A class of irreducible representations of a Weyl group

by G. Lusztig

Department of Mathematics, Massachusetts Institute of Technology
Cambridge, Mass 02139 USA

Communicated by Prof. T. A. Springer at the meeting of September 30, 1978

1. Let V be a rational vector space of finite dimension, $R \subset \text{Hom}(V, \mathbb{Q})$ a (reduced) root system which generates $\text{Hom}(V, \mathbb{Q})$ and let $W \subset \text{Aut}(V)$ be the Weyl group of R. The purpose of this paper is to describe a class \mathcal{F}_W of irreducible representations of W. This class arises naturally in the study of representations of a reductive group over a finite field (see [7, § 8]) and can be conjecturally related with the set of unipotent classes in that reductive group.

2. Let E be an irreducible representation of W (over \mathbb{C}). We shall associate with E two polynomials $P_E(X), \bar{P}_E(X)$ with rational coefficients in an indeterminate X. Consider the graded W-module $\bar{S} = \sum_{t \geq 0} \bar{S}_t$, where \bar{S} is the graded algebra of polynomial functions $V \otimes G \to \mathbb{C}$ modulo the ideal generated by W-invariant polynomials vanishing at 0. We set $P_E(X) = \sum_{t \geq 0} n_t X^t$ where n_t is the multiplicity with which E occurs in the W-module \bar{S}_t. Let G be the adjoint Chevalley group over k (an algebraic closure of the prime field F_p) with root system R. Let $G(q)$ be the group of F_q-rational points of G (with respect to the standard F_q-rational structure of G), where F_q is the subfield of k with q elements. Let us fix a homomorphism $\bar{h}: \mathbb{C}[X]^* \to \mathbb{C}$ ($\mathbb{C}[X]^* = \text{integral closure of } \mathbb{C}[X]$) such that $\bar{h}(X) = q$. It is known [2] that \bar{h} gives rise to a 1 to 1 correspondence

* Work supported in part by the National Science Foundation.
between the set of (isomorphism classes of) irreducible representations of \(W \) and the set of (isomorphism classes of) irreducible representations of \(G(q) \) occurring in \(\text{Ind}_{\mathbb{F}_q}^{G(q)}(1) \), where \(B \) is a Borel subgroup of \(G \) defined over \(\mathbb{F}_q \) and \(B(q) \) is its group of \(\mathbb{F}_q \)-rational points. The dimension of \(E_q \) is independent of the choice of \(h \), and equals \(\tilde{P}_E(q) \) where \(\tilde{P}_E(X) \) is a well-defined polynomial with rational coefficients, independent of \(q \).

The polynomials \(\tilde{P}_E(X) \) (also called “generic degrees”) have been computed in all cases (see [1] and the references there). The polynomials \(P_E(X) \) have been also computed in all cases (see [3] and the references there).

Let us write
\[
P_E(X) = c_{E} X^{a_E} + \ldots + d_{E} X^{b_E} \\
\tilde{P}_E(X) = c_{E} X^{\tilde{a}_E} + \ldots + d_{E} X^{\tilde{b}_E}
\]
where \(c_{E}, d_{E}, \tilde{c}_E, \tilde{d}_E \) are non-zero constants, \(a_E < b_E, \tilde{a}_E < \tilde{b}_E \) and the dots represent terms involving \(X^j \) with \(a_E < j < b_E \) (resp. \(\tilde{a}_E < j < \tilde{b}_E \)). It is an empirical observation that
\[
(2.1) \quad \tilde{a}_E < a_E < b_E < \tilde{b}_E.
\]

In the case where \(W \) is irreducible, we say that \(E \) is exceptional (cf. [2], [3]) if \(W \) is of type \(E_7 \) and \(\dim E = 512 \) or if \(W \) is of type \(E_8 \) and \(\dim E = 4096 \); if \(E \) is non-exceptional, we have
\[
(2.2) \quad \tilde{a}_E + \tilde{b}_E = a_E + b_E.
\]

This does not hold when \(E \) is exceptional: the sequences (2.1) corresponding to the two exceptional representations of a Weyl group of type \(E_7 \) are:
\[
11 < 11 < 51 < 52 \\
11 < 12 < 52 < 52;
\]
the sequences (2.1) corresponding to the four exceptional representations of a Weyl group of type \(E_8 \) are
\[
11 < 11 < 93 < 94 \\
11 < 12 < 94 < 94 \\
26 < 27 < 109 < 109 \\
26 < 26 < 108 < 109.
\]

Definition. In general, \(\mathcal{I}_W \) is the set of (isomorphism classes of) irreducible representation \(E \) of \(W \) which satisfy the equality \(\tilde{a}_E = a_E \).

In the case where \(W \) is a product of irreducible Weyl groups \(W_1, \ldots, W_m \) and \(E = E_1 \otimes \ldots \otimes E_m \) (with \(E_i \) irreducible \(W_i \)-modules) we have that \(E \in \mathcal{I}_W \) if and only if \(E_i \in \mathcal{I}_{W_i} \) for each \(i \). The identity representation
and the sign representation of \(W \) are always in \(\mathcal{S}_W \). In the case where \(W \) is irreducible, we have \(E \otimes \varepsilon_W \in \mathcal{S}_W \) whenever \(E \in \mathcal{S}_W \) is non-exceptional. (If \(E \in \mathcal{S}_W \) is exceptional, then \(E \otimes \varepsilon_W \notin \mathcal{S}_W \).) This follows immediately from (2.2) and from the known identities

\[
(2.3) \quad a_E \otimes \varepsilon_W + b_E = \bar{a}_E \otimes \varepsilon_W + \bar{b}_E = \nu(W)
\]

where \(\nu(W) \) is the number of reflections in \(W \).

In general, for \(E \in \mathcal{S}_W \), the constant \(\gamma_E \) (coefficient of \(X^{\alpha_E} \) in \(P_E(X) \)) is equal to 1. (This is an empirical observation.)

3. We now review a construction of [8] which generalizes a construction of I. G. Macdonald [9]. Let \(W' \) be a subgroup of \(W \). We can decompose uniquely \(V \) into a direct sum \(V = V' \oplus V'' \), where \(V'' \) is the set of \(W' \)-invariant vectors in \(V \) and \(V' \) is \(W' \)-stable. Let \(\mathcal{P}_i(V) \) be the space of homogeneous polynomials \(V \otimes \mathbb{C} \to \mathbb{C} \) of degree \(i \). We define similarly \(\mathcal{P}_i(V') \). The natural projection \(\pi: V \to V' \) induc es an injective linear map \(\pi^*: \mathcal{P}_i(V') \to \mathcal{P}_i(V) \). Let \(E_1 \) be an irreducible \(W' \)-submodule of \(\mathcal{P}_a(V') \) which occurs in \(\mathcal{P}_a(V) \) with multiplicity 1 and does not occur in \(\mathcal{P}_a(V') \) if \(i < a \). Then the \(W \)-submodule of \(\mathcal{P}_a(V) \) generated by \(\pi^*(E_1) \) is irreducible, it occurs with multiplicity 1 in \(\mathcal{P}_a(V) \) and it does not occur in \(\mathcal{P}_a(V') \) if \(i < a \) [8, (3.2)]; we denote it \(j^{W'}_W(E_1) \). (One could also characterize \(j^{W'}_W(E_1) \), up to isomorphism, as being the only irreducible submodule \(E \) of \(\text{Ind}^{W}_W(E_1) \) such that \(a_E = a \).)

4. Now let \(\Pi \) be a system of simple roots for the root system \(R \). For each subset \(I \) of \(\Pi \) we denote by \(R_I \) the root system in \(\text{Hom}(V, \mathbb{Q}) \) having \(I \) as set of simple roots and by \(W_I \subset \mathcal{W} \) the Weyl group of \(R_I \). We introduce some notations in \(G \). Let \(P_I \) be the parabolic subgroup of \(G \) containing \(B \), corresponding to \(I \). (Thus \(P_B = B \).) Let \(U_I \) be the unipotent radical of \(P_I \) and let \(L_I \) be a Levi subgroup of \(P_I \) defined over \(F_q \). We denote by \(P_I(q) \), \(U_I(q) \), \(L_I(q) \), the group of \(F_q \)-rational points of \(P_I \), \(U_I \), \(L_I \), respectively.

The following result gives a method of constructing representations in \(\mathcal{S}_W \):

Proposition. Let \(I \subset \Pi \) and let \(E_1 \in \mathcal{S}_{W_I} \). Then \(E = j^{W_I}_W(E_1) \in \mathcal{S}_W \) and \(a_E = a_{E_1} \).

We have \(\bar{a}_E = a_{E_1} = \bar{a}_{E_1} \). Hence it is enough to prove the following

Lemma. Let \(I \subset \Pi \) and let \(E_1 \) be an irreducible representation of \(W_I \). Let \(E \) be an irreducible \(W \)-submodule of \(\text{Ind}^{W_I}_W(E_1) \). Then \(\bar{a}_E < \bar{a}_{E_1} \).

Let \(E'_1 = E_1 \otimes \varepsilon_{W_I} \), \(E'_1 = E \otimes \varepsilon_W \). Using (2.3), we see that it is enough to prove the inequality

\[
(4.1) \quad \bar{b}_E < \bar{b}_{E'_1} + \nu(W) - \nu(W_I)
\]

where \(\nu(W_I) \) is the number of reflections in \(W_I \).
By assumption, the restriction of \(E \) to \(W_I \) contains \(E_1 \). Since \(\varepsilon_W|W_I = \varepsilon_{W_I} \), it follows that the restriction of \(E' \) to \(W_I \) contains \(E_1' \), hence \(E' \) is contained in \(\text{Ind}^W_{W_I}(E'_1) \). Let \(E'_q \) be the representation of \(G(q) \) corresponding to \(E' \) and let \((E'_1)_q \) be the representation of \(L_I(q) \) corresponding to \(E'_1 \), as in 2. Then \(E'_q \) is contained in \(\text{Ind}^W_{W_I}((E'_1)_q) \), where \((E'_1)_q \) is regarded as a \(P_I(q) \)-module with trivial action of \(U_I(q) \). It follows that

\[
\dim(E'_q) < \dim(\text{Ind}^W_{W_I}((E'_1)_q)) = \dim((E'_1)_q \cdot |G(q): P_I(q)|).
\]

We may regard the two sides of this inequality as polynomials in \(q \) with rational coefficients. Since this inequality is true for an arbitrary prime power \(q \), the polynomials in the left hand side must have a degree not bigger than that in the right hand side. This proves (4.1). A similar proof shows that, with the assumptions of the Proposition, we have \(\gamma_{E_1} > \gamma_E \). (Recall that \(\gamma_E \) is the coefficient of \(X^{\tilde{E}}_E \) in \(\tilde{P}_E(X) \).)

5. We shall now describe the set \(\mathcal{S}_W \) for each irreducible \(W \). (Here we make use of the results of [1], [3], see also the references there.)

Type \(A_{n-1} \). Any irreducible representation \(E \) of \(W \) is in \(\mathcal{S}_W \), since it is of the form \(j^W_{W_I}(\varepsilon_{W_I}) \) for some \(I \subset \Pi \). We have also \(P_B(X) = \tilde{P}_E(X) \).

Type \(B_n \) (or \(C_n \)). Let \(\lambda = (\lambda_1 < ... < \lambda_{m+1}) \), \(\beta = (\beta_1 < ... < \beta_m) \) be partitions such that \(\sum_{i=1}^{m+1} \lambda_i + \sum_{j=1}^{m} \beta_j = n \), \(\lambda_1 > 0 \), \(\beta_1 > 0 \). The dual partitions will be denoted by \(\lambda^* = (\lambda_1^* < ... < \lambda_{m+1}^*) \), \(\beta^* = (\beta_1^* < ... < \beta_m^*) \), respectively (with \(\lambda_1^* > 0 \), \(\beta_1^* > 0 \), if defined). Let \(R' \subset R \) be a root system of type \(A_{n-1} \) or of type \(B_n \). Define \(E_{\lambda, \beta} = j^W_{R'}(\varepsilon_{R'}) \). This gives a \(1 \)-\(1 \) correspondence between ordered pairs of partitions \(\lambda, \beta \) as above (with \(m \) arbitrary) and irreducible representations (up to isomorphism) of \(W \). (We regard the pair \(\lambda, \beta \) as being the same as the pair of partitions \(0 < \lambda_1 < \lambda_2 < ... < \lambda_{m+1} \), \(0 < \beta_1 < \beta_2 < ... < \beta_m \).)

It will be convenient to use a somewhat different parametrization for the representations of \(W \) (cf. [6, §§ 2, 3]).

Let \(W' \subset W \) be the Weyl group of \(R \). Define \(E_{\alpha, \beta} = j^W_{W'}(\varepsilon_{W'}) \). This gives a \(1 \)-\(1 \) correspondence between ordered pairs of partitions \(\alpha, \beta \) as above (with \(m \) arbitrary) and irreducible representations (up to isomorphism) of \(W \). (We regard the pair \(\alpha, \beta \) as being the same as the pair of partitions \(0 < \alpha_1 < \alpha_2 < ... < \alpha_{m+1} \), \(0 < \beta_1 < \beta_2 < ... < \beta_m \).)

It will be convenient to use a somewhat different parametrization for the representations of \(W \) (cf. [6, §§ 2, 3]).

Let \(\Phi_{n,1} \) be the set of arrays of integers \(\Lambda > 0 \)

\[
\Lambda = \left(\lambda_1 < \lambda_2 < ... < \lambda_{m+1} \right)
\]

such that \(\sum_{i=1}^{m+1} \lambda_i + \sum_{i=1}^{m} \mu_i = n+m^2 \) (\(m \) arbitrary), modulo the equiva-
lence relation given by

\[\Lambda \sim \Lambda' = \left(0 < \lambda_1 + 1 < \lambda_2 + 1 < \ldots < \lambda_{m+1} + 1 \right). \]

Then the set of ordered pairs of partitions \(\alpha, \beta \) as above can be put in \(1-1 \) correspondence with the set \(\Phi_{n,1} \) by associating to \(\alpha, \beta \) the array \(\Lambda \) defined by \(\lambda_i = \alpha_i + i - 1 \) \((1 < i < m+1)\), \(\mu_j = \beta_j + j - 1 \) \((1 < j < m)\). If \(\alpha, \beta \) corresponds in this way to \(\Lambda \in \Phi_{n,1} \), we set \(E^\Lambda = E_{\alpha, \beta} \). From [6, § 2, 8.2] we have that

\[
\begin{align*}
\alpha_{B^\Lambda} &= 2 \sum_{1 \leq i < j \leq m+1} \inf (\lambda_i, \lambda_j) + 2 \sum_{1 \leq i < j \leq m} \inf (\mu_i, \mu_j) + \sum_{i=1}^{m} \mu_i \\
&\quad - \binom{2m-1}{2} - \binom{2m-3}{2} - \cdots \\
\tilde{\alpha}_{B^\Lambda} &= \sum_{1 \leq i < j \leq m+1} \inf (\lambda_i, \lambda_j) + \sum_{1 \leq i < j \leq m} \inf (\mu_i, \mu_j) + \sum_{1 \leq i \leq m+1} \inf (\lambda_i, \mu_i) \\
&\quad - \binom{2m-1}{2} - \binom{2m-3}{2} - \cdots
\end{align*}
\]

hence

\[
\alpha_{B^\Lambda} - \tilde{\alpha}_{B^\Lambda} = \sum_{1 \leq i < j \leq m+1} \inf (\lambda_i, \lambda_j) + \sum_{1 \leq i < j \leq m} \inf (\mu_i, \mu_j) - \sum_{1 \leq i \leq m+1} \inf (\lambda_i, \mu_i) \\
\quad = \sum_{1 \leq i < j \leq m} (\lambda_i - \inf (\lambda_i, \mu_i)) + \sum_{1 \leq i < j \leq m+1} (\mu_i - \inf (\lambda_j, \mu_i)).
\]

This is, clearly, always \(> 0 \) and is equal to 0 precisely when

\[(5.1) \quad \lambda_1 < \mu_1 < \lambda_2 < \mu_2 < \ldots < \mu_m < \lambda_{m+1}.
\]

Thus, \(\mathcal{S}_W = \{ E^\Lambda | \Lambda \in \Phi_{n,1} \text{ satisfies (5.1)} \} \).

If \(E^\Lambda \notin \mathcal{S}_W \), \(\gamma_W \) equals \(2 - c \) where \(c = m \) - number of equalities in (5.1).

Type D \((n > 2)\). Let \(\alpha = (\alpha_1 < \ldots < \alpha_m) \), \(\beta = (\beta_1 < \ldots < \beta_m) \) be partitions such that \(\sum_{i=1}^{m+1} \alpha_i + \sum_{j=1}^{m} \beta_j = n \), \(\alpha_1 > 0 \), \(\beta_1 > 0 \). Let \(\alpha' = (0 < \alpha_1 < \ldots < \alpha_m) \). Let \(E_{\alpha, \beta} \) be the representation of \(W \) obtained by restriction of the representation \(E_{\alpha', \beta} \) of the Weyl group of type \(B_n \) containing \(W \) as a subgroup of index 2. Then \(E_{\alpha, \beta} = E_{\beta, \alpha} \) is irreducible if \(\alpha \neq \beta \); on the other hand if \(\alpha = \beta \), \(E_{\alpha, \alpha} \) splits into two distinct irreducible \(W \)-modules \(E_{\alpha, \alpha}^I \), \(E_{\alpha, \alpha}^H \). All irreducible representations of \(W \) are obtained in this way. Let \(\Phi_{n,0} \) be the set of arrays of integers \(> 0 \)

\[
\Lambda = \left(\lambda_1 < \lambda_2 < \ldots < \lambda_m \right),
\]

\[
\mu_1 < \mu_2 < \ldots < \mu_m,
\]

327
such that $\sum_{i=1}^{n} \lambda_i + \sum_{j=1}^{m} \mu_j = n + m(m-1)$ (m arbitrary), modulo the equivalence relation given by

$$\Lambda \sim \Lambda' = \left(0 < \lambda_1 + 1 < \lambda_2 + 1 < \ldots < \lambda_m + 1, 0 < \mu_1 + 1 < \mu_2 + 1 < \ldots < \mu_m + 1\right), \quad \Lambda \sim \left(\mu_1 < \mu_2 < \ldots < \mu_m\right) ;$$

we make the convention that each array such that $\lambda_i = \mu_i$ for all i should be counted twice (i.e. it gives rise to two elements of $\Phi_{n,0}$). If α, β is a pair of partitions as above, with $\alpha \neq \beta$, define $\Lambda \in \Phi_{n,0}$ by $\lambda_i = \alpha_i + i - 1$ ($1 < i < m$), $\mu_j = \beta_j + j - 1$ ($1 < j < m$). We then set $e_{\alpha,\beta} = e^{\Lambda}$. If $\alpha = \beta$, the same formulae define two elements $\Lambda(I), \Lambda(II)$ of $\Phi_{n,0}$, and we set $e_{\alpha,\alpha}^{\Lambda(I)} = e_{\alpha,\alpha}^{\Lambda(II)}$.

Thus, we have a $1-1$ correspondence between $\Phi_{n,0}$ and the irreducible representations (up to isomorphism) of W.

From [6, § 2.8.2] we see that

$$a_{\beta} = 2 \sum_{1 \leq i < j \leq m} \inf (\lambda_i, \lambda_j) + 2 \sum_{1 \leq i < j \leq m} \inf (\mu_i, \mu_j) + \inf (\sum_{i=1}^{n} \lambda_i, \sum_{j=1}^{m} \mu_j) - \binom{2m-2}{2} - \binom{2m-4}{2} - \ldots$$

$$a_{\beta}^{\Lambda} = a_{\beta}^{\Lambda(I)} = a_{\beta}^{\Lambda(II)} = \sum_{1 \leq i < j \leq m} \inf (\lambda_i, \lambda_j) + \sum_{1 \leq i < j \leq m} \inf (\mu_i, \mu_j) + \sum_{1 \leq i < j \leq m} \inf (\lambda_i, \mu_j) - \binom{2m-2}{2} - \binom{2m-4}{2} - \ldots$$

when Λ is such that $\lambda_i = \mu_i$ for some i and

$$a_{\beta}^{\Lambda(I)} = a_{\beta}^{\Lambda(II)} = \tilde{a}_{\beta}^{\Lambda(I)} = \tilde{a}_{\beta}^{\Lambda(II)} =$$

$$4 \sum_{1 \leq i < j \leq m} \inf (\lambda_i, \lambda_j) + \sum_{i=1}^{n} \lambda_i - \binom{2m-2}{2} - \binom{2m-4}{2} - \ldots$$

when $\lambda_i = \mu_i$ for all i.

It follows easily that \mathcal{S}_W consists of all E^{Λ} ($\Lambda \in \Phi_{n,0}$) such that

$$(5.2) \quad \lambda_1 < \mu_1 < \lambda_2 < \mu_2 < \ldots < \lambda_m < \mu_m$$

or

$$\mu_1 < \lambda_1 < \mu_2 < \ldots < \mu_m < \lambda_m .$$

(In particular, when $\lambda_i = \mu_i$, for all i, both $E^{\Lambda(I)}$ and $E^{\Lambda(II)}$ are in \mathcal{S}_W.)

If E^{λ_i} is in \mathcal{S}_W, where $\lambda_i \neq \mu_i$ for some i, we have $\tilde{\gamma}_{E^{\lambda_i}} = 2^{-c}$, where $c = (m-1)$ — number of equalities in (5.2). If Λ satisfies $\lambda_i = \mu_i$ for all i, we have $\tilde{\gamma}_{E^{\Lambda(I)}} = \tilde{\gamma}_{E^{\Lambda(II)}} = 1$.

Type G_2. \mathcal{S}_W consists of three representations: identity, reflection representation (on $V \otimes C$) and sign representation. The integers a_{β} are given respectively by 0, 1, 6. The constants $\tilde{\gamma}_{E}$ are given respectively by $1, \frac{1}{6}, 1$. 328
Type \(E_4\). \(\mathcal{S}_W\) consists of 11 representations: identity (with \(a_E = 0, \widetilde{\gamma}_E = 1\)), sign (with \(a_E = 24, \widetilde{\gamma}_E = 1\)), reflection representation (with \(a_E = 1, \widetilde{\gamma}_E = \frac{1}{2}\)), reflection representation tensor with sign (with \(a_E = 13, \widetilde{\gamma}_E = \frac{1}{2}\)), the representation on \(\tilde{S}_2\) (with \(a_E = 2, \widetilde{\gamma}_E = 1\)), and its tensor product with sign (with \(a_E = 10, \widetilde{\gamma}_E = 1\)), the 4 eight dimensional representations (two of them with \(a_E = 3, \widetilde{\gamma}_E = 1\), the other two with \(a_E = 9, \widetilde{\gamma}_E = 1\)) and the twelve dimensional representation (with \(a_E = 4, \widetilde{\gamma}_E = \frac{1}{2}\)).

The representations of a Weyl group of type \(E_6, E_7\) or \(E_8\) will be denoted as in Frame [4, 5] and in [3].

Type \(E_6\). \(\mathcal{S}_W\) consists of:

<table>
<thead>
<tr>
<th>repres.</th>
<th>(a_E)</th>
<th>(\widetilde{\gamma}_E)</th>
<th>repres.</th>
<th>(a_E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1_p)</td>
<td>0</td>
<td>1</td>
<td>(1_p')</td>
<td>38</td>
</tr>
<tr>
<td>(6_p)</td>
<td>1</td>
<td>1</td>
<td>(6_p')</td>
<td>25</td>
</tr>
<tr>
<td>(20_p)</td>
<td>2</td>
<td>1</td>
<td>(20_p')</td>
<td>20</td>
</tr>
<tr>
<td>(30_p)</td>
<td>3</td>
<td>(\frac{1}{2})</td>
<td>(30_p')</td>
<td>15</td>
</tr>
<tr>
<td>(64_p)</td>
<td>4</td>
<td>1</td>
<td>(64_p')</td>
<td>13</td>
</tr>
<tr>
<td>(60_p)</td>
<td>5</td>
<td>1</td>
<td>(60_p')</td>
<td>11</td>
</tr>
<tr>
<td>(81_p)</td>
<td>6</td>
<td>1</td>
<td>(81_p')</td>
<td>10</td>
</tr>
<tr>
<td>(24_p)</td>
<td>6</td>
<td>(\frac{1}{2})</td>
<td>(24_p')</td>
<td>12</td>
</tr>
<tr>
<td>(80_p)</td>
<td>7</td>
<td>(\frac{1}{6})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Whenever 2 representations are written in the same horizontal line, one equals the other tensored by sign; they have the same \(\widetilde{\gamma}_E\). (Similar conventions will be used for \(E_7\) and \(E_8\).)

Type \(E_7\). \(\mathcal{S}_W\) consists of:

<table>
<thead>
<tr>
<th>repres.</th>
<th>(a_E)</th>
<th>(\widetilde{\gamma}_E)</th>
<th>repres.</th>
<th>(a_E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1_s)</td>
<td>0</td>
<td>1</td>
<td>(1_s')</td>
<td>63</td>
</tr>
<tr>
<td>(7_s)</td>
<td>1</td>
<td>1</td>
<td>(7_s')</td>
<td>46</td>
</tr>
<tr>
<td>(27_s)</td>
<td>2</td>
<td>1</td>
<td>(27_s')</td>
<td>37</td>
</tr>
<tr>
<td>(56_s)</td>
<td>3</td>
<td>(\frac{1}{2})</td>
<td>(56_s')</td>
<td>30</td>
</tr>
<tr>
<td>(21_s)</td>
<td>3</td>
<td>1</td>
<td>(21_s')</td>
<td>36</td>
</tr>
<tr>
<td>(120_s)</td>
<td>4</td>
<td>(\frac{1}{2})</td>
<td>(120_s')</td>
<td>25</td>
</tr>
<tr>
<td>(189_s)</td>
<td>5</td>
<td>1</td>
<td>(189_s')</td>
<td>22</td>
</tr>
<tr>
<td>(210_s)</td>
<td>6</td>
<td>1</td>
<td>(210_s')</td>
<td>21</td>
</tr>
<tr>
<td>(105_s)</td>
<td>6</td>
<td>1</td>
<td>(105_s')</td>
<td>21</td>
</tr>
<tr>
<td>(168_s)</td>
<td>6</td>
<td>1</td>
<td>(168_s')</td>
<td>21</td>
</tr>
<tr>
<td>(189_s)</td>
<td>7</td>
<td>1</td>
<td>(189_s')</td>
<td>20</td>
</tr>
<tr>
<td>(315_s)</td>
<td>7</td>
<td>(\frac{1}{3})</td>
<td>(315_s')</td>
<td>16</td>
</tr>
<tr>
<td>(405_s)</td>
<td>8</td>
<td>(\frac{1}{3})</td>
<td>(405_s')</td>
<td>15</td>
</tr>
<tr>
<td>(378_s)</td>
<td>9</td>
<td>1</td>
<td>(378_s')</td>
<td>14</td>
</tr>
<tr>
<td>(210_s)</td>
<td>10</td>
<td>1</td>
<td>(210_s')</td>
<td>13</td>
</tr>
<tr>
<td>(420_s)</td>
<td>10</td>
<td>(\frac{1}{2})</td>
<td>(420_s')</td>
<td>13</td>
</tr>
<tr>
<td>(105_s)</td>
<td>12</td>
<td>1</td>
<td>(105_s')</td>
<td>15</td>
</tr>
<tr>
<td>(612_s)</td>
<td>11</td>
<td>(\frac{1}{7})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

329
Type E_8. \mathcal{S}_W consists of:

<table>
<thead>
<tr>
<th>repres.</th>
<th>α_E</th>
<th>γ_E</th>
<th>repres.</th>
<th>α_E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1_s</td>
<td>0</td>
<td>1</td>
<td>$1'_s$</td>
<td>120</td>
</tr>
<tr>
<td>8_s</td>
<td>1</td>
<td>1</td>
<td>$8'_s$</td>
<td>91</td>
</tr>
<tr>
<td>35_s</td>
<td>2</td>
<td>1</td>
<td>$35'_s$</td>
<td>74</td>
</tr>
<tr>
<td>112_s</td>
<td>3</td>
<td>$\frac{1}{2}$</td>
<td>$112'_s$</td>
<td>63</td>
</tr>
<tr>
<td>210_s</td>
<td>4</td>
<td>$\frac{1}{2}$</td>
<td>$210'_s$</td>
<td>52</td>
</tr>
<tr>
<td>560_s</td>
<td>5</td>
<td>1</td>
<td>$560'_s$</td>
<td>47</td>
</tr>
<tr>
<td>567_s</td>
<td>6</td>
<td>1</td>
<td>$567'_s$</td>
<td>46</td>
</tr>
<tr>
<td>700_s</td>
<td>6</td>
<td>$\frac{1}{2}$</td>
<td>$700'_s$</td>
<td>42</td>
</tr>
<tr>
<td>1400_s</td>
<td>7</td>
<td>$\frac{1}{6}$</td>
<td>$1400'_s$</td>
<td>37</td>
</tr>
<tr>
<td>1400_s</td>
<td>8</td>
<td>$\frac{1}{6}$</td>
<td>$1400'_s$</td>
<td>32</td>
</tr>
<tr>
<td>3240_s</td>
<td>9</td>
<td>1</td>
<td>$3240'_s$</td>
<td>31</td>
</tr>
<tr>
<td>2268_s</td>
<td>10</td>
<td>$\frac{1}{4}$</td>
<td>$2268'_s$</td>
<td>30</td>
</tr>
<tr>
<td>2240_s</td>
<td>10</td>
<td>$\frac{1}{4}$</td>
<td>$2240'_s$</td>
<td>28</td>
</tr>
<tr>
<td>4096_s</td>
<td>11</td>
<td>$\frac{1}{8}$</td>
<td>$4096'_s$</td>
<td>26</td>
</tr>
<tr>
<td>525_s</td>
<td>12</td>
<td>1</td>
<td>$525'_s$</td>
<td>36</td>
</tr>
<tr>
<td>4200_s</td>
<td>12</td>
<td>$\frac{1}{4}$</td>
<td>$4200'_s$</td>
<td>24</td>
</tr>
<tr>
<td>2800_s</td>
<td>13</td>
<td>$\frac{1}{4}$</td>
<td>$2800'_s$</td>
<td>25</td>
</tr>
<tr>
<td>4536_s</td>
<td>13</td>
<td>1</td>
<td>$4536'_s$</td>
<td>23</td>
</tr>
<tr>
<td>2835_s</td>
<td>14</td>
<td>1</td>
<td>$2835'_s$</td>
<td>22</td>
</tr>
<tr>
<td>6075_s</td>
<td>14</td>
<td>1</td>
<td>$6075'_s$</td>
<td>22</td>
</tr>
<tr>
<td>4200_s</td>
<td>15</td>
<td>1</td>
<td>$4200'_s$</td>
<td>21</td>
</tr>
<tr>
<td>5600_s</td>
<td>15</td>
<td>$\frac{1}{4}$</td>
<td>$5600'_s$</td>
<td>21</td>
</tr>
<tr>
<td>2100_u</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4480_u</td>
<td>16</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. We now state a result which, in some sense, is a converse to the Proposition in 4.

Theorem. Assume that W is irreducible $\neq \{1\}$, and let $E \in \mathcal{S}_W$. Then either E or $E \otimes \epsilon_W$ is of the form $j_W^I(E_1)$, for some $I \subseteq \Pi$ and some $E_1 \in \mathcal{S}_W$.

When W is of classical type the proof is elementary and will be omitted. When W is an exceptional Weyl group, we have to appeal to the theory of Springer connecting representations of W with unipotent classes in G and we have to use also Dynkin's classification of unipotent classes. We shall first review the theory of Springer; after that we shall indicate a proof of the Theorem in the case where W is of type E_8.

Assume that $p = \text{char } k$ is sufficiently large (with respect to the type of G). Let $u \in G$ be a unipotent element and let $A(u)$ be the group of components of the centralizer of u. To u and to the identity representation of $A(u)$, Springer [11] associates an irreducible representation of W; the tensor product of this representation with the sign representation will be denoted ρ_u (this agrees with the notation of [8]. For example, when $u = 1$, we have $\rho_u = \epsilon_W$. The map $u \to \rho_u$ defines an injective map from the set...
of unipotent conjugacy classes in G to the set of irreducible representations of W.

Let $I \subset \Pi$ and let v be an unipotent element in L_I. There exists a non-empty open subset of U_I such that for x in this subset, the G-conjugacy class of vx is independent of x. Let $u = vx$ (with x is this subset). Following [8] we say that the unipotent conjugacy class of u in G is "induced" by the class of v in L_I. Let φ_u, φ_v be the corresponding representations of W, W_I respectively. Let $\beta(u)$ be the dimension of the variety of Borel subgroups of G containing u. Define similarly $\beta(v)$ (with respect to L_I). If we assume that $P_{\varphi_u}(X) = X^{\beta(u)} + \text{higher order terms}$, we have

(6.1) \[\varphi_u = j_{w_I}^{W}(\varphi_v) \]

(cf. [8, (3.5)] and $P_{\varphi_v}(X) = X^{\beta(v)} + \text{higher order terms}$ (since $\beta(u) = \beta(v)$, by [8, (1.3b)]).

7. Proof of the theorem for W of type E_8. If a is one of the numbers $0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 20, 23, 28, 30, 36, 42$, we can find $I_+ \subset \Pi$ such that $\nu(W_I) = a$. Also, the table shows that \mathcal{S}_W contains a unique representation E with $a_E = a$. This must be then equal to $j_{w_I}^{W}(e_{W_I})$. Next, \mathcal{S}_W contains a unique representation E with $a_E = 24$. This must be equal to $j_{w_I}^{W}(E_1)$ where W_I is of type D_7 and E_1 is the representation of W_I corresponding to

$$A = \begin{pmatrix} 0 & 1 & 2 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}. $$

(Note that $a_{E_1} = 24$.) \mathcal{S}_W contains a unique representation E with $a_E = 25$. This must be equal to $j_{w_I}^{W}(E_1)$ where W_I is of type E_6 and E_1 is the reflection representation of W_I tensored by the sign representation. (Note that $a_{E_1} = 25$.) \mathcal{S}_W contains a unique representation E with $a_E = 26$. This must be equal to $j_{w_I}^{W}(E_1)$ where W_I is of type $E_6 \times A_1$ and E_1 is the reflection representation of E_6 tensored by the sign representation of $E_6 \times A_1$. (Note that $a_{E_1} = 25 + 1 = 26$.) \mathcal{S}_W contains a unique representation E with $a_E = 46$. This must be equal to $j_{w_I}^{W}(E_1)$ where W_I is of type E_7 and E_1 is the reflection representation of W_I tensored by the sign representation. (Note that $a_{E_1} = 46$.)

It is then enough to show that each of the two representations \mathcal{S}_W with $a_E = 21$ and each of the two representations in \mathcal{S}_W with $a_E = 14$ are of the form $j_{w_I}^{W}(E_1)$ for some $I_+ \subset \Pi$ and some $E_1 \in \mathcal{S}_{w_I}$.

Consider the unipotent elements u, u' in G with Dynkin diagrams

$$2 0 0 0 0 2 0 0 0 0 0 0 2$$

respectively. Then u is induced by the identity element of $L_I \subset G$ with W_I of type $D_5 \times A_1$ and u' is induced by the identity element of $L_{I'} \subset G$ with $W_{I'}$ of type A_6. We have $\varphi_u = j_{w_I}^{W}(e_{w_I})$, 331
$\varphi_u = j_{W_J}^W(\varphi_{W_J})$. These are two distinct representations in \mathcal{S}_W since u, u' are not conjugate; they both have $a_B = 21$.

Consider now the unipotent elements u_1, u_2 in G with Dynkin diagrams $\begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 2 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$ respectively. Now u_1 is induced by a unipotent element u_2 in $L_J \subseteq G$ with W_J of type E_7, whose Dynkin diagram is $\begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$. (Cf. [8, (1.9)].) Note that $\beta(u_2) = 14$. We shall show below that φ_{u_2} is the representation in \mathcal{S}_{W_J} denoted 378_a. It can be also shown that u_1 is induced by the identity element of $L_{J'} \subseteq G$ with $W_{J'}$ of type $A_4 \times A_2 \times A_1$. (This is implicit in Mizuno's work [10, Lemma 45].) Thus

$$\varphi_{u_1} = j_{W_J}^W(\varphi_{u_2}) = j_{W_J}^W(378_a)$$

These are two distinct representations in \mathcal{S}_W since u_1, u_2 are not conjugate; they both have $a_B = 14$. It remains to prove the following Lemma.

LEMMA. Assume that W is of type E_7, and let $u \in G$ be a unipotent element with Dynkin diagram $\begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 0 & 0 \end{pmatrix}$. Then φ_u is the representation in \mathcal{S}_W denoted 378_a.

PROOF OF THE LEMMA. Let $C \subseteq PSO_{2n}(k)$ ($n > 3$) be the minimal unipotent class $\neq \{1\}$ and let $v \in C$. Then $\beta(v) = n^2 - 3n + 3$, $A(v) = \{1\}$. It is easy to see that the variety of Borel subgroups containing v has exactly n irreducible components. Hence $\dim(\varphi_v) = n$. Using, [11, (4.4)], one can show that the trace of a reflection on φ_v equals $2 - n$. It follows that φ_v is the reflection representation tensored with the sign representation of the Weyl group.

Now let G be of type E_7 and let $I \subseteq II$ be such that W_I is of type $D_5 \times A_1$. Consider a unipotent element $v_1 \in L_I$ whose projection to $PSO_{10}(k)$ is the v considered above and whose projection to $PGL_3(k)$ is the identity. Let \tilde{u}_1 be a unipotent element in G induced by v_1. We have $\beta(u_1) = \beta(\tilde{u}_1) = \beta(v_1) = 14$. But G contains a unique unipotent class whose β equals 14. Thus u_1 is conjugate to \tilde{u}_1. We have

$$\varphi_{u_1} = \varphi_{\tilde{u}_1} = j_{W_I}^W(\varphi_{v_1}) = j_{W_I}^W(E_1)$$

where E_1 is the reflection representation of D_5 tensored by the sign representation of $D_5 \times A_1$. Thus $\varphi_{u_1} \in \mathcal{S}_W$ and $a_{u_1} = 14$. The lemma follows.

PROOF OF THE LEMMA. Let $C \subseteq PSO_{2n}(k)$ ($n > 3$) be the minimal unipotent class $\neq \{1\}$ and let $v \in C$. Then $\beta(v) = n^2 - 3n + 3$, $A(v) = \{1\}$. It is easy to see that the variety of Borel subgroups containing v has exactly n irreducible components. Hence $\dim(\varphi_v) = n$. Using, [11, (4.4)], one can show that the trace of a reflection on φ_v equals $2 - n$. It follows that φ_v is the reflection representation tensored with the sign representation of the Weyl group.

Now let G be of type E_7 and let $I \subseteq II$ be such that W_I is of type $D_5 \times A_1$. Consider a unipotent element $v_1 \in L_I$ whose projection to $PSO_{10}(k)$ is the v considered above and whose projection to $PGL_3(k)$ is the identity. Let \tilde{u}_1 be a unipotent element in G induced by v_1. We have $\beta(u_1) = \beta(\tilde{u}_1) = \beta(v_1) = 14$. But G contains a unique unipotent class whose β equals 14. Thus u_1 is conjugate to \tilde{u}_1. We have

$$\varphi_{u_1} = \varphi_{\tilde{u}_1} = j_{W_I}^W(\varphi_{v_1}) = j_{W_I}^W(E_1)$$

where E_1 is the reflection representation of D_5 tensored by the sign representation of $D_5 \times A_1$. Thus $\varphi_{u_1} \in \mathcal{S}_W$ and $a_{u_1} = 14$. The lemma follows.

8. We now assume that W is irreducible. Let $\kappa \in R$ be the root corresponding to the highest coroot. If $\tilde{I} \subseteq II \cup \{-\kappa\}$, we denote by $W_{\tilde{I}}$ the subgroup of W generated by the reflections with respect to the roots in \tilde{I}. For each $E_1 \in \mathcal{S}_{W_{\tilde{I}}}$, it makes sense to consider $j_{W_{\tilde{I}}}^W(E_1)$. The set of all irreducible representations of W (up to isomorphism) of the form $j_{W_{\tilde{I}}}^W(E_1)$

332
for some \(I \subseteq \Pi \cup \{ -\alpha \} \) and some \(E_1 \in \mathcal{S}_{W_I} \) will be denoted \(\mathcal{F}_W \). For each \(E \in \mathcal{F}_W \) we define
\[
\alpha(E) = \sup \{ (\gamma - 1) I \subseteq \Pi \cup \{ -\alpha \}, \ E_1 \in \mathcal{S}_{W_I}, \ E = j_{W_I}^W(E_1) \}.
\]
We have always \(\mathcal{F}_W \supset \mathcal{S}_W \); the inclusion is strict unless \(W \) is of type \(A \).

Let us describe the set \(\mathcal{F}_W \) in the case of Weyl groups of classical type.

Type \(B_n \). \(\mathcal{F}_W \) consists of those representations \(E^A (A \in \Phi_{n,1}) \) for which
\[
\Lambda = (\lambda_1 < \lambda_2 < \ldots < \lambda_{m+1})
\]
satisfies
\[
(8.1) \quad \lambda_i < \mu_i (1 < i < m), \: \mu_i < \lambda_{i+1} + 1 (1 < i < m).
\]

Type \(C_n \). \(\mathcal{F}_W \) consists of those representations \(E^A (A \in \Phi_{n,1}) \) for which
\[
\Lambda = (\lambda_1 < \lambda_2 < \ldots < \lambda_{m+1})
\]
satisfies
\[
(8.2) \quad \lambda_i < \mu_i + 1 (1 < i < m), \: \mu_i < \lambda_{i+1} (1 < i < m).
\]

Type \(D_n \). \(\mathcal{F}_W \) consists of those representations \(E^A (A \in \Phi_{n,0}) \) for which
\[
\Lambda = (\lambda_1 < \lambda_2 < \ldots < \lambda_m)
\]
satisfies
\[
(8.3) \quad \lambda_i < \mu_i (1 < i < m), \: \mu_i < \lambda_{i+1} + 1 (1 < i < m-1).
\]

Proposition. Assume that \((W, R)\) is of type \(B_n, C_n \) or \(D_n \) and that \(p = \text{char}(k) \neq 2 \). Then there exists a 1–1 correspondence \(E \leftrightarrow \mathcal{E}_E \) between \(\mathcal{F}_W \) and the set of unipotent classes in \(G \) such that, if \(u_E \in \mathcal{E}_E \), we have \(\beta(u_E) = a_E \).

For type \(B_n \), we associate to \(E^A \in \mathcal{F}_W \) (see (8.1)) the partition of \(2n+1 \) with parts
\[
2\lambda_1 + 1 + \delta_1 < 2\mu_1 - 1 + \delta'_1 < 2\lambda_2 - 1 + \delta_2 < \ldots < \\
< 2\lambda_i - 2i + 3 + \delta_i < 2\mu_i - 2i + 1 + \delta'_i < 2\lambda_{i+1} - 2i + 1 + \delta_{i+1} < \ldots < \\
< 2\lambda_{m+1} - 2m + 1 + \delta_{m+1}
\]
where
\[
\delta_i = \begin{cases}
-1 & \text{if } \lambda_i = \mu_i \text{ and } i < m \\
1 & \text{if } \lambda_i = \mu_{i-1} - 1 \text{ and } i > 2 \\
0 & \text{otherwise}
\end{cases} \quad (1 < i < m+1)
\]
Using (8.1) we see that this partition is well defined and it has the property that every even part \(\neq 0 \) occurs an even number of times; hence there is a well defined unipotent element \(u_A \in \text{SO}_{2n+1}(k) \) (up to conjugacy) whose Jordan cells have sizes given by the parts of this partition.

For type \(C_n \), we associate to \(E^A \in \mathcal{T}_w \) (see (8.2); we assume as we may, that \(\lambda_1 = 0 \)) the partition of \(2n \) with parts

\[
2\mu_1 + \delta_1 < 2\mu_2 - 2 + \delta'_1 < 2\mu_2 - 2 + \delta_2 < \ldots < \\
< 2\mu_i - 2i + \delta_i < 2\mu_{i+1} - 2i + \delta'_i < 2\mu_{i+1} - 2i + \delta_{i+1} < \ldots < \\
< 2\lambda_{m+1} - 2m + \delta'_m
\]

where

\[
\delta'_i = \begin{cases}
-1 & \text{if } \lambda_{i+1} = \mu_i \\
1 & \text{if } \lambda_i = \mu_i + 1 \quad (1 \leq i < m) \\
0 & \text{otherwise}
\end{cases}
\]

Using (8.2) we see that this partition is well defined and it has the property that every odd part occurs an even number of times; hence there is a well defined unipotent element \(u_A \in \text{Sp}_{2n}(k) \) (up to conjugacy) whose Jordan cells have sizes given by the parts of this partition.

For type \(D_n \), we associate to \(E^A \in \mathcal{T}_w \) (see (8.3)) the partition of \(2n \) with parts

\[
2\lambda_1 + 1 + \delta_1 < 2\mu_1 - 1 + \delta'_1 < 2\mu_2 - 1 + \delta_2 < \ldots < \\
< 2\lambda_i - 2i + 3 + \delta_i < 2\mu_i - 2i + 1 + \delta'_i < 2\mu_{i+1} - 2i + 1 + \delta_{i+1} < \ldots < \\
< 2\lambda_{m+1} - 2m + 1 + \delta'_m
\]

where

\[
\delta_i = \begin{cases}
-1 & \text{if } \lambda_{i+1} = \mu_i \\
1 & \text{if } \lambda_i = \mu_i - 1 \text{ and } i > 2 \quad (1 \leq i < m) \\
0 & \text{otherwise}
\end{cases}
\]

and

\[
\delta'_i = \begin{cases}
-1 & \text{if } \lambda_{i+1} = \mu_i - 1 \text{ and } i < m - 1 \\
1 & \text{if } \lambda_i = \mu_i \quad (1 \leq i < m) \\
0 & \text{otherwise}
\end{cases}
\]

Using (8.3) we see that this partition is well defined and it has the
property that every even part ≠ 0 occurs an even number of times; hence in the case where \(\lambda_i \neq \mu_i \) for some \(i \) there is a well defined unipotent element \(u_A \in SO_{2n}(k) \) (up to conjugacy) whose Jordan cells have sizes given by the parts of this partition. In the case where \(\lambda_i = \mu_i \) for all \(i \), we get a partition of \(2n \) all of whose parts are even and there are exactly two unipotent elements \(u_{A(1)}, u_{A(2)} \) whose Jordan cells have sizes given by the parts of this partition. We make them correspond to \(E_{A(1)}, E_{A(2)} \) respectively.

One checks that the correspondence we have defined has, in each case, the required properties.

9. We now state a conjecture in the general case. We assume that \(p \) is sufficiently large.

CONJECTURE. *The Springer construction \(u \to q_u \) defines a \(1-1 \) correspondence between the set of unipotent classes in \(G \) and the set \(\mathcal{F}_W \). We have \(a_{q_u} = \beta(u) \) and \(\alpha(q_u) = |\lambda(u)|.\)

This conjecture suggests the existence of a remarkable set \(X \) of unipotent classes in \(G \): \(X \) consists of those unipotent classes for which the corresponding representation in \(\mathcal{F}_W \) is actually in \(\mathcal{F}_W \).

REFERENCES

10. Mizuno, K. – The conjugate classes of unipotent elements of the Chevalley groups \(E_n \) (\(n = 7 \) or 8). Preprint, University of Tokyo.

Added in proof. It can be verified, using recent results of T. Shoji, that our conjecture is true (except possibly for the formula for \(\alpha(q_u) \)) in the case where \(G \) is a classical group.