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Abstract

We study some structural and topological properties of the frontiers of objects in a certain class
of discrete spaces, in the framework of simplicial complexes and partial orders. In a previous work,
we introduced the notion of frontier order, which allows to define the frontier of any object in an
n-dimensional space. The main goal of this paper is to exhibit the links which exist between frontier
orders and the notion of derived neighborhood as introduced in the framework of piecewise linear
topology. In particular, we prove that the derived subdivision of the frontier order of an objeet
“regular” n-dimensional space is equal to the frontier of the derived neighborhodanfd that this
frontier is a union ofn — 1)-dimensional surfaces, for any dimensian
© 2004 Elsevier B.V. All rights reserved.
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0. Introduction

In many applications stemming from digital image processing, geometrical modeling and
computer graphics, the notion of frontier of discrete objects plays a central role.

We are interested in certain topological and structural properties of frontiers. In the
continuous spac&”, we remark that the boundaries of certain “well behaved” subsets
of R", such as conver-polytopes, are topologicgh — 1)-manifolds. In the framework of
piecewise linear topology, we may defineradimensional spacas a simplicial complex
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which is a combinatoriah-manifold, and we calbbjectany subcomplex of this space.
Then, it is possible to prove that the boundary of a derived neighborhood of any object is a
combinatorial(n — 1)-manifold[13].

Several purely discrete frameworks have been used in order to study topological prop-
erties of objects in discrete spaces (see ¢13.,14,7,21,19,4]Here, we follow an ap-
proach based on the notions of (abstract) simplicial complex and partial [dre220]
Instead of combinatorial manifolds, we consider the notiom-@imensional surfaces
(or n-surfaces for short) which has been introduced by Evako €14)12,14] The no-
tion of combinatorial manifold is complicated, in particular, the problem of recognizing
a combinatorial manifold is difficult. On the opposite, the recognition ohaurface is
straightforward.

In previous work$8,9], we introduced the notion of frontier order, which allows to define
the frontier of any object in amndimensional space. The main goal of this paper is to exhibit
the links which exist between frontier orders and the notion of derived neighborhood. In
particular, we prove that the derived subdivision of the frontier order of any oljéct
equal to the frontier of the derived neighborhooXoDur second main result is a theorem
which may be stated informally as follows: the frontier of the derived neighborhood of any
object in am-surface is a union of disjoinz — 1)-surfaces, for any.

1. Partially ordered sets and simplicial complexes
1.1. Partially ordered sets

Let us first introduce the notations that we will use in this articleX 1§ a set andsa
subset ofX, when no confusion may occur we denoteshihe complement o8in X. We
write S C X if Sis a subset oKandS # X, wewriteS C Xif SC XorS=X.If 1is
a binary relation orX, i.e., a subset of the cartesian prod¥ck X, theinverse of? is the
binary relation{(x, y) € X x X, (y, x) € A}. For any binary relatior, JH is defined by
H = A\{(x, x), x € X}. For eachx of X, A(x) denotes the sdi € X, (x, y) € A} and for
any subseBof X, A(S) denotes the sdy € A(s), s € S}.

An order [2,5,6,15] also calledpartially ordered sebr poset is a pair|X| = (X, ax)
whereX is a set andry is a reflexive, antisymmetric and transitive binary relationXon
For example, the simplicial complex depictedrig. 1 (1) may be interpreted as an order:
the elements of this order are the triangles, the edges and the vertices, and theaglation
is the inclusion relation. Letbe an element oX, the sebix (x) is called thexy-adherence
of x. We denote by the inverse ofix and byOx the union ofax andfy. The sefx (x)
is called thefx-neighborhood of xor simply theneighborhood of xwvhen no confusion
may arise. We say that two elementsy of X areneighbors or comparableif y € Ox (x).

If y € ax(x) then we say that is under xand thatx is above y

Let xg andx, be two elements oX, apath fromxg to x,, in | X| is a sequencey, .. ., x,
of elements oK such that for ali € [1...n], x; € Ox(x;—1). A connected component of
| X| is a subse€ of X such that for allx, y € C, there exists a path fromtoyin C, and
which is maximal for this property.

Letxbe an element of the ordgx |, therank of x in| X| is the numbep(x, | X|) such that
p(x, |X)=0if d(x) =@ andp(x, |X|) =Max{p(y, | X]) + 1, y € «5}(x)} otherwise. The
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Fig. 1. Fundamental notions for simplicial complexes: (1) a simplicial comKlex which s is a 2-simplex,

t a 1-simplex ancu a O-simplex, (2) depict$, 7 and iz, which are equal tary (s), oy (r) and ox (u), re-
spectively, (3) depictsrar(s, X), star(t, X) andszar(u, X), which are equal tfy (s), fx () and fix (),
respectively, (4) depictsar (s, X), star(t, X) andstar(u, X), which are equal to.y (Bx (s)), ox (Bx () and
ax (Px (u)), respectively, (5) depicsand/ink (s, X) (which is empty)tandlink(z, X) (two isolated Osimplexep
andu andlink(u, X), (6) depictdlx (s), Ox (1) andOx (u), (7) depicts a 1-complexand two 0-complexeX and
Z, (8) depicts the 2-compleX o Y and the 1-compleX o Z, (9) depicts the 3-complegX o Y) o Z, which is

equal(XoZ)oY.
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rank of| X| is the numbep (] X|) such thaip(] X|) = Max{p(x, |X|), x € X}. Any element
of an order is called pointor ann-elementn being the rank of this point.

An order| X| is countablelf X is countable, it idocally finiteif, for eachx € X, O0x(x)
is a finite set. ACF-orderis a countable locally finite order. In the following, we consider
only CF-orders.

Let|X| = (X, ax) and|Y| = (Y, ay) be two orders|X| and|Y| areorder isomorphidf
there exists a bijectiorf : X — Y such that, for alk1, xo € X, x1 € ax(x2) & f(x1) €
ay (f (x2)).

If | X| = (X, ay) is an order andis a subset oK, thesub-order of| X| relative to Sis
the order(S, ag), with ag = ax N (S x §). When no confusion may arise, we also denote
by |S| the order(S, uy).

1.2. Simplicial complexes

Let A be afinite set, any non-empty subsetla$ called ssimplexA simplexsconstituted
of (n + 1) elements of1 is called am-simplex Any non-empty subset of a simplexs
called aface of sA proper face of $s a face oswhich is not equal t@. Let X be a family
of simplexes o1, we say thaKX is asimplicial complexf it is closed by inclusion, which
means that, i6 belongs toX, then any face of also belongs t. Let X be a non-empty
simplicial complex, we say that is a simplicial) n-complexf all the simplexes oK are
m-simplexes withm <n, and if at least one simplex of is ann-simplex. The subset of
A which is the union of all the simplexes &fis called thesupport of X The simplicial
complexes we just defined are often knowrabstract simplicial complexeas opposed to
other notions of complexes based upon an underlying Euclidean space.

To any simplicial compleX, we can associate a canonical orféf = (X, ay) where
oy is the inclusion relation: € oy (s) means that C s. In this paper, we will often refer
to the canonical order associated to a simplicial complex, especially when it allows simpler
formulations or proofs. LeX be a simplicial complex and lete X. We observe thaty (s)
does not depend oX since any simplicial complex is closed by inclusion. Thus, we will
often writeo instead ofxy when discussing about simplicial complexes. We say that the
simplicial complexX is connectedf the order|X| is connected. We can easily see that for
anyn-simplexs of X, for anyn >0, we havep(s, | X|) = n.

The notions of boundary, open star, closed star, join and link are fundamental in the
framework of simplicial complexes. We give below their definitions and their interpretations
in terms of order. We show some illustrationsHig. 1

e Letsbe a simplex, thelosure of sdenoted by, is the simplicial complex consisting
of sand all its faces. In other words = o(s).
By extension, ifSis a set of simplexes, th@osure of Slenoted bysAis the union of the
closures of its simplexes. In other wordss= «(S).

° Let%be a simplex, theoundary of $s constituted by all the proper facesft is equal
toa—(s).

e Let sbe a simplex of a simplicial compleX; the (open star of s in Xis defined as
star(s, X) ={t € X, s C t}. Thusstar(s, X) is equal tofy (s). Theclosed star of s in
X is defined as the closure of the stasdfi X. In terms of order, we havgar (s, X) =
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ax (Bx(s)). Notice that the closed star is always a simplicial complex while the open
star is not.

e Two simplexes arpinableif their intersection is empty. Bandt are joinable simplexes,
thesimplicial join of s and is defined as o r = s U . Two simplicial complexeX and
Y are said to bégoinableif every simplex ofX is joinable with every simplex of; thus
X andyY are joinable if and only if the intersection of their supports is empt{ ahdY
are joinable, theqimplicial) join of X and Yis defineda o Y =X UY U{sot,s € X,
t € Y}. It can easily be seen that the join of two simplicial complexes is always a
simplicial complex, and that the join operation is associative and commutative.

e Letsbe a simplex of a simplicial complex; thelink of s in Xis defined as the set of
all simplexeg in X such that the join of ands belongs taoX, that is,link(s, X) = {r €
X,s ot € X}. It can be easily seen that the link of a simplex in a simplicial complex is
always a (sometimes empty) simplicial complex. In terms of order relation, the link of
sin Xis order isomorphic t@ (s), as proved irf10].

2. Discrete surfaces

2.1. Definition of n-surfaces in the framework of orders

The main results of this article are based on a notiom-dfmensional discrete sur-
face proposed by Evako, Kopperman and Multih 12,14] Suchn-dimensional surfaces
have been proved to verify discrete analogs of the Jordan—Brouwer theorém[1i6]
andZ3 [18] equipped with the Khalimsky topolodg5].

Let|X| = (X, ax) be a non-empty CF-order.

e The order|X| is a Osurfaceif X is composed of exactly two pointsandy such that
y ¢ ox(x) andx ¢ ox (y).

e The ordef X|is ann-surfacen > 0, if | X| is connected and if, for eactin X, the order
|9[):(‘(x)| is an(n — 1)-surface.

For technical reasons, we will say that| is a(—1)-surfaceif X = @.

2.2. Definition of n-surfaces in the framework of simplicial complexes

We say that a simplicial compleXis ann-surfacefor anyn € N, if the order(C, ©) is
ann-surface. The following property shows that, in the framework of simplicial complexes,
n-surfaces may be characterized by a simpler condition based on the link operator.

Property 1. A non-empty simplicial complex C is an n-surfaee- 0, if and only if C is
connected andor eachO-simplex s in Clink(s, C) is an(n — 1)-surface

The proof of this property is based on the two following properties, which we also use
later in this article:

Property 2. Let|X|= (X, ax) be an order. Then X| is an n-surface if and only,ifor any
xin X, |ocE (x)|isa(k —1)-surface andﬁ?(xﬂ isan(n —k —1)-surfacewithk=p(x, | X|).
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Property 3. Let S be an n-simplethena=(S) is an (n — 1)-surface

Properties 1, 2 and 3 are provedi9].

2.3. Theorems related to n-surfaces and simplicial complexes

The following theorem is an important tool for demonstrating properties related to
n-surfaces in the framework of simplicial complexes. Results similar to Theorem 4 have
been obtained by Evako et 2] in a framework based on graphs, and by ourselves in the
framework of order$10].

Theorem 4. Let the simplicial complex&s; and C2 be, respectivelyan n-surface and an
m-surfacgn, m > 0). Then the simplicial compleX = C1 o C2 is an(n + m + 1)-surface

Proof. Let us first consider the case wherg¢ andC» are both 0-surfaces, then any point
of C has a link composed of two isolated points, tkilis a 1-surface (the connectedness is
obvious).

Assume now that the property is true for evargndm such that: + m <d, d >0, and
let us prove it for(n + 1) andm (which, by symmetry, will also prove it farand(m + 1),
and, by induction, for any, m >0):

e Letx be a 0-simplex o, according to the definition of the join operatriis either a
0-simplex ofCy or a 0-simplex ofC».

e If xis a simplex ofCy, thenlink(x, C) = link(x, C1) o C2 (see Lemma 14 in the
Appendix). Sincdink(x, C1) is ann-surface (by Property 1C; being an(n + 1)-
surface) and’, is anm-surface (by hypothesis)ink(x, C) is an(n + m + 1)-surface
(by induction hypothesis).

o If xisasimplex ofCy, thenlink(x, C)=link(x, C2)oC1 (stillaccording to Lemma 14).
Thus, eithelCy is a 0-surface, in which cagaik(x, C)=Crisan(n+1)=n+m+1)-
surface, ofink(x, C2) is an(m — 1) surface, in which cagénk(x, C) isan(n+m+1)-
surface (by induction hypothesis).

e Moreover, the connectednessis guaranteed by the definition of the simplicial join,
thus, by Property 1C is an (n + m + 2)-surface: the property is true fa@n + 1)
andm. 0O

3. Subcomplex, border and frontier

Let X be a simplicial complex, and [&the a subset of. If Yis a simplicial complex then
it is called asubcomplex of X
LetX be a simplicial complex with suppaitt, and lety be a subcomplex of, with support
A" € A. We say thaY is afull subcomplex of ¥ every simplex ofX which is a subset oft’
also belongs t&. The notions of subcomplex and full subcomplex are illustrateelgn2.
One can easily verify the following property, which states that there is a unique full
subcomplex associated to each subset of the support of a simplicial complex.
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Fig. 2. Subcomplex, full subcomplex, simplicial complement and border: (a) a simplicial coXgl&»a subcom-
plexY; of X (black dots, bold edges and dark triangles), which is not a full subcompbxof a full subcomplex
Y5 of X (black dots, bold edges and dark triangles), (d) the simplicial completeot Y1 (white dots, dotted
edges and light triangles), (e) the simplicial compleménof ¥» (white dots, dotted edges and light triangles),

which is equal td/; sinceY1 andY» have the same support. Notice tivat=Y» (see Proposition 6), (f) the border
d(Y2) (black dots, bold edges).

Property 5. Let X be a simplicial complex of suppott Let A’ be a subset off. The
subcomplex Y of X defined By= {y € X, y € A’} is the unique full subcomplex of X with
supportA’.

Let X be a simplicial complex with support, and letY be a subcomplex oX, with
supportA” € A. Thesimplicial complement of Y in,Xlenoted by compY, X) or simply
by ¥ when no confusion may occur, is the simplicial complex composed of all the sim-
plexes ofX which are subsets of\A’, that is,¥ = compkY, X) = {s € X,s € A\A'}.
We can easily see that the previous expression indeed defines a simplicial complex, the
support of which isA\A'. The simplicial complement of can also be expressed as
Y = {s € X, Y does not contain any face of. The notion of simplicial complement is
illustrated inFig. 2d,e.

We can deduce from Property 5 that the simplicial complement of any subcomptex of

is a full subcomplex oK. Furthermore, sinc& = {s € X, s € A'}, the following property
also follows easily from Property 5 (see alsig. 2d,e).

Property 6. Let X be a simplicial complexand letY be a subcomplex of\Xe have:/ =Y
if and only if Y is a full subcomplex of X

Let X be a simplicial complex, and I&tbe a subcomplex ok. Theborder of Y in Xis
the set of elements afwhich are neighbors of some elementd(Y, in other words, the
setd(Y, X) ={y € ¥, 0x(y) N (X\Y) # @}. It may be easily seen thatY, X) ={y €
Y, Bx(M NX\Y) #0}=Y\{y € ¥, Bx(y) S Y}.
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When no confusion may occur, we omit the referenc tnd we writed(Y) = o(Y, X).
It can easily be seen that the border of any subcompleX & a simplicial complex.
In Fig. 2f, we see the border of the subcomplexdg. 2c.

We can see that any subcomplérf a complexX gives birth to five remarkable sets of
simplexesy, §(Y), Y, 6(Y) which are subcomplexes & and the remindek\ (Y U Y)
(in Fig. 2d,e, this reminder is depicted by medium gray triangles and thin edges). We
denote byA(Y, X), or simply byA(Y) when no confusion may occur, the S&t{(Y U Y).
Obviously, 4(Y) is not a simplicial complex, thus it is not a subcomplexXofThe order
|A(Y)| = (4(Y), ©) is named thérontier order relative to Y in XBy abuse of terminology,
we also calfrontier orderthe set4(Y). It should be noted that the notion of frontier order
may be extended to any CF-order, and that this definition is equivalent, up to an order
isomorphism, to the definition proposed[#].

We can easily deduce from Property 6 thaY;ig a full subcomplex oK, then the frontier
orderA(Y) is “symmetrical” betweeiY andY, that is,4(Y) = A(Y).

LetY be a subcomplex of the simplicial compl¥xthesimplicial neighborhood of Y in
X is defined as the union of the closed stars of the simplex¥sroK, that is,N (Y, X) =
User star(s, X). When no confusion may occur, we wrid&(Y) = N (Y, X). In terms of
order relationN (Y, X) = ax(fx(Y)). The notion of simplicial neighborhood is illustrated
in Fig. 3a,b.

@) (b) ©

(d)

Fig. 3. Simplicial neighborhood and its border: (a) a simplicial compéall the triangles, edges and vertices)
and a full subcompleX of X (one bold edge and two black vertices), (b) in dark grey and bold bM¢kK), (c) in
bold black,6(N(Y)). We can see thal(N (Y)) = ax (fx (Y)\fx (¥), (d) a complexX composed of the proper
faces of a 3-simplex (tetrahedron), and a subcomptEHS(in dark grey and bold black). We can see thav (Y))

is empty, whilexx (B x (Y))\fx (Y) is composed of one O-simplex (in white).
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4. Subdivision, derived neighborhoods and derived frontiers

Inthe previous section, we defined the bordlgf) of a subcompleX of a complexX. We
saw thatd(Y) is always a simplicial complex, but this border is not symmetrical between
Y and Y, more preciselyp(Y) # 5(Y). On the other hand, we introduced the frontier
order ofY, which is symmetrical but which is not a simplicial complex. The subdivision
operation will allow us to define the derived frontier, which is both a simplicial complex
and symmetrical betweeéfandY .

The notion of derived subdivision, that we present now, is especially interesting for us
since it can be applied not only to simplicial complexes, but more generally to any partially
ordered set.

Let | X| be an order, &hain of| X| is a fully ordered non-empty subsetXfi.e., a non-
empty subseY of X such that any two elements6fare comparable. An-chainis a chain
composed ofi + 1 elements.

The derived subdivision ofX| is the set, denoted b¥?!, constituted by all the chains
of | X|. The notion of derived subdivision is illustratedfig. 4. Notice that for any order
(X, ay), the derived subdivisioi® is always a simplicial complex, the support of which
is X. We also callx? the chain complex of XLet X be a simplicial complex, thderived
subdivision of Xs the derived subdivisioX ! of the ordern X, <).

It can be easily verlfled that for any two ordetd, | Z| we have[Y N Z]* = y1n z1,
but in generalY U Z]* # Y1 u z! and[Y\Z]' # Y1\ Z%. Furthermore, ity andZ are
simplicial complexes, then we hayE N Z1' = y1n zland[y u Z]* = Y1 U Z1, butin
generaly'\ Z is not a simplicial complex.

Let X be a simplicial complex, and [¥tbe a subcomplex of. Thederived neighborhood
of Y in Xis defined as the simplicial neighborhood 6t in X?, that is: N (Y1, X1) =
Uiyt star(yt, X1 = ay1(Bxa(Yh)) (seeFig. 5. When no confusion may occur, we
simply write N (Y1) = N(Y1, X1).

Observe thag 1 (Y1) is composed of the chains ¥fwhich contain at least one simplex
of Y, that is,

By ={cextyec,yev) (1)

The following lemma gives us an expressiom\ofY 1) which will be useful in the sequel.

~—fa

-~ {ab}

{{a,b}}
))// {{b}.{a,b}}

{{b}.{a,b}.{a,b,ch}

derived subdivisiop>

-~ {b} ~—{{b}}
{a,b,c} {{a,b,ch}
{ct

Fig. 4. Graphical illustration of the notion of derived subdivision. Left: the initial compleomposed of the
closure of the simplea, b, c}. Right: the subdivisiok 1 constituted by the chains of
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YOX Y, A (Y)Y partition of Xt

(@) (b)

N (YY)

(d) (e) ®

Fig. 5. Example based upon a full subcomplex: (a) a simplicial com}§lexd a full subcomple¥X of X, (b)
partition of X betweer (light gray, white edges), its simplicial compleméhi(dark gray, black lines) and the
setA(Y) (average gray, dashed lines), which is not a simplicial complex, (c) the derived subdi¥sionX. In
light gray and white'?, in dark gray and black (with solid edged)?, (d) the derived neighborhoal (Y1),
(e) the derived neighborhoati (Y1), (f) the derived frontier ofY, sinceY is a full subcomplex ofX we have:
AW =0t = NIH NI = a1 (Bya (Y)\ By (YD),

Lemma 7. Let X be a simplicial complexet Y be a subcomplex of X and ldt be the
support of YThen we haveN (Y1) = {c € X}, Vx e c,x N A" # 0}.

Proof. Observe thatV (YY) = ay1(fx1(Y1) = {c € X1 3¢ € Byr(Y),c C ¢} =
{cext, 3 e xt Ay ev,y e, c S} (from (1)).
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If ¢’ is a chain of¥ ! which containy and includes, then we see easily that/{y} is also
a chain ofx* which containg/ and includes, thusN (Y1) = {c € X1, 3y e Y, cU{y} €
XY ={c e X1, Vx € c, xn A" # ¢} (anyxof ceither is included ity or includesy, in both
casesx N A" £ ¢). O

Let us now focus on the border of the neighborhood of a full subcomplex. We can see
in Fig. 3a,b,c a simple case, whed¢N (Y)) can be expressed ag (S (Y)\Lx(Y). It
can easily be proved that for any full subcompléxf a simplicial complex, we have
O(N(Y)) Cax(Px(Y)N\Px(Y). The converse is false in general, see a counter-example in
Fig. 3d. The following lemma shows that the equality holds for the border of the derived
neighborhood.

Lemma 8. Let X be a simplicial complex and let Y be a full subcomplex of X. We have
SIN(YY) = a1 (Bya (Y )\ fya (YD)

Proof. From the very definitions of the border and the simplicial neighborhood, we see that
SIN(YY)) = a1 (B (Y)\A, whereAd = {c € ay1(By1 (YD), Byr(c) S ax1(Bxr(Y1)).

We have to prove thatt = fy1(Y1). Letc € By1(Y1), thusfyi(c) S Byr(Y?) and
obviously By1(c) € ay1(Bx1(Y1)), thusfyi(Y1) C A.

Conversely, let € A, and suppose thatdoes not belong tB1 (Y1) Letx be the lowest
elementot. Let A" be the support of. From Lemma 7 we know thatn A" # @. Moreover,
sincec ¢ fy1(Y1), we can see (from (1)) thate X\Y. Thus,xis not a 0-simplex oK and
some O-simplexo € Y must exist such thaty C x. However, if every 0-simplexg of X
such thatcg C x were to belong te, sinceY is a full subcomplex we would havee Y.
Thus, some 0-simplexy € X\Y exists such thatg C x. Then,{xp} U c belongs tafy1(c)
(it obviously containg, and sincexis the lowest element df it is indeed a chain) but not
to ocxl(ﬂxl(Yl)) (according to Lemma 7, sincg N A’ = @), a contradiction. [

Notice that the latter property does not holdifs not a full subcomplex. A counter-
example is given irFig. 6.

From the previous lemma, we derive a property which highlights the symmetry of the
border of N (Y1) betweerY andY (seeFig. 5d,e,f).

Property 9. Let X be a simplicial complex and let Y be a full subcomplex of X. We have
SINYYH)=NEFH NN,

Proof. Let A be the support oK, let A" be the support of, and letA” = A\A’. From
Lemma 8, we haveS(N(Y1)) = ay1(Bx1(YD)\Bxr(YD), thus S(N (Y1) = N(Y1) N
X1\ Bx1(YD)]. We see thatX1\Bya (YY) = {c € XL, Vx € ¢,xZA'} (from (1)), thus
XN\ Byr(YH={c € X1, Vx € ¢, xNA" £ #}=N (Y1) (by Lemma 7); and thus(N (Y 1)) =
NYHNNEYH. O

LetXbe a simplicial complex, and l¥tbe a full subcomplex oX. Recall that the frontier
order ofY in X has been defined aY) = X\ (Y U Y). Thederived frontier of Y in Xs
defined as the derived subdivision of the frontier orde¥ iof X, that is:[4(Y)]%.
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zOX partition ofX* S(N(Z")

@) (b) (©

ot (By(ZH) \ By(ZY) ZOX

(d) (e (U]

Fig. 6. The case of a non-full subcomplex: (a) the simplicial comilexnd a subcomplex of X which is not full,
(b) the derived subdivisio&® of X. In light gray and whiteZ?, in dark gray and black (with solid edge$)?,
(c) the bordeB(N (21)), (d) o1 (By1(Z1)\By1(Z1), which differs fromd (N (Z1)), (e) the simplicial complex

X and the fuI[subcomplei of X, which is the urJique full sukgcomplex gﬁhaving the same support &s(f) the
borderd(N ([Z11)), which is equal tary1 (By1([Z]1)\By1(Z]Y) sinceZ is a full subcomplex oK. We notice
also thatsy(N ([Z11)) = S(N (21)).
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The following result shows a strong link between the notion of derived neighborhood
and the notions of frontier order and derived frontier.

Theorem 10. Let X be asimplicial complex andletY be afull subcomplex of X. The border of
the derived neighbohood of Y is equal to the derived frontiestbftis 6 (N (Y 1))=[4(¥)]L.

Proof. Let A be the support oK, let A’ be the support of, and letA” = A\ A’. Using
Proposition 9 and Lemma 7 we see thav (Y1) = NYH N N(YY) = {c € XL, Vx e,
xNA #0Nfce XLvx ec,xnA” 0 ={ce X ,Vx e c,xnA # ¢ and
xNA" @ ={ce XL Vxeec,x¢Yandx¢ Y} =[X\(YUD P =41t O

5. Derived neighborhoods andh-surfaces

In this section we present the second main result of this paper, which states that the border
of the derived neighborhood of any full subcomplex ohesurface is composed of disjoint
(n — 1)-surfaces.

The following property, which reveals a strong link between the structure of an order and
the structure of its chain complex, will be used to obtain this result.

Property 11. Let|X| be an order. If X| is an n-surface then the simplicial compl&x is
an n-surface

Proof. Let |X| be a O-surface, theK is of the form{a, b}, thus X1 = {{a}, {b}} is a
O-surface. Let us now suppose that the property is true férsalch that 6k < n, and let
us prove it fom. SinceX? is a connected simplicial complex (the connectednesélds

a direct consequence of the connectednes$)oit is sufficient (by Property 1) to prove
that thelink of any 0-simplex = {x} of X1 is an(n — 1)-surface. By the definition of the
link, we havelink(s, X1) = {c € X1, cos € X1}. Sincec o s is a chain, any element

of cis comparable tax. Note also that, ify is underx, then anyz abovex is also abovey.

So any chain ofink(s, X1) can be expressed either as a chain of elements strictly under
X, a chain of elements strictly aboxgeor as the join (union) of a chain of elements strictly
underx and a chain of elements strictly abaxvéand any such chain obviously belongs to
link(s, Xb)); thus:link(s, X1) = [o (x)1* o [/ (x)1%. By Property 2, we know that (x)

is a(k — 1)-surface and thaﬁ?(x) is an(n — k — 1)-surface, withk = p(x, |X|). Then, by
induction hypothesis{ch (x)]tis a(k — 1)-surface ancﬂﬂ? (x)]tis an(n — k — 1)-surface,
and by Theorem 4;jnk(s, X1) is an(n — 1)-surface. [J

Before proving our main result, let us first consider the case where the coXigeke
boundary of am-simplex.

Property 12. Let S be an n-simplex with> 1, let X be the boundary of, @nd let Y be a
full subcomplex of X. Thed(N (Y1, X1)) is an(n — 2)-surface

Proof. Let A be the support aX, let A’ be the support of, and let4” = A\ A'. Let us first
consider the case whe&is a 2-simplex{a, b, c}. We can assume that = {a} (the case
A" = {b, ¢} is similar) and the@(N (Y1, X1)) = {{{a, b}}, {{a, c}}}, which is a O-surface.
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Let us now suppose that the property is true for eaymplex, with 2<i < n, and let us
prove it for ann-simplex.

e We first need to prove that the link of any 0-simplexdiiv (Y1, X1)) is an(n — 3)-
surface. Lek = {x} be such a 0-simplex. Remind that, according to Theorem 10:

SINYL XYy ={ce X Vzec,znA #Pandzn A" # B}, 2)

Thusxis ak-simplex ofX such thatl’Nx # @andA”Nx # ¢ (and obviously, 6< k < n).
By definition:
link(s, S(N(YL, X1)) = {c € S(N(YL, X)), cos € S(N(YL, X))

In other terms/ink(s, S(N (Y1, X1))) is composed by all the elementsof X1 such
that for allz € ¢, we havez e OE(x), ANz #YandA” Nz # @. It should be noted
that any elementv of X abovex verifies bothA’ N w # ¥ andA” Nw # @. So, since
[B(0)1F € (N (YL, X1)), any element ofink(s, (N (Y1, X1))) can be expressed either
as an element dffy (x)1%, an element oB(N (Y1, X1)) N [«2(x)]%, or as the simplicial
join of an element of % (x)]* and an element a¥(N (Y2, x1)) N [~ (x)]%. Thus,

link(s, S(N (Y'Y, X1))) = [BF 01 0 SN (YL, X)) N [P (0)1h). ©)
Then (from (2)):

IINOYL X)) NPt ={ce XL Vzee,znA #0,zn A" #0)N [P x)]*
={celdPWNVzee,znA £0,z0 A" #3)
=S(N(Y NaZ )1, [P @0)1h). (4)

Since X is an (n — 1)-surface (Property 3), we deduce from Properties 2 and 11 that
ﬁ?(x) and [[3E(x)]1 are (n — k — 2)-surfaces. It can be easily verified thatn o™ (x)

is a full subcomplex of~(x), furthermores™(x) is the boundary of &-simplex with

k <n. Thus, by induction hypothesis at raik< n, S(N([Y N o= ()1, [6Z(x)1h) is a

(k — 2)-surface. Consequently, by (3), (4) and Theorem 4, we deduce that the link of any
0-simplex of6(N (Y1, X1)) is an(n — 3)-surface.

e We must now prove thai(N (Y1, X1)) is connected. Let; ands; be two elements
of S(N (YL, x1)), let x; be a simplex of; and letx; be a simplex of;. Then, there
exist four elements off (not necessarily distinc®, b, ¢ andd such thata € x; N
A,bexinA” cex;nA andd € x; N A”. Then, it can be verified thds;, {x;},
{{a, b}, xi}, {{a, b}}, {Ha, b}, {a, b, c}}, {{a, b, c}}, {{b, ¢} {a, b, c}}, {{D, c}}{{b, ¢},
{b, c.d}}, {{b, c. d}}, {{c,d}, (b, c, d}}, {{c,d}}, {{c.d}, x;}, {x;}, s;} is a path from
si tos; in S(N (YL, x1y).
Since (N(¥1, X1)) is connected and the link of each of its 0-simplexes is an
(n — 3)-surface 9(N (Y1, x1)) is an(n — 2)-surface (by Property 1).]

We can now prove the main result of this section.
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Theorem 13. Let X be a simplicial complex which is an n-surfaegth n > 0, and let Y
be a full subcomplex of X. Theeach connected component &N (Y1, X1)) is an
(n — 1)-surface

Proof. Let A be the support ofX, let A" be the support of, and letA” = A\A'.
Letsbe a O-simplex o6(N (Y1, X1)), s = {x} wherex is ak-simplex ofX, with 0 < k <n.
The link of sin (N (Y1, X1)) is constituted by all the elementsof X! such that for all
7z € ¢, we havez € Hg(x), ANz #¢@andA” Nz # ¢ (see the proof of Property 12).
Each of those chainscan be expressed either as an elememﬁEf(x)]l, an element of
SN (Y NP (1%, [22(x)1Y), or as the join of an element % (x)]* and an element of
S(N(Y NoP )L, [0P(x)1Y))(see again the proof of Property 12).

e SinceXis ann—surfaceﬂ‘?(x) is an(n — k — 1)-surface, and so inE(x)]l.
e By Proposition 125(N ([Y N &= (x)1%, [«2(x)1Y)) is a(k — 2)-surface.
e Thus, link(s, SN (YL, X1)) = [ o SN(Y N o2 )L [«P(x)1h) is an
(n — 2)-surface by Theorem 4.
Consequently, each connected componei8f(Y, X1)) is an(n — 1)-surface. O

6. Conclusion

The results presented in this paper clarify the links between the notion of frontier order that
we introduced in anterior articles and the notion of derived neighborhood as introduced in
the framework of piecewise linear topology. Furthermore, they also constitute new results
about derived neighborhoods, since the notiom-glurface had not been studied in this
framework until now. In aforthcoming articl§s0], we deepen the discussion about different
frameworks for discrete surfaces, in particular combinatorial manifaldsrfaces and
pseudo-manifolds, and prove a theorem which establishes inclusion relations between these
three classes of discretedimensional surfaces (for amy.

Appendix

Lemma 14. LetC1andC2 be simplicial complexes. Let x be an elemeiitafCo. If x € C1
(resp.x € C2),thenlink(x, C10C>) isequaltdink(x, C1)oCa (resp.C1olink(x, C2)). If
x=x10x2,Withx1 € C1andxy € Co,thenlink(x, C10C2)=link(x1, C1)olink(xz, C2).

Proof. From the definitions of the link and the join, we have:

link(x,Cr10Co)={t e Cr0Co,x0t € C10C2}
={teC1,x0t€C10Co}U{teCo,xot e C10C2}
U{t=t10t2,11 € C1,tp € Co,xot10tr € C10Ca}
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Then, ifx € C1, we obtain:

link(x,Cr10Co)={t € Cr,xot € C1}U{r € Cp}
U{t=t10t2,11 € C1,1p € Co,xot1 € C1}
=link(x,C)UCoU{t =t10tp,11 € link(x, Cp), t2 € Co}
=link(x, C1) o C».

Similarly, with x € C2 we would obtainink(x, C1 o C2) = Cy o link(x, C2). Now, if
X = x1 0 x2, With x; € C1 andx, € C», we have:

link(x,Cr10C2)={t € C1,x10t € C1}U{t € Co,x20t € C3}
U{t=t10t2,11 € C1,t2 € C2,(x10x2) 0 (t10t2) € C10 Ca}
={teC1,x10t € C1}U{t € Co,x20t € Cp}
U{t=t10t2,11 € C1,(x1011) € C1,12 € C2, (xp012) € Co}
=link(x1, C1) Ulink(xz, C2)
U{t=t1012, 11 € link(x1, C1), 12 € link(x2, C2)}
=link(x1, C1) o link(x2, C2). O
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