1 � a � r − 1.

Conversely, let (ν, J ) ∈ lbrc(RC(L,λ)), that is, (ν, J )(a) has singular string of length one for
1 � a � r − 1. Let

b = Φ−1(ν, J ) = br ⊗
b1
...

br−1

⊗ b′ ∈P
(
lb(B),λ

)
.

We want to show that br−1 < br . Let (ν̄, J̄ ) = δ(ν, J ) and �(a) be the length of the selected string
in (ν, J )(a) by δ. Then �(a) = 1 for 1 � a � r −1 and the change of vacancy numbers from (ν, J )

to (ν̄, J̄ ) is given by

p
(a)
i (ν̄) = p

(a)
i (ν) − χ

(
�(a−1) � i < �(a)

) + χ
(
�(a) � i < �(a+1)

)
. (B.1)

This implies that (ν̄, J̄ )(r−1) has no singular string of length less than �(r) since �(r−1) = 1. Let
(ν̄′, J̄ ′) = lbrc(ν̄, J̄ ). Denote by �̄(a) the length of the singular string selected by δ in (ν̄′, J̄ ′)(a).
Then by induction �̄(a) = 1 for 1 � a � r − 2 and by (B.1) we get �̄(a) � �(a+1) for a � r − 1.
Therefore �̄(a) � �(a+1) for all 1 � a � n. Hence br−1 < br . This proves that Φ in (3) is uniquely
determined.

Let us now consider the case B = Br,s ⊗ B ′ where s � 2. Any map Φ satisfying (2) is in-
jective by definition and unique by induction. To prove the existence and surjectivity it suffices
to prove that the bijection Φ maps the image of ls :P(B,λ) → P(ls(B),λ) to the image of
lsrc : RC(L,λ) → RC(ls(L),λ). This can be done by similar arguments as in [14]. Details are
available in the electronic version of this paper math.CO/0509194 or Chapter 2 of [4].
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Appendix C. Proof of Theorem 4.13

In this section we prove that the crystal operators on paths and rigged configurations commute
with the bijection Φ .

The following lemma is a result of [14, Lemma 3.11] about the convexity of the vacancy
numbers.

Lemma C.1 (Convexity). Let (ν, J ) ∈ RC(L):

(1) For all i, k � 1 we have −p
(i)
k−1(ν)+2p

(i)
k (ν)−p

(i)
k+1(ν) � m

(i−1)
k (ν)−2m

(i)
k (ν)+m

(i+1)
k (ν).

(2) Let m
(i)
k (ν) = 0 for a < k < b. Then p

(i)
k (ν) � min(p

(i)
a (ν),p

(i)
b (ν)).

(3) Let m
(i)
k (ν) = 0 for a < k < b. If p

(i)
a (ν) = p

(i)
a+1(ν) and p

(i)
a+1(ν) � p

(i)
b (ν) then p

(i)
a+1(ν) =

p
(i)
k (ν) for all a � k � b.

(4) Let m
(i)
k (ν) = 0 for a < k < b. If p

(i)
b (ν) = p

(i)
b−1(ν) and p

(i)
b−1(ν) � p

(i)
a (ν) then p

(i)
b−1(ν) =

p
(i)
k (ν) for all a � k � b.

Proof. The proof of (1) is given in [15, Appendix] (see also (3.5)), (2) follows from repeated use
of (1), and the proof of (3) and (4) follow from (1) and (2). �
Lemma C.2. Let B = B1,1 ⊗ B ′ and let L and L′ be the multiplicity arrays of B and B ′. For
1 � i < n the following diagrams commute if f̃i is always defined:

RC(L)
δ−−−−→ RC(L′)

f̃i

⏐⏐� ⏐⏐�f̃i

RC(L) −−−−→
δ

RC(L′)

RC(L)
δ−−−−→ RC(L′)

ẽi

⏐⏐� ⏐⏐�ẽi

RC(L) −−−−→
δ

RC(L′)

(C.1)

Proof. We prove (C.1) for f̃i here; the proof for ẽi is similar. Let us introduce some notation.
Let (ν, J ) ∈ RC(L) and let �(a) be the length of the singular string selected by δ in (ν, J )(a)

for 1 � a < n. Let (ν̄, J̄ ) = δ(ν, J ) and (ν̃, J̃ ) = f̃i (ν, J ). Let �̃(a) be the length of the singular
string selected by δ in (ν̃, J̃ )(a) for 1 � a < n and � (respectively �̄) be the length of the string
selected by f̃i in (ν, J )(i) (respectively in (ν̄, J̄ )(i)). A string of length k and label xk in (ν, J )(a)

is denoted by (k, xk).
Using the definition of f̃i it is easy to see that the diagram (C.1) commutes trivially except

when �(i−1) − 1 � � � �(i). We list the nontrivial cases as follows:

(a) �(i−1) < ∞, �(i) = ∞, � + 1 � �(i−1).
(b) �(i) < ∞, �(i−1) � � + 1 � �(i).
(c) �(i) < ∞ and �(i) = �.

Note that since f̃i fixes all the colabels, the singular strings (except the new string of length �+1)
remain singular under the action of f̃i . Let (�, x�) be the string selected by f̃i in (ν, J )(i). The
new string of length � + 1 can be singular in (ν̃, J̃ )(i) only if p

(i)
�+1(ν) = x� + 1. Also note that

by the definition of f̃i if m
(i)

(ν) > 0 and (k, xk) is a string in (ν, J )(i) then
k
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x� < xk � p
(i)
k (ν), if k > �,

x� � xk � p
(i)
k (ν), if k < �. (C.2)

Let us now consider all the nontrivial cases.
Case (a): If the new string of length � + 1 in (ν̃, J̃ )(i) is nonsingular, then (C.1) commutes

trivially. Let us consider the case when the new string of length � + 1 in (ν̃, J̃ )(i) is singular.
We have p

(i)
�+1(ν) = x� + 1 and since �(i−1) < ∞, �(i) = ∞ we have p

(i)
j (ν̄) = p

(i)
j (ν) − 1 for

j � �(i−1). In particular p
(i)
�+1(ν̄) = p

(i)
�+1(ν) − 1 = x�. The labels in (ν̄, J̄ )(i) are the same as

in (ν, J )(i). Hence �̄ = �, but the result is not a valid rigged configuration since p
(i)
�+1(ν̄) − 2 <

x� − 1. So, f̃i (ν̄, J̄ ) is undefined, which contradicts the assumptions of Lemma C.2.
Cases (b) and (c) can be proved in a similar fashion to [22, Lemma 4.10]. Details are available

in the electronic version of this paper math.CO/0509194 or Chapter 2 of [4]. �
Lemma C.3. Let B = Br,1 ⊗ B ′, r � 2, and let L be the multiplicity array of B . For 1 � i < n

the following diagrams commute:

RC(L)
lbrc−−−−→ RC(lb(L))

f̃i

⏐⏐� ⏐⏐�f̃i

RC(L) −−−−→
lbrc

RC(lb(L))

RC(L)
lbrc−−−−→ RC(lb(L))

ẽi

⏐⏐� ⏐⏐�ẽi

RC(L) −−−−→
lbrc

RC(lb(L))

(C.3)

Proof. Note that if i > r − 1 then the proof of (C.3) is trivial. Suppose 1 � i � r − 1. The proof
for ẽi is very similar to the proof for f̃i , so here we only prove (C.3) for f̃i . Let (ν, J ) ∈ RC(L).
Let (�, x�) be the string selected by f̃i in (ν, J )(i). Let (ν̄, J̄ ) = lbrc(ν, J ). By definition of lbrc

we get (ν̄, J̄ )(k) by adding a singular string of length one to (ν, J )(k) for 1 � k � r − 1. Hence to
show that the diagram (C.3) commutes it suffices to show that the label for the new singular string
of length one in (ν̄, J̄ )(i) satisfies p

(i)
1 (ν̄) � x�. Note that p

(i)
1 (ν̄) = p

(i)
1 (ν) for all 1 � i � r − 1.

If m
(i)
1 (ν) > 0 then x

(i)
1 � x� by (C.2). So, p

(i)
1 (ν̄) = p

(i)
1 (ν) � x

(i)
1 � x�. If m

(i)
1 (ν) = 0 let

j be smallest such that m
(i)
j (ν) > 0 and (j, xj ) be a string in (ν, J )(i). By Lemma C.1(2) we

get p
(i)
1 (ν) � min(p

(i)
0 (ν),p

(i)
j (ν)). Recall that p

(i)
0 (ν) = 0 and x� � 0 by the definition of f̃i .

So, if p
(i)
j (ν) � 0 then p

(i)
j (ν̄) = p

(i)
1 (ν) � 0 � x�. If p

(i)
j (ν) < 0 then p

(i)
1 (ν) � p

(i)
j (ν). But

p
(i)
j (ν) � xj � x�. Hence p

(i)
1 (ν̄) = p

(i)
1 (ν) � p

(i)
j (ν) � x� and we are done. �

Lemma C.4. Let B = Br,s ⊗ B ′, r � 1, s � 2, and let L be the multiplicity array of B . For
1 � i < n the following diagrams commute:

RC(L)
lsrc−−−−→ RC(ls(L))

f̃i

⏐⏐� ⏐⏐�f̃i

RC(L) −−−−→
lsrc

RC(ls(L))

RC(L)
lsrc−−−−→ RC(ls(L))

ẽi

⏐⏐� ⏐⏐�ẽi

RC(L) −−−−→
lsrc

RC(ls(L))

(C.4)

Proof. Let (ν, J ) ∈ RC(L). By definition lsrc only changes the vacancy numbers in (ν, J )(r).
Hence the proof of this lemma is trivial. �
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Now we will prove Theorem 4.13.

Proof of Theorem 4.13. To prove this theorem we will use a diagram of the form

• F

G

•

H

• •

• •

•
K

g

•
We view this diagram as a cube with front face given by the large square. By [14, Lemma 5.3] if
the squares given by all the faces of the cube except the front commute and the map g is injective
then the front face also commutes.

We will prove Theorem 4.13 by using induction on B as we did in the proof of the bijection
of Proposition 4.7. First let B = B1,1 ⊗ B ′. We prove Theorem 4.13 for f̃i by using Lemma C.2
and the following diagram when fi and f̃i are defined:

P(B)
Φ

fi

lh

RC(L)

f̃i

δ

P(B ′) Φ

fi

RC(L′)

f̃i

P(B ′) Φ RC(L′)

P(B)
Φ

lh

RC(L)

δ

Note the top and the bottom faces commute by Definition 4.6(1). The right face commutes by
Lemma C.2. The left face commutes by definition of fi on the paths and we know lh is injective.
By induction hypothesis the back face commutes. Hence the front face must commute.

Let us now prove Theorem 4.13 when not all fi (respectively f̃i ) in the above diagram are
defined. Let (ν, J ) ∈ RC(L), (ν̄, J̄ ) = δ(ν, J ), b = Φ−1(ν, J ) and b′ = Φ−1(ν̄, J̄ ). We need to
show the following cases:

(1) fi(b) is defined and fi(b
′) is undefined if and only if f̃i (ν, J ) is defined and f̃i (ν̄, J̄ ) is

undefined. In addition Φ(fi(b)) = f̃i (ν, J ).
(2) fi(b) is undefined and fi(b

′) is defined if and only if f̃i (ν, J ) is undefined and f̃i (ν̄, J̄ ) is
defined.

(3) fi(b) and fi(b
′) are both undefined if and only if f̃i (ν, J ) and f̃i (ν̄, J̄ ) are both undefined.

For case (1) suppose that f̃i (ν, J ) = (ν̃, J̃ ) is defined, but f̃i (ν̄, J̄ ) is undefined. Then we are
in the situation described in case (a) of Lemma C.2. That is �(i−1) < ∞, �(i) = ∞, �+ 1 � �(i−1)

and the new string of length � + 1 is singular in (ν̃, J̃ )(i). In this situation note that m
(i)

(ν̄) = 0,
�+1
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else p
(i)
�+1(ν̄) � x�+1 > x� by (C.2), which is a contradiction to p

(i)
�+1(ν̄) = x� as discussed in

case (a) of Lemma C.2. Suppose j > � be smallest such that m
(i)
j (ν̄) > 0. Then

p
(i)
j (ν̄) � xj > x� = p

(i)
�+1(ν̄). (C.5)

By Lemma C.1(2), p
(i)
�+1(ν̄) � min(p

(i)
� (ν̄),p

(i)
j (ν̄)). By (C.5) this implies p

(i)
�+1(ν̄) � p

(i)
� (ν̄).

But x� = p
(i)
�+1(ν̄) � p

(i)
� (ν̄) � x�, hence we get p

(i)
�+1(ν̄) = p

(i)
� (ν̄). Again by Lemma C.1(3)

since m
(i)
k (ν̄) = 0 for � < k < j we get p

(i)
�+1(ν̄) = p

(i)
j (ν̄) which contradicts (C.5). Hence

m
(i)
j (ν̄) = 0 for j > �. Also by Lemma C.1(1) p

(i)
�+1(ν̄) = p

(i)
� (ν̄) with m

(i)
j (ν̄) = 0 for j > �

implies that m
(i+1)
j (ν̄) = 0 for j > �. Since ν̄(i+1) and ν̃(i+1) have the same shape we get

m
(i+1)
j (ν̃) = 0 for j > �. Hence �̃(a) = �(a) for 1 � a � i −1, �̃(i) = �+1 and �̃(i+1) = ∞. There-

fore we proved that if Φ−1(ν̄, J̄ ) = b′ ∈ B ′ then Φ−1(ν, J ) = i ⊗ b′ and Φ−1(ν̃, J̃ ) = i + 1 ⊗ b′.
But f̃i (ν̄, J̄ ) = 0 implies fi(Φ

−1(ν̄, J̄ )) = 0 since by induction we have that Φ−1 ◦ f̃i = fi ◦Φ−1

for B ′. Hence fi(Φ
−1(ν, J )) = Φ−1(ν̃, J̃ ) = Φ−1(f̃i(ν, J )), so that indeed fi(b) is defined,

fi(b
′) and Φ(fi(b)) = f̃i (ν, J ).

Now suppose that fi(b) is defined and fi(b
′) is undefined. This implies that b = i ⊗ b′. By

induction f̃i (ν̄, J̄ ) is undefined so that by Lemma 4.12 we have p̄ = s̄ where p̄ = p
(i)
j (ν̄) for

large j and s̄ is the smallest label occurring in (ν̄, J̄ )(i). Since b is obtained from b′ by adding i

it follows that the vacancy numbers change as p := p
(i)
j (ν) = p̄+1 for large j under δ−1 and the

new smallest label occurring in (ν, J )(i) is s = s̄. Hence ϕ̃i (ν, J ) = p − s = 1, so that f̃i (ν, J )

is defined. It remains to prove that Φ(fi(b)) = f̃i (ν, J ). Note that fi(b) = i + 1 ⊗ b′. Let � be
the length of the largest part in (ν̄, J̄ )(i). Suppose that ν̄(i−1) or ν̄(i+1) has a part strictly bigger
than �. In this case p

(i)
� (ν̄) < p̄ = s̄ contradicting the fact that s̄ � p

(i)
� (ν̄) is the smallest label

occurring in (ν̄, J̄ )(i). Hence both ν̄(i−1) and ν̄(i+1) have only parts of length less or equal to �.
Also by Lemma 3.6 we have p

(i)
� (ν̄) = s̄ = s which shows that both δ−1 adding i + 1 and f̃i pick

the string of length � in (ν̄, J̄ )(i). Hence Φ(fi(b)) = f̃i (ν, J ).
Let us now consider case (2). Suppose that f̃i (ν, J ) is undefined and f̃i (ν̄, J̄ ) is defined.

Again by Lemma 4.12 we have that p = s where p = p
(i)
j (ν) for large j and s is the smallest

label in (ν, J )(i). If rk(ν, J ) < i+1, then s is still the smallest label in (ν̄, J̄ ) and by the change in
vacancy numbers p̄ � p. Hence by Lemma 4.12 ϕ̃i (ν̄, J̄ ) = p̄− s � 0 contradicting that f̃i (ν̄, J̄ )

is defined. Hence we must have rk(ν, J ) � i + 1. In fact we want to show that rk(ν, J ) = i + 1.
Suppose rk(ν, J ) > i + 1. Then by the change in vacancy numbers by δ we have p̄ = p = s,
so that ϕ̃i (ν̄, J̄ ) = s − s̄. So to achieve ϕ̃i (ν̄, J̄ ) > 0 we need s̄ < s. This can only happen if
p

(i)

�(i)−1
(ν) = s and �(i−1) < �(i). If m

(i)

�(i)−1
(ν) > 0, then the string of length �(i) − 1 is singular.

Since �(i−1) < �(i) this contradicts the fact that δ picks the string of length �(i) in (ν, J )(i). If
m

(i)

�(i)−1
(ν) = 0, by convexity Lemma C.1, we get a similar contradiction. Hence we have that

b = i + 1 ⊗ b. Note that the above arguments also shows that ϕ̃i (ν̄, J̄ ) = 1 since s̄ � s and
p̄ = p − 1 if rk(ν, J ) = i + 1. Hence fi(b) is undefined since ϕi(b

′) = ϕ̃i (ν̄, J̄ ) = 1.
Consider Case (2) where fi(b) is undefined and fi(b

′) is defined. This implies that b = i +
1 ⊗ b′. By induction ϕ̃i (ν̄, J̄ ) = ϕi(b

′) = 1 so that by Lemma 4.12 we have p̄ = s̄ + 1. Hence
ϕ̃i (ν, J ) = p − s = p̄ − 1 − s = s̄ − s by the change of vacancy numbers. Therefore ϕ̃i (ν, J ) = 0
if s̄ = s. It remains to show that p

(i)
�+1(ν) � s̄ where � := s(i) is the length of the string in (ν̄, J̄ )(i)

selected by δ−1. Hence the only problem occurs if p
(i)

(ν̄) = s̄ and s(i−1) < �. If m
(i)

(ν̄) > 0,
�+1 �+1
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this means that there is a singular string of length � + 1 > s(i) in (ν̄, J̄ )(i) contradicting the
maximality of s(i). If m

(i)
�+1(ν̄) = 0 one can again use convexity to arrive at similar contradiction.

By exclusion case (3) follows from all the previous cases where at least one fi or f̃i is defined.
Now let B = Br,1 ⊗ B ′ where r � 2. Consider the following diagram:

P(B)
Φ

fi

lb

RC(L)

f̃i

lbrc

P(lb(B))
Φ

fi

RC(lb(L))

f̃i

P(lb(B))
Φ RC(lb(L))

P(B)
Φ

lb

RC(L)

lbrc

Again the top and the bottom faces commute because of Definition 4.6(3). The right face com-
mutes by Lemma C.3. The left face commutes by definition of fi on the paths and we know lb is
injective. By induction hypothesis the back face commutes too. Hence the front face commutes.

Finally let B = Br,s ⊗ B ′ where s � 2. Consider the following diagram:

P(B)
Φ

fi

ls

RC(L)

f̃i

lsrc

P(ls(B))
Φ

fi

RC(ls(L))

f̃i

P(ls(B))
Φ RC(ls(L))

P(B)
Φ

ls

RC(L)

lsrc

As in the previous cases by Definition 4.6(2), Lemma C.4 and induction hypothesis all the faces
commute except the front. Since the map ls is injective the front face of the above diagram
commutes. This completes the proof of Theorem 4.13. �
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inhomogeneous paths, in: Contemp. Math., vol. 248, 1999, pp. 243–291.

[8] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Y. Yamada, Remarks on fermionic formula, in: Contemp. Math.,
vol. 248, 1999, pp. 243–291.

[9] M. Kashiwara, Crystalizing the q-analogue of universal enveloping algebras, Comm. Math. Phys. 133 (1990) 249–
260.

[10] M. Kashiwara, T. Nakashima, Crystal graphs for representations of the q-analogue of classical Lie algebras, J. Al-
gebra 165 (2) (1994) 295–345.

[11] A.N. Kirillov, New combinatorial formula for modified Hall–Littlewood polynomials, in: Contemp. Math., vol. 254,
2000, pp. 283–333.

[12] S.V. Kerov, A.N. Kirillov, N.Y. Reshetikhin, Combinatorics, the Bethe Ansatz and representations of the symmetric
group, J. Soviet Math. 41 (2) (1988) 916–924.

[13] A.N. Kirillov, N.Y. Reshetikhin, The Bethe Ansatz and the combinatorics of Young tableaux, Zap. Nauchn. Sem.
Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 155 (1986), Differentsialnaya Geometriya, Gruppy Li i Mekh.
VIII 194 (1986) 65–115 (in Russian); translation in J. Soviet Math. 41 (2) (1988) 925–955.

[14] A.N. Kirillov, A. Schilling, M. Shimozono, A bijection between Littlewood–Richardson tableaux and rigged con-
figurations, Selecta Math. (N.S.) 8 (2002) 67–135.

[15] A.N. Kirillov, M. Shimozono, A generalization of the Kostka–Foulkes polynomials, J. Algebraic Combin. 15 (1)
(2002) 27–69.

[16] A. Kuniba, M. Okado, R. Sakamoto, T. Takagi, Y. Yamada, private communication.
[17] A. Lascoux, M.-P. Schützenberger, Sur une conjecture de H.O. Foulkes, C. R. Acad. Sci. Paris Sér. A–B 286 (7)

(1978) A323–A324.
[18] MuPAD-Combinat available at http://www-igm.univ-mlv.fr/~descouen/MuPAD-Combinat/MuPAD-Combinat.

html.
[19] A. Nakayashiki, Y. Yamada, Kostka polynomials and energy functions in solvable lattice models, Selecta Math.

(N.S.) 3 (4) (1997) 547–599.
[20] A. Schilling, q-Supernomial coefficients: From riggings to ribbons, in: MathPhys Odyssey, 2001, in: Prog. Math.

Phys., vol. 23, Birkhäuser Boston, Boston, MA, 2002, pp. 437–454.

[21] A. Schilling, A bijection between type D
(1)
n crystals and rigged configurations, J. Algebra 285 (2005) 292–334.

[22] A. Schilling, Crystal structure on rigged configurations, Int. Math. Res. Not., in press, math.QA/0508107.
[23] A. Schilling, M. Shimozono, Fermionic formulas for level-restricted generalized Kostka polynomials and coset

branching functions, Comm. Math. Phys. 220 (2001) 105–164.
[24] A. Schilling, M. Shimozono, X = M for symmetric powers, J. Algebra 295 (2006) 562–610.
[25] A. Schilling, S.O. Warnaar, Supernomial coefficients, polynomial identities and q-series, Ramanujan J. 2 (1998)

459–494.
[26] A. Schilling, S.O. Warnaar, Inhomogeneous lattice paths, generalized Kostka polynomials and An−1 supernomials,

Comm. Math. Phys. 202 (1999) 359–401.
[27] M. Shimozono, Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent

varieties, J. Algebraic Combin. 15 (2) (2002) 151–187.
[28] T. Takagi, Inverse scattering method for a soliton cellular automaton, Nucl. Phys. B 707 (2005) 577–601.
[29] S.O. Warnaar, The Bailey lemma and Kostka polynomials, J. Algebraic Combin. 20 (2004) 131–171.


