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Abstract: In this paper we study geodesic completeness of Riemannian doubly warped products and
Lorentzian doubly warped products. We give necessary conditions for generalized Robertson–Walker space-
times with doubly warped product spacial parts to be globally hyperbolic. We also state some results about
Killing and conformal vector fields of doubly warped products.
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1. Introduction

Singly warped products or simply warped products were first defined by O’Neill and Bishop
in [9]. They used this concept to construct Riemannian manifolds with negative sectional cur-
vature. Then Beem, Ehrlich and Powell pointed out that many exact solutions to Einstein’s field
equation can be expressed in terms of Lorentzian warped products in [6]. Furthermore, Beem
and Ehrlich concluded that causality and completeness of warped products can be related to
causality and completeness of components of warped products in [5]. O’Neill discussed warped
products and explored curvature formulas of warped products in terms of curvatures of com-
ponents of warped products in [15]. He also examined Robertson–Walker, static, Schwarschild
and Kruskal space-times as warped products. Also, Besse considered warped products as Rie-
mannian submersions and obtained some results for special cases in [8]. A Lorentzian warped
product (M, g) of the form M = (c, d) × f F with the metric g = −dt2 ⊕ f 2gF where
f : (c, d) → (0, ∞) is smooth and −∞ � c < d � ∞ is a generalized Robertson–Walker
space-time. Generalized Robertson–Walker space-times are considered as model space-times
in relativity theory (cf. [5, 14] and [15]). In [21], some results about stability, geodesic complete-
ness and geodesic connectedness of generalized Robertson–Walker space-times were stated.
Geodesic connectedness and conjugate points are studied [12] and geodesic completeness of
these spaces are considered in [18]. In [22], curvature and Killing vector fields of generalized
Robertson–Walker space-times are also considered.

In general, doubly warped products can be considered as a generalization of singly warped
products. A doubly warped product (M, g) is a product manifold which is of the form M =
f B × b F with the metric g = f 2gB ⊕ b2gF where b: B → (0, ∞) and f : F → (0, ∞) are

1 E-mail: bulentunal@mail.com

0926-2245/01/$ – see frontmatter c©2001 Elsevier Science B.V. All rights reserved
PI I S0926-2245(01)00060-2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82131177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


             

254 B. Ünal

smooth maps. Beem and Powell considered these products for Lorentzian manifolds in [7].
Then Allison considered causality and global hyperbolicity of doubly warped products in [1]
and null pseudocovexity of Lorentzian doubly warped products in [3]. Conformal properties of
doubly warped products are studied by Gebarowski (cf. [13] or references therein).

One can also generalize singly warped products to multiwarped products. Briefly, a multi-
warped product (M, g) is a product manifold of the form M = B × f1 F1 × f2 F2 × · · · × fm Fm

with the metric g = gB ⊕ f 2
1 gF1 ⊕ f 2

2 gF2 ⊕ · · · ⊕ f 2
m gFm , where for each i ∈ {1, . . . , m},

fi : B → (0, ∞) is smooth and (Fi , gFi ) is a pseudo-Riemannian manifold. Covariant deriva-
tives and curvatures of multiwarped products are given in [4] for m = 2. In particular, when
B = (c, d)with the negative definite metric gB = −dt2, the corresponding multiwarped product
M = (c, d)× f1 F1× f2 F2×· · ·× fm Fm with the metric g = −dt2⊕ f 2

1 gF1 ⊕ f 2
2 gF2 ⊕· · ·⊕ f 2

m gFm

is called a multiwarped space-time, where for each i ∈ {1, . . . , m}, (Fi , gFi ) is a Riemannian
manifold and −∞ � c < d � ∞. Geodesic equations and geodesic connectedness of multiply
warped space-times were studied by Flores and Sánchez in [11] and they also noted that the
class of multiply warped space-times contains many well known relativistic space-times. In
[20], Sánchez studied geodesic connectedness of generalized Reissner–Nordström space-times
and noted that Reissner–Nordström space-times can be expressed as multiply warped prod-
ucts. Geodesic equations and geodesic connectedness of multiwarped space-times are studied
in [11]. In [24], necessary and sufficient conditions are obtained about geodesic completeness
of multiwarped space-times.

There are various types of warped products in addition to the ones considered above and
some of these have proven useful in general relativity. In [19], it is shown that general relativistic
solutions can always be locally embedded in Ricci-flat five-dimensional spaces. Furthermore,
in [17] some physically motivated D-dimensional solutions studied by Wesson and Ponce de
Leon were extended to (D +1)dimensions and all these extensions turn out to be various types
of warped products.

In Section 3, we consider geodesic completeness of Riemannian and Lorentzian doubly
warped products. If (B, gB) and (F, gF) are complete Riemannian manifolds and 0 < inf( f )

or 0 < inf(b), then (M, g) is complete where M = f B×b F with the metric g = − f 2gB⊕b2gF .

Also, we prove that (B, gB) and (F, gF) are complete Riemannian manifolds when (M, g) is
complete.

We examine null geodesic completeness of Lorentzian doubly warped products (M, g) of
the form M = f (c, d)× b F with the metric g = − f 2dt2 ⊕ b2gF where −∞ � c < d � ∞,

and we get relations between null geodesic completeness of (M, g) and the divergence of∫ w0

c b(s)ds,
∫ d
w0

b(s)ds and we obtain relations between timelike geodesic incompleteness
of (M, g) and the convergence of∫ w0

c

b(s)√
1 + b2(s)

ds or
∫ d

w0

b(s)√
1 + b2(s)

ds

for some w0 ∈ (c, d) when 0 < inf( f ) < sup( f ) < ∞.

A generalized Robertson–Walker space-time with a doubly warped product fiber (M, g) is a
warped product of the form M = (c, d)× h( f B × b F) with the metric g = −dt2 ⊕ h2( f 2gB +
b2gF), where h: (c, d) → (0, ∞) is smooth and (B, gB), (F, gF) are Riemannian manifolds.
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We show that if (B, gB) and (F, gF) are complete Riemannian manifolds and 0 < inf(b) or
0 < inf( f ) then the generalized Robertson–Walker space-time with the doubly warped product
fiber is globally hyperbolic.

Finally, we state the formula for the Lie Derivative of the metrics of doubly warped products
and then we give necessary and sufficient conditions for vector fields X on M of the form
X = X + V, where X ∈ L(B) and V ∈ L(F) to be Killing or conformal.

2. Preliminaries

Throughout this work any manifold M is assumed to be connected, Hausdorff, paracom-
pact and smooth. A pseudo-Riemannian manifold (M, g) is a smooth manifold with a metric
tensor g and a Lorentzian manifold (M, g) is a pseudo-Riemannian manifold with signature
(−, +, +, . . . ,+).

A smooth curve γ : I → M in an arbitrary pseudo-Riemannian manifold is said to be a
pre-geodesic if it can be reparametrized so that the repametriziation is a geodesic. A parameter
s for a pre-geodesic γ is called an affine parameter if γ ′′(s) = 0.

The Lorentzian manifold (M, g) is timelike (respectively null, spacelike) complete if all
timelike (respectively null, spacelike) inextendible geodesics are complete (i.e., can be defined
on all of R).

Let (M, g) be a pseudo-Riemannian manifold and X be a nonzero vector field on M. X is
Killing if L X g = 0 and X is conformal with conformal factor 	: M → R if L X g = 2	g,

where L X denotes the Lie derivative with respect to X .
Let (B, gB)and (F, gF)be r and s dimensional pseudo-Riemannian manifolds, respectively.

Throughout this paper we use the natural product coordinate system on the product manifold
B × F . Let (p0, q0) be a point in M . Then there are coordinate charts (U, x) and (V, y) on B
and F , respectively such that p0 ∈ B and q0 ∈ F . Then we can define a coordinate chart (W, z)
on M such that W is an open subset in M contained in U × V and (p0, q0) ∈ W then for all
(p, q) in W , z(p, q) = (x(p), y( q)), where π : B × F → B and σ : B × F → F are usual
projection maps and x = (x1, . . . , xr ) and y = (yr+1, . . . , yn). Here, for our convenience, we
call the j th component of y as yr+ j for all j ∈ {1, . . . , s}.

Let φ: B → R ∈ D(B) then the lift of φ to B × F is φ̃ = φ ◦ π ∈ D(B × F), where D(B)

is the set of all smooth real-valued functions on B.

Moreover, one can define lifts of tangent vectors as: Let X p ∈ Tp(B) and q ∈ F then the lift
X̃( p,q) of X p is the unique tangent vector in T( p,q)(B ×{ q}) such that dπ( p,q)( X̃( p,q)) = X p and
dσ( p,q)( X̃( p,q)) = 0. We will denote the set of all lifts of all tangent vectors of B by L( p,q)(B).

Similarly, we can define lifts of vector fields. Let X ∈ X(B) then the lift of X to B × F is
the vector field X̃ ∈ X(B × F) whose value at each (p, q) is the lift of X p to (p, q). We will
denote the set of all lifts of all vector fields of B by L(B).

Definition 2.1. Let (B, gB) and (F, gF)be pseudo-Riemannian manifolds and also let b: B →
(0, ∞) and f : F → (0, ∞) be smooth functions. The doubly warped product is the product
manifold B × F furnished with the metric tensor g = f 2gB ⊕ b2gF defined by

g = ( f ◦ σ)2π∗(gB) ⊕ (b ◦ π)2σ ∗(gF). (2.1)
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The functions b: B → (0, ∞) and f : F → (0, ∞) are called warping functions.
If (B, gB) and (F, gF) are both Riemannian manifolds, then ( f B × b F, f 2gB ⊕b2gF) is also

a Riemannian manifold. We call ( f B × b F, f 2gB ⊕b2gF) a Lorentzian doubly warped product
if (F, gF) is Riemannian and either (B, gB) is Lorentzian or else (B, gB) is a one-dimensional
manifold with a negative definite metric −dt2. If neither b nor f is constant, then we have a
proper doubly warped product.

By using the covariant derivative formulas for doubly warped products which can be found
in [2], we can easily state the followings.

Proposition 2.2. Let M = f B × b F be a pseudo-Riemannian doubly warped product with
metric g = f 2gB ⊕ b2gF . Then

(1) The leaves B × { q} and the fibers {p} × F of the double warped product are totally
umbilic.

(2) The leaf B × { q} is totally geodesic if gradF( f )|q = 0. Similarly, the fiber {p} × F is
totally geodesic if gradB(b)|p = 0.

Now, we will state the geodesic equations for doubly warped products. The version for singly
warped products is well known, compare [15].

Proposition 2.3. Let M = f B × b F be a pseudo-Riemannian doubly warped product with
metric g = f 2gB ⊕b2gF . Also let γ = (α, β) be a curve defined on some interval I ⊆ R. Then
γ = (α, β) is a geodesic if and only if for any t ∈ I ,

(1) α′′ = (b ◦ α)

( f ◦ β)2 gF(β ′, β ′) gradB(b) − 2

( f ◦ β)

d( f ◦ β)

dt
α′.

(2) β ′′ = ( f ◦ β)

(b ◦ α)2 gB(α′, α′) gradF( f ) − 2

(b ◦ α)

d(b ◦ α)

dt
β ′.

3. Completeness of doubly warped products

In this section, we obtain some results on completeness of Lorentzian warped products and
Riemannian warped products.

3.1. The Riemannian case

In this subsection, we state some results about completeness of Riemannian warped products.

Proposition 3.1. Let M = f B × b F be a Riemannian doubly warped product with the metric
g = f 2gB ⊕ b2gF . If (B, gB) and (F, gF) are complete Riemannian manifolds and also
inf(b) > 0 or inf( f ) > 0 then (M, g) is a complete Riemannian manifold.

Proof. Without loss of generality assume that inf( f ) = λ > 0. Note first that for any vector
field X in M we have λ2gB(π(X), π(X))+ b2gF(σ (X), σ (X)) � g(X, X). The first metric is
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a complete Riemannian (singly) warped metric by [15]. Clearly, this implies that the second
metric is also complete.

We obtain the following result about global hyperbolicity of generalized Robertson–Walker
space-times with doubly warped product fibers by using [5, Theorem 3.66] and the previous
result.

Corollary 3.2. Let M = (c, d)× h( f B × b F) be a Lorentzian singly warped product with the
metric g = −dt2 ⊕ h2( f 2gB + b2gF), where h: (c, d) → (0, ∞) is smooth and −∞ � c <

d � ∞. If (B, gB) and (F, gF) are complete Riemannian manifolds and also if inf(b) > 0 or
inf( f ) > 0, then (M, g) is globally hyperbolic.

Proposition 3.3. Let M = f B × b F be a complete doubly Riemannian warped product with
the metric g = f 2gB ⊕ b2gF . If (M, g) is a complete Riemannian manifold, then (B, gB) and
(F, gF) are complete Riemannian manifolds.

Proof. Let (pn) be Cauchy in B. Then for a fixed q ∈ F we have (pn, q) is Cauchy in M .
Because d((pn, q), (pm, q)) = f (q)dB(pn, pm). Thus there is a point (p, q) ∈ M such that
lim(pn, q) = (p, q). Then since d((pn, q), (p, q)) = f ( q)dB(pn, p) we have lim(pn) = p.
Hence B is complete and so is F .

3.2. The Lorentzian Case

We now consider the nonspacelike geodesic completeness of Lorentzian warped products of
the form M = f (c, d)× b F with the metric g = − f 2dt2 ⊕ b2gF where −∞ � c < d � ∞.

Here a space-time is said to be null (respectively, timelike) geodesically incomplete if some
future directed null (respectively, timelike) geodesic can not be extended to be defined for
arbitrary negative and positive values of an affine parameter. Since we are using the metric
−dt2 on (c, d), the curve γ ( t) = ( t/ f (q0), q0) with q0 ∈ F fixed and gradF( f )( q0) = 0 is
a unit speed timelike geodesic (M, g) independent of which warping function b is chosen and
independent of f at other points of M .

Now, we will state the following fact to obtain some integral conditions for null geodesic
completeness of Lorentzian doubly warped products.

Assume that (M, g) is a pseudo-Riemannian manifold and 	: M → (0, ∞) is a smooth
map. Then we will call (M, g) is conformal to (M, 	2g) with the conformal factor 	. It is
well known that any geodesic in (M, g) is also a pregeodesic in (M, 	2g) so it is natural to
have relations between null geodesic completeness of two conformal manifolds, i.e., (M, g)

and (M, 	2g).

Thus by using the affine parameter converting formula in [23, Problem 9.27] we state the
followings:

(1) If (M, g) is null geodesically incomplete and sup(	) < ∞, then (M, 	2g) is also null
geodesically incomplete.

(2) If (M, g) is null geodesically complete and inf(	) > 0, then (M, 	2g) is also null
geodesically complete.
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(3) If 0 < inf(	) < sup(	) < ∞, then both (M, g) and (M, 	2g) are null geodesically
complete or incomplete.

Let M = f (c, d)× b F be a Lorentzian warped product with the metric g = − f 2dt2 ⊕ b2gF

where −∞ � c < d � ∞. Then the singly warped product, i.e., ((c, d)× F, dt2 ⊕ b2 f −2gF)

is conformal to the original doubly warped product, i.e., ((c, d) × F, − f 2dt2 ⊕ b2gF), with
the conformal factor f. Hence one can easily obtain the following results by using the previous
facts and [5, Theorem 3.70 and Remark 3.71].

Theorem 3.4. Let M = f (c, d) × b F be a Lorentzian warped product with the metric g =
− f 2dt2 ⊕b2gF where −∞ � c < d � ∞. Suppose that sup( f ) < ∞ and (F, gF) is complete
then

(1) if
∫ w0

c b(s)ds < ∞ for some w0 ∈ (c, d) then every future directed null geodesic is past
incomplete.

(2) if
∫ d
w0

b(s)ds < ∞ for some w0 ∈ (c, d) then every future directed null geodesic is future
incomplete.

Note that (F, f −2gF) is complete when sup( f ) < ∞ and (F, gF) is complete.

Theorem 3.5. Let M = f (c, d) × b F be a Lorentzian warped product with the metric g =
− f 2dt2 ⊕ b2gF where −∞ � c < d � ∞. Suppose that inf( f ) > 0 and both (F, gF) and
(F, f −2gF) are complete then

(1) if
∫ w0

c b(s)ds = ∞ for some w0 ∈ (c, d) then every future directed null geodesic is past
complete.

(2) if
∫ d
w0

b(s)ds = ∞ for some w0 ∈ (c, d) then every future directed null geodesic is future
complete.

Corollary 3.6. Let M = f (c, d) × b F be a Lorentzian warped product with the metric g =
− f 2dt2 ⊕ b2gF where −∞ � c < d � ∞. Suppose that 0 < inf( f ) < sup( f ) < ∞ and
(F, gF) is complete

(1)
∫ w0

c b(s)ds = ∞ for some w0 ∈ (c, d) if and only if every future directed null geodesic
is past complete.

(2)
∫ d
w0

b(s)ds = ∞ for some w0 ∈ (c, d) if and only if every future directed null geodesic
is future complete.

Here, we state a result concerning the null geodesic completeness of arbitrary pseudo-
Riemannian doubly warped products.

Proposition 3.7. Let M = f B × b F be a null complete pseudo-Riemannian doubly warped
product with the metric g = f 2gB ⊕b2gF . Then (B, gB)and (F, gF)are null complete pseudo-
Riemannian manifolds.

Proof. Let α be a null geodesic in B and let γ = ( α, q) for q ∈ F. Then using α′′ = 0,
gB( α′, α′) = 0 and β ′ = 0 it follows from Proposition 2.3 that γ is a null geodesic in M.

In the following example, we will show that the converse of Proposition 3.7 is false, i.e.,
if (B, gB) and (F, gF) are null complete pseudo-Riemannian manifolds then (M, g) is not
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necessarily a null complete pseudo-Riemannian doubly warped product. Note that this example
is a modification of an example of an incomplete warped product with a complete base and
fiber (cf. [5, p. 108]).

Example 3.8. Take B = F = L2 where L2 = R1 × R is 2-dimensional Minkowski space
with the metric ds2 = −dt2 + dx2 and define b: L2 → (0, ∞), f : L2 → (0, ∞) as b(x, y) =
exp(−x) and f (u, v) = exp(−u). We will show that M = f B × b F is not a null complete
pseudo-Riemannian doubly warped product with the metric g = f 2gB ⊕ b2gF . To do that let’s
define α: (−∞, ∞) → B and β: (−∞, ∞) → F as α( t) = ( t, t) and β( t) = (t, t). Clearly,
α and β are complete null geodesics of B and F , respectively. Also, if γ = ( α, β) then γ is a
null pre-geodesic in M and γ ′′ = −γ ′ by equations in Proposition 2.3. By using [23], one can
compute the affine parameter as p( t) = ∫ t

0 exp(
∫ u

0 −ds)dt , i.e., p( t) = 1 − 1/ exp( t). Thus
limt→∞ p( t) is finite. Hence, γ is incomplete.

Here, we will call a timelike geodesic γ = ( α, β): I → M as stationary if γ ( t) = ( t, q) for
any t ∈ I and for some q ∈ F, where gradF( f )( q) = 0. In order to consider timelike geodesic
completeness of doubly warped products, we first state the length of a unit speed non-stationary
timelike geodesic in a Lorentzian doubly warped product of the form M = f (c, d)×b F. Clearly,
if the length is finite, then the geodesic will be incomplete.

Proposition 3.9. Let M = f (c, d) × b F be a Lorentzian doubly warped product with the
metric g = − f 2dt2 ⊕ b2gF where −∞ � c < d � ∞ also let γ = (α, β): I → M be a unit
speed non-stationary timelike geodesic in M. Assume that 0 ∈ I and α(0) = t0 ∈ (c, d) also
α′(0) = r > 0 and if L(γ )|t=t2

t=t1 denotes the length of γ between t = t1 and t = t2 and also
bα = b ◦ α, fβ = f ◦ β, then

L(γ )|t=t2
t=t1 =

∫ t2

t1

( f 2
β bα)(α−1(t))√∫ α−1( t)

0
f 2
β (x)(b2

α)′(x)dx + r2( f 4
β b2

α)(0)

dt.

Proof. First, note that 0 may not be in I but without loss of generality we always suppose
0 ∈ I . By Proposition 2.3(1) and g(γ ′(s), γ ′(s)) = −1, we have

−( f ◦ β)2(s)(α′(s))2 + (b ◦ α)2(s)gF(β ′(s), β ′(s)) = −1. (3.2)

Note that α′(s) �= 0 for any s ∈ I. For simplicity, we will use the following notations: Let
α(s) = t then u = α′(s) = dt/ds and α′′(s) = d2t/ds2 = du/ds = u′. Also b ◦ α(s) = bα(s)
and f ◦ β(s) = fβ(s). Then d( f ◦ β)(s)/ds = ( f ◦ β)′(s) = f ′

β(s).
Now, db/dt |α(s) = ḃ(α(s)) and by the change of variables formula for differentiation, we

have

ḃ(α(s)) = d(b ◦ α)(s)

ds

ds

dt
= bα

′(s)
1

u
. (3.3)

Then by using equation (3.3) and gB = −dt2, we have

gradB(b)|b(α(s)) = −ḃ(α(s)) = −bα
′(s)

1

u
. (3.4)
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Also by using equation (3.2) and the notations introduced above we have

gF(β ′, β ′) = −1 + f 2
β (s)u2

b2
α(s)

. (3.5)

Thus equation (3.2) becomes

2uu′ + u2

(
4

f ′
β

fβ
+ 2

bα′

bα

)
= 2

bα′

f 2
β bα

. (3.6)

This yields,

u = 1

f 2
β (s)bα(s)

√∫ s

0
f 2
β (x)(b2

α)′(x) dx + c . (3.7)

Recall that α(0) = t0, α(s) = t and dt/ds|s=0 = α′(0) = r also ds/dt |t=t0 = 1/r . Thus, by
equation (3.7)

c = r2( f 4
β b2

α)(0). (3.8)

Hence, by equations (3.7) and (3.8)

s =
∫ t

w0

( f 2
β bα)(α−1(t))√∫ α−1(t)

0
f 2
β (x)(b2

α)′(x) dx + r2( f 4
β b2

α)(0)

dt. (3.9)

Finally, we obtain the result by equation (3.9) and L(γ )|t=t2
t=t1 = s2 − s1.

Theorem 3.10. Let M = f (c, d) × b F be a Lorentzian warped product with the metric
g = − f 2dt2 ⊕ b2gF where −∞ � c < d � ∞. Suppose that 0 < inf( f ) < sup( f ) < ∞
then

(1) if
∫ w0

c b(s)/
√

1 + b2(s) ds < ∞ for some w0 ∈ (c, d) then every future directed timelike
geodesic is past incomplete.

(2) if
∫ d
w0

b(s)/
√

1 + b2(s) ds < ∞ for some w0 ∈ (c, d) then every future directed timelike
geodesic is future incomplete.

Proof. Let γ be an arbitrary future directed timelike geodesic in (M, g). Then we will
use Proposition 3.9 to prove the conclusion. First of all by equation (3.5) we have that
u2 f 2

β > 1. This implies that u2 > 1/(sup( f ))2 > 0. Also, equations (3.2) and (3.7) imply
that

∫ s
0 f 2

β (x)(b2
α)′(x)dx + c > f 2

β (s)(b2
α)(s).
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We will define some notation for simplicity

I1 =
∫ d

w0

f 2
β bα(s)√∫ s

0
f 2
β (x)(b2

α)′(x) dx + c

ds,

I2 =
∫ d

w0

f 2
β bα(s)√∫ s

0
f 2
β (x)(b2

α)′(x) dx + c + 1

ds

and

I3 =
∫ d

w0

f 2
β bα(s)√

f 2
β (s)(b2

α)(s) + 1
ds.

Thus, by the limit comparison test for integrals we have that I1 and I2 are both convergent or
divergent together because

1 < lim
t→d−


1 + 1∫ t

w0

f 2
β (x)(b2

α)′(x)dx + c


 < ∞.

Suppose that the above limit is divergent i.e., limt→d−
∫ t
w0

f 2
β (x)(b2

α)′(x)dx + c = 0. But
then by equation (3.7) we have limt→d− u(t) = 0 and this contradicts the facts that u2 >

1/(sup( f ))2 > 0 and
∫ s

0 f 2
β (x)(b2

α)′(x)dx + c > f 2
β (s)(b2

α)(s). On the other hand by the com-
parison test for integrals we have that I2 < I3. Hence, we conclude that limt2→d− L(γ )|t=t2

t=t1 is
finite if I3 is convergent and by using the assumption that 0 < inf( f ) < sup( f ) < ∞ it is easy
to see that I3 is convergent when

∫ d
w0

b(s)/
√

1 + b2(s)ds is convergent.

Corollary 3.11. Let M = f (c, d) × b F be a Lorentzian warped product with the metric
g = − f 2dt2 ⊕ b2gF where −∞ � c < d � ∞. Suppose that 0 < inf( f ) < sup( f ) < ∞
and (F, gF) is complete. If (M, g) is future null incomplete, then (M, g) is future timelike
incomplete.

Proof. If 0 < inf( f ) < sup( f ) < ∞, then b/
√

1 + b2 < b. by Corollary 3.6, (M, g)

is future null incomplete if and only if
∫ d
w0

b(s)ds < ∞ for some w0 ∈ (c, d). Thus∫ d
w0

b(s)/
√

1 + b2(s)ds < ∞. Hence, the result follows from Theorem 3.10. Similar result
holds for past incompleteness.

4. Killing vector fields

In this section, we give the formula for the Lie derivative of the metric of a doubly warped
product. We then give some results about Killing and conformal vector fields of doubly
warped products without proof.
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Proposition 4.1. Let M = f B × b F be a pseudo-Riemannian doubly warped product with
metric g = f 2gB ⊕ b2gF also let X, Y, Z ∈ L(B) and V, W, U ∈ L(F) then if X = X + V ∈
X(M) , Y = Y + W ∈ X(M) and Z = Z + U ∈ X(M) then

L Xg(Y , Z) = f 2L B
X gB(Y, Z) + 2 f V ( f )gB(Y, Z)

+ b2L F
V gF(W, U ) + 2bX(b)gF(W, U ).

Proof. In general, we know that (cf. [15]) L Xg(Y, Z) = g(∇Y X, Z) + g(Y, ∇Z X). The result
follows from the covariant derivative formulas for doubly warped products and the definition
of Lie derivative and the bilinearity of g.

Now, by making use of the above formula, we will state necessary and sufficient conditions
for vector fields X on M of the form X = X + V, where X ∈ L(B) and V ∈ L(F) to be Killing
or conformal. Similiar problem was considered in [9] for singly warped products.

Theorem 4.2. Let M = f B ×b F be a pseudo-Riemannian doubly warped product with metric
g = f 2gB ⊕ b2gF also let X ∈ L(B) and V ∈ L(F), X = X + V ∈ X(M). Then X is a
conformal vector field with conformal factor 	: M → R if and only if

(1) 	 is constant.
(2) X and V are conformal vector fields with conformal factors 	B and 	F , respectively,

where both 	B and 	F are constant such that 	B + 	F = 0.

(3) X(b) = 	Bb and V ( f ) = 	F f .

By taking 	 ≡ 0 in the above result, we obtain necessary and sufficient conditions for vector
fields to be Killing.

Corollary 4.3. Let M = f B×b F be a pseudo-Riemannian doubly warped product with metric
g = f 2gB ⊕b2gF also let X ∈ L(B) and V ∈ L(F), X = X + V ∈ X(M). Then X is a Killing
vector field if and only if

(1) X and V are conformal vector fields with conformal factors 	B and 	F , respectively,
where both 	B and 	F are constant such that 	B + 	F = 0.

(2) X(b) = 	Bb and V ( f ) = 	F f .
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