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A short elementary proof of the title is presented. 0 1989 Academic press, IN. 

Fix n > 1 and i, > A2 B . . . 3 &, > 0. The Ith Schur function sn(xl, . . . . x,) 
is an impartant n-variate polynomial which arises in many different areas 
of mathematics. The following “classical” definition as a quotient of two 
n x n determinants is probably the most common definition. It must be the 
oldest, going back to at least 1841 when used by Jacobi: 

Another definition of Schur function, which is very much in style with 
combinatorialists now, views s1 as a generating function for a certain kind 
of tableaux. Use the symbol Iz to also denote the left justified shape with & 
boxes in the ith row. Here a tableau T of shape I will be a placement of 
numbers from (1, 2, . . . . n> (repetition allowed) in the boxes of ;1 such that 
the numbers weakly increase across the rows and strictly increase down the 
columns. If the number of l’s, 2’s, 3’s, . . . occuring in T is p, q, r, . . . . then 
associate the monomial xWCT) = x;xqx; ... to T. It is well known [Lit, 
p. 1911 that 

PROPOSITION. s,(x, , . . . . x,) = CT xWcT), where the sum is over all tableaux 
of shape A. 

Here we present a short proof of this proposition which uses only high 
school algebra. The British mathematical physicist R. C. King and some of 
his associates are familiar with this proof, as other people at other times 
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also may have been. However, we know of no explicit appearances in print, 
and most American combinatorialists seem to believe that representation 
theory or symmetric function theory is necessarily involved in the proof. 
The main step used here is a lemma which can be found on page 391 
of [Wey],‘ where it describes the “branching rule” GL(n)J GL(n - 1). 
However, the GL(n) connection is irrelevant since the lemma comes after 
the reduction of the theory of characters of finite-dimensional represen- 
tations to the theory of Schur functions. Much more difficult analogs of 
this approach have been used to obtain elementary derivations of the 
Gelfand patterns for the symplectic and orthogonal groups [Pro]. 

For the sake of exposition, we will state and prove the lemma in the case 
n=3 and 1,=4, &=2, ,&= 1. 

LEMMA. 

x4+2 
Y 

4+2 z4+2 

X2+l 
Y 

2+1 z2+1 

Xl+O 
Y 1+0 zl+o 

-= 
x2 y2 z2 

x1 yl z1 

x0 y” z” 

ProoJ: Set z = 1 in the left-hand side and in each determinant subtract 
the last column from all other columns. In each determinant divide the first 
and second columns by x - 1 and y - 1, respectively. So far we have 

x5+x4+ ... +x+1 y5+y4+ ... +y+l 1 
x2+x+1 y2+y+1 1 

1 1 1 

x+1 y+l 1 
1 1 1 
0 0 1 

Now in each determinant subtract the second row from the first, the third 
row from the second, etc. We are left with 

x5+x4+x3 y5+ y4+ y3 
x2+x1 Y2+Y1 

x1 yl ’ 

I I x0 y” 
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which is the claimed sum, except for the power of z. This is gotten by 
noting. that the original left-hand side was homogeneous of degree 
,I1 + & + &, whereas the right-hand side so far has degree p, + p,. # 

In general, the exponent pj+ (n- l)- i in the ith row of the resulting 
numerator will range from &+ n - i- 1 = &+ (n - 1) -i down to 
li + 1 + n - (i + 1) = Lj+ 1 + (n - 1) - i. Hence, in general, the lemma states 
that 

SAX1 9 .*-, x,) = 1 SP(X1) . . . . x,- 1) xy’ - lp’, 
n 

where [,I] =,I, + ... + 1, and the sum is over all p such that A1 > fir > ,I2 2 
p*> ... >pn-l)/IZ,. 

The proof of the proposition can be finished with the following now 
standard construction [Mac, pp. 41421. 

Proof. Start with a shape ,I (‘I = L and apply the lemma once. For each 
resulting Lo) = ,u, begin to construct a tableau by placing an “n” in each 
box of d(O) which lies outside of ,I . (I) Repeat this procedure IZ - 1 more 
times with n - l’s, n - 2’s, . . . . and 1’s. After 12 steps we are left with ,I.‘“‘= @, 
so we should have defined srn( - ) = 1 to start the induction. We have 
expressed sn(xl, . . . . x,) as a sum of monomials which are indexed by a 
collection of tableaux of appropriate weights. The entries obviously weakly 
increase across the rows and down the columns. Note that Ai”+ I) 2 ljyl 
and nLk? k + r = 0 imply that two (n - k)‘s will not be placed in the same 
column at step k = 0, 1, . . . . n - 1. This implies that the entries are actually 
column strict. i 
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