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bjective: Finite-element analysis demonstrates that the nonplanar shape of the
itral annulus diminishes mitral leaflet stress. It has therefore been postulated that

epair with annuloplasty rings that maintain the nonplanar shape of the annulus
ould increase repair durability. Although the global nonplanarity of the mitral
nnulus has been adequately characterized, design of such a ring requires a quan-
itative description of regional annular geometry. By using real-time 3-dimensional
chocardiography in conjunction with available image processing software, we
eveloped a methodology for describing regional annular geometry and applied it to
he characterization of the normal human mitral annulus.

ethods: Five healthy volunteers underwent mitral valve imaging with real-time
-dimensional echocardiography. Regional annular height was calculated at 36
venly spaced intervals.

esults: Maximal annular height/commissural width ratio was found to occur at the
idpoint of the anterior annulus in all cases. These values averaged 26% � 3.1%,
hereas those for the midposterior annulus averaged 18% � 3.0%. The average

ommissural width was 35.2 � 6.0 mm. Although substantial spatial heterogeneity
as observed, regional annular height at a given rotational position was highly

onserved among subjects when normalized to commissural width.

onclusions: These quantitative imaging and analytic techniques demonstrate that
he normal human mitral annulus is regionally heterogeneous in its nonplanarity,
nd they establish a means of describing annular geometry at a regional level. With
ider application, these techniques may be used both to characterize pathologic

nnular geometry and to optimize the design of mitral valve annuloplasty devices.

 he general nonplanar saddle shape of the human mitral valve (MV)
annulus was first described by Levine and colleagues1,2 by means of early
3-dimensional (3D) echocardiography. This finding has been subsequently

orroborated in both human subjects and animal models by several other groups
ith both invasive and noninvasive imaging techniques.3-10 To facilitate comparison
etween annuli and to quantify the global nonplanarity of the annulus, we have
reviously defined the annular height (AH)/commissural width (CW) ratio

AHCWR). We have subsequently found this parameter to be constant for all normal
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Vs.11 Finite-element analysis has demonstrated that an-
ular nonplanarity augments mitral leaflet curvature and
hereby substantially reduces leaflet stress.11 It has been
ostulated that the current practice of placing flat annulo-
lasty rings during MV repair may flatten leaflets, thus
ncreasing stress and reducing repair longevity.11 This spec-
lation has led to an initiative to develop annuloplasty rings
hat more closely approximate the annular saddle shape and its
tress-reducing characteristics.12,13

Although high-resolution imaging of both normal and
athologic human MVs has been previously accomplished
hrough the use of both 3D magnetic resonance imaging10

nd real-time 3D echocardiography (rt-3DE),14,15 regional
itral geometry remains uncharacterized. Rational design

f a nonplanar annuloplasty ring cannot proceed in the
bsence of a high-resolution quantitative description of nor-
al mitral annular geometry. Furthermore, it has been

hown that distinct pathologies affect global annular geom-
try differently.14 To characterize the distinct patterns of
egional annular deformation that arise in conjunction with
arious valvular and subvalvular pathologies, it is first nec-
ssary to develop a method for describing regional annular
eometry in quantitative terms and to apply it to healthy
ubjects. To achieve this goal, this study used state-of-the-
rt rt-3DE combined with commercially available image
rocessing software and a series of mathematic algorithms
o describe quantitatively the normal human mitral annulus
long its entire circumference.

Abbreviations and Acronyms
3D � 3-dimensional
AH � annular height
AHCWR � annular height/commissural width ratio
CW � commissural width
MV � mitral valve
rt-3DE � real-time 3-dimensional echocardiography
The Journal of Thoracic
aterials and Methods
mage Acquisition
he study was reviewed and approved by the University of Penn-
ylvania School of Medicine institutional review board. Written
nformed consent was obtained from each subject. Transthoracic
chocardiography was performed in 5 human adult patients with-
ut clinical or radiographic evidence of MV pathology. The rt-3DE
ata sets were acquired with a Sonos 7500 platform (Philips
edical Systems, Andover, Mass) equipped with a 2- to 4-MHz
4 handheld matrix transducer. Gated images were acquired

cross 8 cardiac cycles. The rt-3DE data sets were exported to a
edicated Cardio-View software (Tomtec Imaging Systems, Mu-
ich, Germany) workstation for image manipulation and analysis.

mage Analysis
ll analysis was performed at end systole, which was defined as

he first frame demonstrating closure of the aortic valve. Image
nalysis was performed in Cardio-View by visual inspection.
ardio-View allows the interactive manipulation—including rota-

ion, translation, surface rendering, and measurement—of fully 3D
ltrasonographic data sets. A rotational template consisting of 18
ong-axis cross-sectional planes separated by 10° increments was
reated. This template was then centered at the geometric center of
he MV orifice, aligned with the axis of the mitral orifice, and
uperimposed on the 3D echocardiogram (Figure 1, A). The two
nnular points intersecting each of the 18 long-axis rotational
lanes were then identified by orthogonal visualization of each
lane; the two points were marked interactively in Cardio-View
Figure 1, B). The anterior and posterior commissures were iden-
ified, and the distance between them (CW) was measured in
ardio-View. This value was used for all subsequent calculations.

Single-pass spatial smoothing was performed for each set of
nnular data points with Tecplot software (Amtec Engineering,
ellevue, Wash). The degree of smoothing is determined by a

elaxation factor between 0.0 and 1.0; a relaxation factor of 0.5
as used consistently for each data set. We tested the final models

o ensure that smoothing did not obliterate or alter the main
natomic conclusions of this work.

Each smoothed data set was then exported to a Matlab envi-
onment (The Mathworks, Natick, Mass). The center of gravity of
he resultant 36-point data set was translated to the origin. The

Figure 1. A, View of mitral valve in
which selected short-axis plane corre-
sponds to plane of mitral valve. Aorta
(Ao) and mitral valve orifice (MVO) are
indicated. Rotational template consist-
ing of 18 long-axis planes evenly
spaced at 10° increments and centered
at geometric center of mitral valve has
been constructed. B, Single long-axis
view (0° on rotational template of
panel A) of heart. Left ventricle (LV),
mitral valve (MV), left atrium (LA), aor-
tic valve (AoV), and aorta (Ao) are il-
lustrated. Anterior (AA) and posterior

(PA) annular points are labeled.

and Cardiovascular Surgery ● Volume 134, Number 3 645
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east squares plane of the 3D data set was then calculated by means
f orthogonal distance regression, and the annular model was
otated such that this MV orifice plane was aligned with the xy
lane. The z coordinate of each annular point (zn) was therefore
qual to its distance to the plane of the MV. Regional AH for each
ata point (AHn) within the annular data set was then defined as

n � zmin, where zmin was the lowest point on the mitral annulus.
aximal AH (AHmax) for a given data set was defined as zmax �

min, where zmax was the highest point on the mitral annulus. As
reviously described,11 we use the AHmax/CW ratio (AHmaxCWR)
o quantify global annular nonplanarity (AHmax/CW � 100%). To
acilitate the comparison of regional annular nonplanarity between
ubjects with different heart sizes, we normalized each value of
Hn for a given subject by the calculated CW of that subject

AHn/CW � 100%). We defined this size-normalized index as the
egional AHCWR (AHnCWR). The AH adjacent to the aorta and
idway between commissures (AHAo) was defined as zAo � zmin.
HAoCWR was subsequently defined as AHAo/CW � 100%. The
H at the midpoint of the posterior annulus (AHP2) was defined as

P2 � zmin. AHP2CWR was subsequently defined as AHP2/CW �
00%.

The Cartesian coordinates for each point in a given annular
odel were converted to cylindrical coordinates (r, �, z), and the

ata set was translated in the z direction and rotated around the

ABLE 1. Annular geometric parameters for each of 5 sub
ubject AHAo (mm) AHP2 (mm)

9.4 7.4
7.3 4.3
9.1 5.6
7.5 4.6

14.3 10.1
ean � SD 9.5 � 2.8 6.4 � 2.4

HAo, Annular height adjacent to aorta and midway between commissures
HAoCWR, annular height/commissural width ratio adjacent to aorta and mi
t midpoint of posterior annulus.

Figure 2. Oblique (A), intercommissural (B), and transa
points (white spheres) have been included. Aorta (1)
midsegment of posterior annulus (3) are labeled in eac
each view. A, How z coordinate for given data point (zn)
to lowest point on mitral annulus (z ) is calcula
min

commissure. C, Approximate D shape of annulus.

46 The Journal of Thoracic and Cardiovascular Surgery ● Septe
V axis (� direction) so that the data point containing zmin, (which
n all cases corresponded to the posterior commissure) was located
t z � 0 and � � 0. Values of � and AHn for each point in a given
ata set were then recalculated in this fixed frame of reference.
egional AHCWR (AHnCWR) was plotted as a function of rota-

ional position (�) on the mitral annulus for each data set.

esults
ndividual and mean end-systolic mitral annular param-
ters are summarized in Table 1. The highest point on the
nnulus (zmax) occurred at the data point corresponding to
he aortic portion of the midpoint of the anterior mitral
nnulus in all cases. Therefore values of AHAo and AHA-

 CWR, as reported in Table 1, were equal to AHmax and
HmaxCWR, respectively, for each of the 5 subjects. The

owest point on the mitral annulus (zmin) occurred at the
ata point corresponding to the posterior commissure in
ll cases. The relative heights of the anterior and poste-
ior commissures can be readily appreciated in both Fig-
res 2 and 3.

The mean end-systolic AH at the data point immediately
djacent to the aorta (AHAo) for the 5 subjects was 9.5 � 2.8

CW (mm) AHAoCWR (%) AHP2CWR (%)

36.2 25.8% 20.3%
30.4 24.1% 17.9%
34.6 26.3% 16.1%
30.2 24.8% 15.2%
44.8 32.0% 22.6%

35.2 � 6.0 26.6% � 3.1% 18.4% � 3.0%

, annular height at midpoint of posterior annulus; CW, commissural width;
between commissures; AHP2CWR, annular height/commissural width ratio

(C) views of single human mitral annulus. All 36 data
erior commissure (2), posterior commissure (4), and
w. Least square plane is superimposed on annulus in
easured. B, How regional annular height (AHn) relative
Notice how lowest point coincides with posterior
jects

; AHP2
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m. The mean end-systolic CW was 35.2 � 6.0 mm. The
ean end systolic AHCWR at the data point adjacent to the

orta (AHAoCWR) was 26.6% � 3.1%. These measure-
ents are presented in detail for each study subject, along
ith values of zmax, zmin, and AHP2 (Table 1).
The smoothing algorithm used to minimize pixelation of

he annular data and enforce continuity of the anatomic
nnular model tended to decrease both the AHAo and the
HAoCWR, but only to a minimal and not statistically

ignificant degree. Expressly, with smoothing, the AH at the
ortic point (AHAo) decreased from 9.8 � 2.9 to 9.5 � 2.8
m (P � .14, 1-tailed). Meanwhile, the AHAoCWR de-

reased from 27.3 � 3.4 to 26.6 � 3.1 mm (P � .13,
-tailed).

iscussion
n this study, we used rt-3DE in conjunction with commer-
ially available image processing software and a series of
ustomized mathematic algorithms to increase our under-
tanding of regional mitral annular geometry in healthy
uman subjects. Ultimately, these normal regional data can
e used to compare patterns of annular deformation in
ubjects with different valvular or subvalvular pathologies
nd describe them in quantitative terms. Additionally, es-
ablishment of the normal relationship between regional AH
nd rotational position along the mitral annulus allows these
ata to be incorporated into the ongoing refinement of MV
epair techniques and devices.

Eighteen years ago, Levine and colleagues1,2 used nas-

igure 3. Regional annular height/commissural width ratio is
lotted as function of rotational position on mitral annulus (�) for
ach of 5 subjects on common axis. Posterior commissure (PC),
orta, anterior commissure (AC), and midposterior annulus (P2)
re labeled.
ent 3D echocardiographic technology to describe the non- fl

The Journal of Thoracic
lanar saddle shape of the mitral annulus for the first time.
ubsequently, our group used a combination of sonomi-
rometry and second-generation rotational 3D echocardiog-
aphy to quantify the maximal nonplanarity of the mitral
nnulus by describing the AHCWR.11 With this parameter
or quantification, we discovered that the global saddle
hape (maximal nonplanarity) of the mitral annulus was
onserved across a number of mammalian species, includ-
ng human beings. In all animals studied, we found the
HCWR to be approximately 20%.11 In this study, we

eport substantially larger values. We believe that the dis-
repancy is likely a result of technical limitations inherent to
he rotational technique used in the earlier study, in which
he axis of rotation was selected visually during image
cquisition and the 18 imaging planes were based on this
nitial selection. Consequently, relatively large segments of
he mitral annulus may not have been imaged. As can be
ppreciated in Figure 3, AH varies substantially with rela-
ively small rotational increments, particularly adjacent to
he commissures and the aortic peak of the midanterior
nnulus. Because the positions of these landmarks in 3D
pace determine AH, a relatively small error in assigning
heir positions results in a significant decrease in both global
H and AHCWR. This would be the case if 1 of the 18

otational planes determined by the initial axis selection did
ot pass through or relatively near the commissures or the
ortic peak and may explain the apparent underestimation in
he earlier study. In this study, the rotational axis was
elected off-line, when the entire mitral annulus was visible.
t was therefore possible to ensure both uniform marker
pacing and inclusion of critical landmarks, such as the
ommissures and the aortic peak, which determine global
H and AHCWR. We believe that the current methodology

llows a more accurate description of global annular
onplanarity.

With numeric simulation and geometric simplification,
e have previously demonstrated that alterations in annular

addle shape are capable of affecting both leaflet curvature
nd stress distribution patterns.11 By means of this theoretic
nalysis, we also demonstrated that for any defined load and
eaflet geometry, leaflet stress reaches a minimum at
CHWR values between 15% and 30% and increases ex-
onentially as ACHWR approaches zero (as the annulus
pproaches planarity). It is interesting to note that all
HCWR values reported in this study fall either within or
ery nearly within this ideal range.

This earlier work, in conjunction with a growing under-
tanding that MV repair durability is not as robust as once
hought,16-20 has spawned a growing interest in the design
f nonplanar annuloplasty rings. Nearly all current MV
epair techniques include placement of a flat annuloplasty
ing. These rings obliterate the annular saddle shape, which

attens the leaflets, thus increasing stress11 and potentially

and Cardiovascular Surgery ● Volume 134, Number 3 647
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imiting repair durability. In this study, we used modern
t-3DE technologies in conjunction with commercially
vailable image processing software and a series of novel,
ustomized mathematic algorithms to increase our under-
tanding of regional mitral annular geometry. These quan-
itative geometric insights have direct implications for the
esign of annuloplasty devices that maintain or restore
ormal annular 3D shape.

After adjustment to account for differing definitions of
H, the global AHCWR values presented in this study are

imilar to those reported elsewhere through the use of
otational echocardiography and magnetic resonance imag-
ng.10,14 The analytic techniques that we describe, however,
llow the quantification of regional annular geometry with
xceptional spatial resolution. This regional assessment
emonstrates that regional nonplanarity is heterogeneous in
ealthy human subjects. Both regional AH and the rate at
hich this height changes as a function of rotational posi-

ion are substantially higher across the anterior annulus than
he posterior annulus.

Despite the significant regional heterogeneity of AH
bserved in this study, our data demonstrate that regional
H variations, after normalization by the associated CW,

re highly conserved among healthy individuals. Nonplanar
nnuloplasty rings that conform to native geometry can be
hus constructed in a uniform manner with the only inde-
endent variable as the predicted native CW. With future
tudies involving more patients, the relationship between
ntercommissural dimension and regional height can be also
orrelated with patient size, thus further facilitating ring
election before elective surgery.

This study establishes the relationship between AH and
otational position in healthy human subjects, as well as
uantitative indices with which to describe it. As additional
atients with various valvular and subvalvular pathologies
re studied, the analytic techniques we describe can also be
sed to characterize their associated patterns of annular
eformation with reference to normal regional geometry.
urthermore, as this technique is applied to large numbers
f patients with mitral regurgitation before and after repair,
eometric predictors of both surgical and clinical outcomes
ay begin to emerge. This may ultimately allow surgeons to

elect a repair strategy preoperatively by quantitative means
ather than by relying solely on intraoperative intuition and
ay thereby contribute to the continued refinement of MV

epair techniques and devices.21
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