
ELSEVIER 

DISCRETE 
APPLIED 
MATHEMATICS 

Discrete Applied Mathematics 72 (1997) 209-218 

An algorithm for finding homogeneous pairs * 

Hazel Everett a, Sulamita Klein b**, Bruce Reed ’ 
a Dep. d’informatique, Universitd du Quebec ri Montreal, MontrPal, Quebec, H3C 3P8 Canada 

b Dep. Ci&cia da Cornputa@o, LM., Universidade Federal do Rio de Janeiro, RJ 21944, Brazil 
c Dept. of Mathematics, Carnegie Mellon University, Pittsburgh, PA 15213-3890. USA 

Received 13 April 1994; revised 9 May 1995 

Abstract 

A homogeneous pair in a graph G = (V, E) is a pair {Ql, Qz} of disjoint sets of vertices 
in this graph such that every vertex of V \ (Ql U Q2) is adjacent either to all vertices of QI 
or to none of the vertices of &I and is adjacent either to all vertices of QZ or to none of the 
vertices of Q2. Also IQ, 1 2 2 or IQ2 1 2 2 and I V \ (QI U Qz)~ > 2. In this paper we present an 
O(mn3)-time algorithm which determines whether a graph contains a homogeneous pair, and if 
possible finds one. 

1. Introduction 

The purpose of this paper is to present an algorithm to determine whether a graph 

G has a homogeneous pair and to find such a pair, if it exists, in polynomial time. 

We consider only finite undirected graphs G = (V,E) with no loops or multiple edges, 

where V is the set of vertices of G and E is the set of edges of G. 

A homogeneous pair in a graph G is a pair {Ql, Qz} of disjoint sets of vertices in 

this graph such that: 

l every vertex of V \ (Ql U Qz) is adjacent to either all vertices of Ql or to no vertex 

of Ql, 
l every vertex of V \ (Ql U Q2) is adjacent to either all vertices of Q2 or to no vertex 

of Qz, 
l IQ11 B 2 or IQzI 2 2 and 

l Iv \ (Ql u Q2)l 2 2. 
See Fig. 1 for an example. 

Homogeneous pairs are a generalization of homogeneous sets. By a homogeneous 
set in a graph G, we shall mean a set Q of vertices of G such that each vertex of 

V \ Q is either adjacent to all vertices of Q or to none of the vertices of Q, IQ1 > 2 
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Fig. I. {{a,b},{c,d} } is a homogeneous pair in graph G 

Fig. 2. Bull. 

and 1 V \ Ql > 1. Note that a homogeneous set Q with 1 V \ Qj > 2 is a homogeneous 

pair where Q2 is empty. A key result in perfect graph theory (for an introduction see 

[7]) is that no minimal imperfect graph contains a homogeneous set. In fact, this is an 

important lemma used by Lovasz in the proof of his celebrated Perfect Graph Theorem 

[lo]: “G is perfect if and only if its complement is perfect”. This result has also been 

used to prove that various classes of graphs are perfect, for example comparability 

graphs [8] and Pd-free graphs [4]. 

Many optimization problems, such as the clique, independent set, chromatic num- 

ber, and clique cover problems, which are NP-complete for general graphs are solv- 

able in polynomial time for perfect graphs using the ellipsoid method [9]. For many 

classes of perfect graphs, simpler polynomial time algorithms for solving these prob- 

lems have been found which are based on a structural decomposition of the graph. 

See [2] for a summary. In particular, homogeneous sets have been used to obtain 

a structural decomposition for the class of comparability graphs and Pa-free graphs 

and, consequently, simple algorithms for many optimization problems for these graphs 

V&4, 121. 
Polynomial time algorithms for finding homogeneous sets are given in [ll, 12, 51. 

The fastest existing algorithm is the O(m) algorithm by Spinrad (unpublished; see [ 121 

for an O((ma(m, n)) algorithm). 

Homogeneous pairs were introduced by Chvatal and Sbihi [3] in 1987. They showed 

that no minimal imperfect graph contains a homogeneous pair. They used this result to 

prove that bull-free Berge graphs are perfect. A graph is Berge when neither the graph 

nor its complement contains an induced odd cycle of size at least five. A Bull-free 

graph is a graph that does not contain a certain induced subgraph with five vertices. 

This graph, shown in Fig. 2, is called a bull. 
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Fig. 3. Graph G with homogeneous pair {Ql,&} 

Currently, no simple algorithms exist for the above mentioned optimization prob- 

lems for the class of bull-free graphs. A structural decomposition approach based on 

homogeneous pairs would use a fast algorithm for finding a homogeneous pair. 

Observe that the existence of a homogeneous pair {Qt , Qz} in a graph G implies 

that the set of vertices V \ (Ql U Q 2 ) can be partitioned into four sets A, N, S1 and S2 

such that 

A = {r E V I n/(u) n <QI u Q2) = QI U Q2}, 

N = (0 E V I N(v) n (QI U Q2) = 01, 

S, = {C E V 1 N(v) n Ql = QI N(v) r- Q2 = 0}, 

S2 = (0 E V I N(u) f- Q2 = Q2, N(o) n Ql = 8}, 
where N(u) = {x E V I {v,x} E E}. W e can represent a graph G that has a ho- 

mogeneous pair by the diagram in Fig. 3, where a continuous line between two sets 

represents the property that each vertex of one set is adjacent to each vertex of the 

other set. A broken line represents the property that no vertex of a set is adjacent to 

any vertex of the other set. 

2. The algorithm 

Our algorithm looks for a homogeneous pair in two stages. First we check if G has 

a homogeneous pair which is a homogeneous set; that is, if G has a homogeneous set 

H with I V \ H 1 3 2. The simple fact below implies that we can test for such an H in 

O(m)-time using Spinrad’s algorithm. 

Fact. If’ G is a graph with I VI 3 4 and H is a homogeneous set in G with 1 V \ HI = 

1 then G has a homogeneous set H’ with IV \ H’I > 2 if and only if there is a 

homogeneous set in the subgraph G[H] of G induced by H. 

Proof. Let G be a graph with I VI > 4, let H be a homogeneous set in G with IH( = 

IV-ll,andlet V\H={x}. W e note that x is either adjacent to all of H or to none 
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of H. Thus if H’ is a homogeneous set in G[H] then H’ is a homogeneous set in G 

with 1 V \ H’j 2 2. It remains to show that if there is a homogeneous set HI in G with 

1 V \ HI 1 2 2 then G[H] has a homogeneous set. So let HI be a homogeneous set in 

G with 1 V \ HI 1 2 2. If IHI I 3 3 or x $! HI then HI f? H is a homogeneous set in 

G[H] and we are done. Thus HI = {x, y} for some y E H. But now x and y either 

both are adjacent to all of V \ {x, y} or to none of V \ {x, y}. Thus V \ {x, y} is a 

homogeneous set in G with fewer than 1 VI - 1 vertices as required. 0 

In the second stage we look for a homogeneous pair with both Qi and Q2 non- 

empty and one of S1 or SZ non-empty. Without loss of generality we can assume Si 

is non-empty. We start by making a list L of all possible ordered triples of vertices 

(41, q2, sl) such that {q,,s,} E E and {qz,sl} 6 E. Now G has such a homogeneous 

pair if and only if it has a homogeneous pair with q1 in Qi, q2 in Q2 and si in Si for 

some triple of L. 

We describe an O(n2) algorithm to test for a particular ordered triple (41, q2, ~1) 

if G has a homogeneous pair with q1 in Qi, q2 in Q2 and si in Si. We apply this 

algorithm to all the possibilities in turn. If we ever find a homogeneous pair we return 

it. Otherwise we return NO. The total time taken by the algorithm is 0(n5). ’ 

We partition the vertex set V* = V \ (41, q2,sl) of G into the following eight sets 

AQI = {x E V* I {x,ql} E -6 {x,qd E E and {X,SI} E E}; 

AQ2 = {x E V” I {x,ql) E E, {x,qd E E and {x,.o} $E); 

SlQl = {x E V* I {x,ql) E E, {x,qz) sl E and {X,SI) E E); 

&Ql = {x E V* I {x,ql) $E, {x,q2) E E and {X,SI) E E); 

SQ2 = {x E V* I {x,ql) E -6 {x,q2) GE and {X,SI) $E); 

SQ2 = {x E V* I {x,ql) 6.6 {x,q2) E E and {X,SI) @‘El; 

NQl = {x E V* I {x,ql) #E, {x,qz) #E and {~,a) E E); 

NQ2 = {x E V* I {x,ql) $E, {x,q2) $E and {~,a) $E). 

Consider a vertex x E AQi. Since x is adjacent to q1 E Ql, to q2 E Q2 and to sl E Sl 

it cannot be in the sets Si or Sz or Q2 or N. In other words x must be assigned to 

either A or Qt which we indicate with the notation x + A or x --t Qi. So, with a 

similar analysis for the other sets, we have 

AQ, C{x E v-* I x+A orx+Qi}, 

AQ2 &{x E V* I x -+ A or x --f Q2}, 

$QI C{x E V* I x + S1 or x -+ Qi}, 

’ It was noted by one of the referees that this procedure can be generalized to yield a polynomial algorithm 

for finding a homogeneous k-set. 
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S2QI C{” E v* I x -+ S2 or x 4 Qi}, 

SlQ2 C{” E v* I x + SI or x + Q2}, 

S2Q2 L{x E v* I x4& orx+Q2}, 

NQI G{x E V” / x4N orx+Qi}, 

NQ2 C{x E V* I x+N orx-Q2) 

The idea of the algorithm, which follows closely that of Apsvall et al. [l], is to 

transform the sets AQi, AQ2, SiQi, S2Qi, SiQ2, S2Q2, NQi and NQ2 into the sets A, 

N, SI, S2, QI and Q2, by specifying for each vertex whether or not it should be placed 

in Qi U Q2. We say that a vertex is internal if we place it in Qi u Q2 and external 

otherwise. Thus, after all our choices have been made, A is the union of the external 

vertices in AQi and AQ2, St is the union of the external vertices in SiQi and SiQ2, 

S2 is the union of the external vertices of S2Qi and S2Q2 and N is the union of the 

external vertices of NQi and NQ2. Then Qi will be formed from the internal vertices 

of .4Qi, Si Qi, S2Qi and NQi, and Q2 will be formed from the internal vertices of 

AQ2, SQ2, &Qz and NQ2. 
It is easy to see that G contains a homogeneous pair with q1 E Q,, q2 E Q2 and 

SI E SI if and only if for every pair of vertices x and y, x, y E V*, the following 

conditions are satisfied. Conditions (I)-(VI) ensure that vertices are placed so that all 

constraints on the existence of edges and non-edges are satisfied and condition (VII) 

ensures that the technical requirements of the definition of a homogeneous pair that at 

least one of Qi or Q2 has at least two vertices and that there are at least two vertices 

outside Ql U Q2 are satisfied. 

(I) If x and y are not adjacent and they are both in one of AQ,, AQ2, S,Qi or 

S2Q2, then they are either both internal or both external. 

(II) If x and y are adjacent and they are both in one of S1Q2, S2Qi, NQ, or NQ2, 

then either they are both internal or both external. 

(III) If x E AQl, y E AQ2 and x and y are not adjacent then either they are both 

internal or both external. Similarly for x E AQi and y E S,Q, or y E S,Q2; x E AQ2 

and y E S~QI or y E S2Q2; x E StQ2 and y E S2Qi. 

(IV) If x E SiQl, y E S2Q2 and x and y are adjacent then either they are both 

internal or both external. Similarly for x E Si and y E NQ2; x E S2Q2 and y E NQ, ; 

x E S1Q2 and y E NQ2; x E S2Qi and y E NQ,; x E NQi and y E NQ2. 

(V) If x E AQi, y E S2Qi and x and y are not adjacent then if x is external y is 

also external. Similarly for x E AQl and y E S2Q2 or y E NQ1 or y E NQ2; x E AQ2 

and y E SI QI or y E SI Q2 or y E NQi or y E NQ2; x E SiQi and y E S2Qi or 

YENQI;xES~Q~ and yES,Qi or yENQi;xES2Qi and yES2Q2 or yENQ2. 

(VI) If x E AQl, y E S2Qi and x and y are adjacent then if x is internal y is also 

internal. Similarly for x E AQ, and y E S2Q2 or y E NQi or y E NQ2; x E AQ2 and 

~ESIQI or y~SiQ2 or ~ENQI or ~ENQ~;xESIQ~ and ~ES~QI or ~ENQI; 

x~SiQ2 and y~SiQi or yENQi;xES2Qi and y~S2Q2 or yENQ2. 
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(VII) There is at least one external vertex and one internal vertex. 

We remark that we could enforce condition (VII) by trying all possible choices for 

external and internal vertices in V*. We could then apply the algorithm of Apsvall et 

al. [I] directly to a 2-SAT instance describing our conditions. This yields an O(n’) 

algorithm. We do not see how to apply Apsvall et al. [l] to obtain an 0(mn3) algorithm 

for our problem. Our algorithm for solving the problem however mimics their algorithm 

quite closely. 

We will need the following definitions. A directed graph 6 is strongly connected 

if there is a path from any vertex to any other. The maximal strongly connected 

subgraphs of a graph are vertex disjoint and are called its strong components. We say 

that (Cl, CI, . . . . Ck) is a reverse topologicul ordering of the strong components of G if 

there is no arc directed from a vertex of C; to a vertex of Cj, for i < j. If Ck and C, 

are two strong components such that there is an arc directed from a vertex of Ck to a 

vertex of Cl then Ck is called a predecessor of C/ and Cl is called a successor of Ck. 

Homogeneous pair-algorithm 

Input: a graph G = (V, E) with 1 V j > 4. 

Output: YES-G has (I homogeneous puir or NO-G does not have a homogeneous 

pair. If the answer is YES, the algorithm also returns the homogeneous pair {Ql, Ql}. 

Step 0 Use Spinrad’s O(m) algorithm to test if G has a homogeneous set. If it returns 

with a homogeneous set H with IH 1 d 1 V -21 then return YES-G has u homogeneous 

pair, Ql = H and Q2 = 0 and stop. If it returns with a homogeneous set H such that 

V \ H is a single vertex x then run it again on G[H]. If G[H] has a homogeneous 

set H’ then return YES-G has a homogeneous puir, Ql = H’ und Q2 = 8 and stop. 

Step 1 Make a list L of all ordered triples (a, 6, c) of vertices of G such that {a, c} E E 

and {b, c} +Z E. 

Step 2 If C is empty return NO-G does not huve a homogeneous puir and stop. 

Otherwise let T be the first triple in If. Let qt be the first vertex of T, let q2 be the 

second and let SI be the third. Remove T from C. 

Step 3 Partition the set V* = V\{ql,qz,sl} into the eight sets AQl, AQ2, S,Q,, S2Ql, 

SjQz, &Qz, NQl, NQ2 as defined above. 

Step 4 Construct a directed graph ~~,~q2,s, = (V(6 q,rqz,J, ),E(G4,,q2,s, )) as follows. 

The set Y(~y,,42,,~, > = V*. The set E(6q,.q~,,s, )) is given by the next two tables. 

We denote by (x, y) the fact that (x,y) and (y,x) are edges of g. Table 1 shows 

the directed edges corresponding to the edge {x, y} of G, where x belongs to a set 

in the first column and y belongs to a set in the first row. Table 2 represents the 

directed edges corresponding to the fact that {x, y} is not an edge of G. 

Step 5 Find the strong components of (?9,,41,s, and return them in reverse topological 

order. 

Step 6 Process the strong components of gq,,qz,s, (in reverse topological order) as fol- 

lows. If &z,s, has only one strong component, then G does not have a 

homogeneous pair for this chosen triple of vertices, so return to Step 2. 
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Table 1 

215 

(edges) AQI AQ2 SIQI S2Q2 SQ2 S2Q1 NQI NQ2 

AQI 
AQ2 
SI QI 
s2Q2 

SI Q2 

s2Q1 

NQI 
NQ2 

Table 2 

non-edges AQI AQ2 &QI S2Q2 SQ2 s2Q1 NQI NQ2 

AQI (x, I’) (x, y) (~3 Y) (~7 y) (z Y) (x> Y) (1, Y) (x> Y) 

AQ2 (1, y) (~3 Y) (x> .v) (~3 y) (x. Y) (~3 Y) (x> y) k .v) 

SIPI (x>Y) (~3x1 (x,y) (?‘,x) (X>Y) ky) 

S2Q2 (y>x) (x>Y) (GY) (X> Y) (,:x) (x Y) 

SQ2 (x,y) (y>x) ky) (Y.x) (x. y) (x3 Y) 

s2Q1 (?:x) (x>Y) (Y,x) ky) b->y) (x. Y) 

NQI (.c .v) (~7 Y) (~3 Y) (x3 Y) 

NQ2 (x. Y 1 (x> .v) (X> Yl (XT 41) 

Otherwise mark all the vertices of the strong components that have predecessors 

with E and the vertices of the other components (that have no predecessors) with 

I. If there are only isolated components (i.e. components that have no predecessors 

and no successors), choose one of them and mark its vertices with I and mark all 

the vertices of the other components with E. 

Step 7 Set: 

Qi = {vertices of AQi marked I } U {vertices of SiQl marked I}U {vertices of 

SzQ, marked I} U {vertices of NQi marked I} U (41). 

Ql = {vertices of AQ2 marked I } U {vertices of S,Qz marked I} U {vertices of 

SlQ2 marked I} U {vertices of NQ2 marked I} U (92) 

Return YES-G has a homogeneous pair and the sets Qi and Q2. 

3. Why it works 

In this section, assume we have a triple of vertices {ql,qz,s1} given by Step 2. We 

show that the algorithm correctly marks the vertices of the directed graph Gq,,q2,S, so 

that conditions (I)-(VII) are satisfied if and only if G has a homogeneous pair with 

41 E QI, q2 E Q2 and SI E SI. 

Consider the directed edges of G’4,,42,s,. The edge (x, y), for example, where x E S2Q2 

and y E AQi represents the fact that if x is placed in S2, that is, if x is external, then 

y must not be placed in Ql, that is, y cannot be internal. This is exactly the constraint 



216 H. Everett et. al. IDiscrete Applied Mathematics 72 (1997) 209-218 

required by condition (VI). Thus the vertices of Gq,,42,s, can be marked so that there 

is no edge (x, y) with x external and y internal iff conditions (I)(VI) can be satisfied. 

So we have proved: 

Lemma 1. G has a homogeneous pair with q1 E Ql, q2 E Q2 and SI E SI if and only 

if the vertices of c!?~,,~~,.~, can be marked internal and external ( or I and E ) such 

that the next two conditions are satisfied: 

(i) no directed edge (x, y), can have x external and y internal; 

(ii) there is at least one external vertex and one internal vertex. 

Clearly, for each strong component of 6, condition (i) implies that all the vertices are 

either external or internal. This fact, needed for the correctness proof of the algorithm, 

is stated explicitly in the next lemma. 

Lemma 2. Suppose G has a homogeneous pair with q1 E Ql, q2 E Q2 and sl E S,. 

Then each strong component of c?~,,~~,.~, either has only external vertices or only 

internal vertices. 

We are now ready to state our main theorem. 

Theorem 1. The ulgorithm correctly determines whether G has a homogeneous pair. 

Proof. Suppose the algorithm does not report failure. By our fact about homogeneous 

sets which are homogeneous pairs, if the algorithm terminates in Step 0 then it does in- 

deed return a homogeneous pair. Otherwise, the algorithm terminates because for some 

triple {ql,qz,sl} the directed graph G:Y,,y?rS, has more than one strong component. Since 

all vertices of a strong component receive the same mark and only the components that 

have no predecessor (in the case we do not have all isolated components) are marked 

with I this implies that there is no directed edge (x, y) with x marked E and y marked 

I. It is clear that this is also true for the case of all isolated components. Since there is 

at least one component marked E and one component marked I there will be at least 

one internal and one external vertex. Then by Lemma 1 G has a homogeneous pair. 

Now, let us assume that G has a homogeneous pair {Qi, Q2}. In this case we 

must show that in this case our algorithm finds a homogeneous pair in G. If for this 

homogeneous pair one of Qi, Q2, or Qi U Q2 is a homogeneous set containing fewer 

than 1 VI - 1 vertices then by our fact about homogeneous sets which are homogeneous 

pairs we will find such a homogeneous set, which is also a homogeneous pair in Step 

0. Otherwise, G has a homogeneous pair {Ql, Q2} such that for some triple of vertices 

{a, b,c} in G we have a E Ql, b E Q2, c E ST. Then the vertices of ~?~,b,~ can be 

marked so that the conditions of Lemma 1 are satisfied. We want to show that the 

algorithm finds such a marking in the iteration in which T = {a, b, c} (we can assume 

the algorithm performs this iteration as otherwise it halted earlier and therefore found 

a homogeneous pair as required). Suppose the algorithm fails to find a marking. This 
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implies that (?‘a,b,c has only one strong component. According to Lemmas 1 and 2 the 

vertices of this component have to be all marked E or all marked I. If all are marked 

E, then all vertices are going to be external and we have Qt = q1 and Q2 = qz, 

contradicting the definition of homogeneous pair. If all are marked I, then all vertices 

are going to be internal and V = Q, U Q2, also contradicting the definition of a 

homogeneous pair. 0 

4. Time complexity 

We can estimate the running time of the homogeneous pair-algorithm as follows: 

Step 0 can be implemented in O(m)-time. Step 1 takes O(mn)-time since the triples 

are made up of one edge and one other vertex. Step 2 can be done in constant time. In 

Step 3 it is clear that the construction of each of the eight sets takes time proportional 

to 12. In Step 4 the construction of the directed graph (?q,rY2,S, clearly takes 0(n2). 

Step 5 can be done using Tarjan’s algorithm [13] for finding strong components and 

returning them in reverse topological order in a time proportional to the size of the 

graph. Clearly Steps 6 and 7 can be done in linear time. Then Steps 2-5 take O(n*)- 

time. Since we will apply Steps 2-5 at most mn times the algorithm takes 0(mn3)-time 

in total. Then it follows: 

Theorem 2. Determining whether u graph bus u homogeneous pair can be computed 

in 0(mn3)-time. 

Acknowledgements 

We would like to thank Celina M.H. de Figueiredo and Marcia R. Cerioli for careful 

readings of earlier drafts of this paper and RenC Ferland for giving invaluable advice 

on UTEX. 

References 

111 

PI 

[31 
[41 

[51 

[61 

[71 
PI 

B. Aspvall, F. Plass and R.E. Tarjan, A linear-time algorithm for testing the truth of certain quantified 

Boolean formulas, Inform. Process. Lett. 8 (1979) 121-123. 

A. Brandstldt, Special graph classes - a survey, Schriftenreihe des Fachbereihs Mathematik, SM-DU- 

199, Universitlt Duisburg Gesamthochschule (I 993). 

V. Chvatal and N. Sbihi, Bull-free Berge graphs are perfect, Graphs Combin. 3 (1987) 127-139. 

D.G. Corneil, Y. Per1 and L. Stewart, Cographs: recognition, application and algorithms, Congr. Numer. 

43 (1984) 2499258. 

A. Coumier, Sur quelques Algorithmes de Decomposition de Graphes, These, Universitt Montpellier 

11 (1993). 
M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP- 

Completeness, (W.H. Freeman, San Francisco, 1979). 

M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, New York, 1980). 

M.C. Golumbic, Comparability graphs and a new matroid, J. Combin. Theory. Drt. B 22 (1977) 68-90. 



218 H. Everett et. al. IDiscrete Applied Mathematics 72 (1997) 209-218 

[9] M. Grotschel, L. Lovasz and A. Schrijver, Polynomial algorithms for perfect graphs, Ann. Discrete 

Math. 2 1 (1984) 325-356. 

[lo] L. Low&z, Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (1972) 253-267. 

[l l] J.H. Muller and J. Spinrad, Incremental modular decomposition, J. ACM 1 (1989) I-19. 

[12] J. Spinrad, P4-trees and substitution decomposition, Discrete Appl. Math. 39 (1992) 263-291. 

[13] R.E. Tarjan, Depth first search and linear graph algorithms, SIAM J. Comput. 1 (I 972) 146160. 


