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Abstract

In this paper we analyse a linear functional defined in the space of Laurent polynomials which can be considered as
a generalization of the Lebesgue functional. We study the regularity and the semiclassical character of the functional and
we construct the corresponding sequence of orthogonal polynomials.

Also, we obtain the differential equation that this family and the associated polynomials of first order satisfy.
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In the linear space of Laurent polynomials A we define a linear and Hermitian functional
2£:4 - C which can be considered as a generalization of the Lebesgue functional.

We recall that £ is called regular (positive definite) if the principal minors A, of the matrix of
moments M = (£(z' 7)), ;en = (¢i—j)ijcn are nonsingular (positive definite) and € is Hermitian if
/(") =L(@z™").

Definition 1. For pe N with p > 1 and a € C with |a| # 1 we define the linear functional £: 4 —» C
as follows: For k = 0,

1, k=0,
Q(z*)=c¢, ={a’, k=jp where jeN — {0},

0, otherwise

and for k < 0, £(z*) = £(z~ ).
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Since for a = 0, £ is the functional induced by the Lebesgue measure, we only analyse the case
a#0.

Theorem 2. If we denote by {4,}, . the sequence of the principal minors of order n + 1 related to &,
it holds:
do=1, 4,=1,...,4,-1=1 and A, =1 —|a>)"' Vk=0.

Therefore £ is regular, and for |a| < 1, L is positive definite.

Proof. First we prove that the principal minors verify the following relations:

A2 i
Ao=1, A;=1,...,4, 1 =1, d,=1—|a* and 4, =% Vk>1
Ap+k—2
We distinguish two cases depending on p=1or p > 1.
Case 1. For p = 1 the moment matrix associated to £ is

1 a a? a"

a a a1
M=|: s

a—n dn—-l a—n—Z 1

1 : a ak : al +k
a 1 a ' g
A i =
a* 7hi 1 a
de ........ 6.1. k ................. é ............. 1 ......

In order to evaluate 4, ., we apply a well-known property [5] of determinants:
Ay Ay +k—2 = Adj(1, 1) Adj(k + 2,k + 2) — Adj(1,k + 2) Adj(k + 2,1),

where Adj(i,) represents the adjoint of the element in place (i, ).
Taking into account that

Adj(1,1) = Adj(k + 2,k + 2) = 4,
and
Adj(1,k+2)=0 (1)
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we get
Ay 1By sx-2 = Adj(L DAdj(k + 2,k + 2) = 47

from which the result follows.
Case II: For p > 1 the moment matrix associated to £ is

column p + 1 column 2p + 1
! !
1 00 a 0 0 a?
01090 0 0 a?
rowp+l-1g 0 0 1 0 - 0 a 0

Then it is clear that

Proceeding in the same way as in the previous case we obtain
4,.det] = Adj(1,1)Adj(p + 1,p + 1) — Adj(1,p + DAdj(p + 1, 1)

with det I = 1 since I is the identity matrix.
Since

Adj(L,1)=Adj(p+L,p+ 1) =1,
Adj(Lp+1)= —a=Adj(p+1,1) 2)
then
4,=1—|al’.
Next we evaluate 4,,,, with 4 and k natural numbers greater than or equal to 1.
We distinguish between two cases depending on k. If k is not a multiple of p (k # p)

the last element in the first row is 0, otherwise the last element in the first row is a power
of a.
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(1) If k # p we may assume that ke {1,2, ...,p — 1}. We compute A4,,4,

column p + 1 column Ap + k + 1
i i
1 .. 00 a 0 .0 ... 'O ..0 4. 0
0 1 a
rowp+1— a 1
10
A}.p+k=
a1 1
0
0
row Ap+k+1-| a*
: 1
0 1

By applying the same property as in the previous cases we have
Aipexdipri-2 = A%pri—1 — Adj(1,Ap + k + DAdj(Ap + k + 1, 1).

For computing Adj(l,Ap + k + 1) it suffices to consider the rows Ap+k+ 1 and
A=—Dp+k+1of d;,k.
Since row Ap + k + 1 is

o, ...,0, a*o,..,0,a*%o0,..,a0,..,1)
1 I !
column k + 1 column (A —Dp+k+1
column p+ k + 1

and row (A —Dp+k+1is
©,..,0,a*"%0,..,0,a*7%0,..,1,0,..,a)
7 ] T
column k + 1 column (A —Dp+k+1
column p+ k + 1
then
Adj(1,Ap +k+1)=0 (3)
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and therefore

_ 42
Aapriipri-2 = Aipri-1-

(ii) If k = p it suffices to compute 4,, where A e N with 1 > 1.
14

column p + 1 column (A —1)p + k
! !
1 0ao 0 a0 0 a*
0 1 a
rowp+1- d 1

0

Alp*
a—l—l; 1
0
0
: 1:
a* 1

Proceeding in the same way as in the preceding cases we conclude
Aiplip-2 = A7,-1 — Adj(1, Ap + 1)Adj(Ap + 1,1)
with
Adj(1,Ap+1)=0 4

and as a consequence we have the result. [

Theorem 3. For pe N with p > 1 and ae C — {0} with|a| # 1, the sequence {$,(z)} defined by
dulz) = 2", 0<k<p-1,
$panld) = P —a) VK0

is the monic orthogonal polynomial sequence related to & (MOPS (2)).

Proof. Since £ is regular, there exists {¢,(z)}& MOPS (£). To obtain this sequence we
distinguish between two cases in which we use the following result [1]:

$a(0)4,_1 = Adj(n + 1,1) = Adj(L,n + 1) in 4,. (5)
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Case I For p =1, we have

1 a
1
bil) = =z~a
and Vk > 1
1 a a1+k
ak a*! a
z e gltk
@1 4x(2) = A,

From (5) and (1),
¢1+:(0) 4, = Adj(k + 2,1) = 0.

By using Szegd’s recurrence relation [7] we obtain the result.

Case 1I: For p > 1, proceeding in the same way as above we get

$.(z) =2z" Vnsuchthat0<n<p-—1

and since
1 0 a
00 0
1 zP
¢P(Z) = Ap_ )

by applying (5) and (2) we have ¢,(0) = — a. Then we obtain ¢,(z) by using the recurrence
relations.

To obtain the other polynomials we proceed in the way as for constructing ¢,(z) by using (3)
and (4). O

Definition 4. Let u: A — C be a regular and Hermitian linear functional.
We define the sequence of associated polynomials of first order, {¢(" (y)}& by

o V() = ug lu(¢n+1(23 : f}’nﬂ()’)

where {¢,(z)}§ is the MOPS (u) and uo = u(1) [2].

) Vn = 0,

By using the above definition we obtain, in the following result, that the associated poly-
nomials of first order related to our functional are the classical polynomials {z"}§.
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Theorem 5. The sequence of associated polynomials of first order corresponding to sequence

{.(2)}5 is {z"}5-
Proof. By using the previous definition we have, for 1 <k < p,

¢i(2) — i (y)

z—y )"3(2"‘1+y2"‘2+---+y"“)=y"“‘

o, () = sz(

and, for k > 1,

;1+)k—1()") = 2<¢p+k(23 : j:pﬂ(w) = 2(P+i_1 zjyp““l‘f) — aﬁ(kil ijk—1—j>

i=0 i=0

ptk—1

k—1
— z cjyp+k—1—]_a Z ijk—l_]. (6)
j=0

j=o

p*k=1 we use acj, = ¢(j+1)p Vj € N — {0}, which follows from

To prove that ¢, (v) =y
Definition 1.

Ifk <pthenO<k-—1<p-—1landp <p+k —1<2p— 1. Therefore in the first term of the
second member of (6) the only addends different from zero are those corresponding to ¢, and

c,. In the second term appear only the addends corresponding to co:

¢Lllk—1(y) =coy?™* 1 + prk_l —acoy* ' = yrrkol
If kzp+1 then IreN, r=2, kef[p+1,rp}. And thus p<k—-1<rp—1 and
2p<p+k—-1<(r+)p—-1
Since in the first sum, the only terms different from zero are those corresponding to

Cos Cps C2ps -+ » Crp and in the second those corresponding to ¢g,cp, C2p, +-. , C(r—1)p, then like in
the previous case we get the result. [

Next we analyse the semiclassical character of the functional £. First of all recall the
following definition [6].

Definition 6. £ is a semiclassical functional if there exist polynomials A(z) and C(z) such that the
series G(z) = Y72 ¢,z * (z = €') satisfies the following equation:

zA(2)G'(2) + iC(z) G(z) = O.

Theorem 7. & is a semiclassical functional, verifying the above definition with

A(z)=(1 —az’)(z> —a) and C(z)=ip(az** — a).



290 M.C. Sudrez, A. Cachafeiro/Journal of Computational and Applied Mathematics 57 (1995) 283-291

Proof. Since the series G(z) associated with £ is

G(z)= - +a"z"+ - +a*z?*+a’+1+az?+a’z" P+ - +a"z "+ -
then
+ . .
G(2)(1 —az’) =(1 —al?) ), a’z™%; (7)
j=0

therefore for |a| # 1.
If we multiply (7) by z” and by a, we conclude, from both expressions:

G(z2)(1 — az?)(z"F — a) = (1 — |a|*)z*. (8)
By taking derivatives in (8) with respect to z:
G'(2)(1 — az?)(z" — a) + G(2)( — 2apz** "' + (1 + |a|*) pz~ ') = p(1 — a|?) 2P~} )
and by multiplying (9) by z and (8) by p we obtain
pG(2)(az*? — a) — zG'(z)(1 — az?)(z* —a) = 0.
Then it is clear that this expression verifies the previous definition with
Aiz)=(1 — az?)(z —a) yC(z) = ip(@az** —a). O
Finally we obtain the differential equation satisfied by the MOPS (2).

Theorem 8. The sequence {¢,(z)}3 verifies the following differential equation:
22¢0(z) + z(1 — 2n + p)@y(z) + n(n — p)d,(z) =0 Vn>=0.

Proof. From Theorem 3 follows

Gpri(z) =22*F —azt Vn>=0. (10)
If we take derivatives in the preceding expression and we take into account (10) we get
2¢p+4(2) — k@pi(2) = p2P 7~ (11)
Again, by taking derivatives in (11) and by multiplying by z we obtain
ZPpi(2) + 2(1 — k)b 4i(2) = p(p + k) 2P *E. (12)

From (11) and (12) we deduce
22¢p1i(2) + z(1 — 2k — p)@p+u(2) + k(p + k) pi(2) =0 VK = 0.

By putting p + k = n we obtain the expression of the statement for all polynomials of degree
greater than or equal to p. On the other hand, by taking into account that ¢,(z) = z",0 < n < p,
it is easy to verify that these polynomials satisfy the equation too. [
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