Divisor Class Group Descent for Affine Krull Domains

BRONISLAW WAJNRYB*

Department of Mathematics, Technion, Haifa, Israel

Communicated by I. N. Herstein

Received July 21, 1983

1. INTRODUCTION

Let R be a Krull domain with the quotient field K, let L be a finite algebraic extension of K, and let S be the integral closure of R in L. The inclusion of R in S induces a homomorphism of the divisor class groups $i: \text{Cl}(R) \to \text{Cl}(S)$. Descent theory for Krull rings investigates the kernel of this homomorphism. In most examples (see [1]) this kernel is a finitely generated group. In this paper we shall find some sufficient conditions for $\text{ker}(i)$ to be finitely generated and some examples where it is not so. We are mainly interested in the case when R contains a fixed field k and S is affine (finitely generated k-algebra). If k is algebraically closed then $\text{Cl}(S)$ corresponds to the divisor class group of a suitable algebraic variety and $\text{ker}(i)$ is finitely generated (Theorem 1) by some results of algebraic geometry. In general $\text{Cl}(S)$ may become much bigger (example 1), or much smaller (example 2) under an algebraic extension of the field of constants k. Therefore, if k is not algebraically closed, we cannot use directly the methods of algebraic geometry. The result is still true if $\text{char}(k) = 0$ or if k is algebraically closed in L. In the other cases $\text{ker}(i)$ need not be finitely generated.

2. GROUND FIELD ALGEBRAICALLY CLOSED

In Sections 2, 3, 4 we denote by k a fixed field, R is a Krull domain containing k, K is the quotient field of R, L is a finite algebraic extension of K, and S is the integral closure of R in L. We also assume that S is finitely generated over k. We denote by i the homomorphism $\text{Cl}(R) \to \text{Cl}(S)$ induced by the inclusion.

* Partially supported by the Technion VPR Fund/K. and M. Bank Fund.
Lemma 1 [2, Chap. V, Theorem 2]. Let A be an affine ring, let F be a finite algebraic extension of the quotient field of A, and let B be the integral closure of A in F. Then B is a finite A-module. In particular B is affine.

Lemma 2. Let R_0 be a Krull subring of R containing k and assume that R is algebraic over R_0. Then there exists an element r of R_0, such that $R_0[1/r]$ is affine and $S[1/r]$ is integral over $R_0[1/r]$. Let

$$j_0: \text{Cl}(R_0) \to \text{Cl}(S) \quad \text{and} \quad j: \text{Cl}(R_0[1/r]) \to \text{Cl}(S[1/r])$$

be the homomorphisms induced by the inclusions. Then $\ker(j)$ is isomorphic to a factor group of $\ker(j_0)$ by a finitely generated group.

Proof: There exists an affine subring R_1 of R_0 with the same quotient field as R_0. By Lemma 1 we may assume that R_1 is integrally closed. Since S is affine there exists an element r of R_1, such that $S[1/r]$ is integral over $R_1[1/r]$. But $R_0[1/r]$ is contained in $S[1/r]$ and $R_1[1/r]$ is integrally closed, hence $R_0[1/r] = R_1[1/r]$ is affine. Let H be the subgroup of $\text{Cl}(R_0)$ generated by the finitely many prime divisorial ideals containing r. Then $\ker(j)$ is isomorphic to $\ker(j_0)/(H \cap \ker(j_0))$.

It follows from Lemma 2 that, as far as the size of $\ker(i)$ is concerned, we may assume that R is affine. Let us suppose that k is algebraically closed. Then R and S are rings of regular functions on normal affine algebraic varieties V' and W', respectively. We can embed V' and W' in complete normal algebraic varieties V and W. For an algebraic variety U let $\text{Cl}(U)$ denote the group of the divisor classes of U. Then $\text{Cl}(R) = \text{Cl}(V')$ and $\text{Cl}(V')$ is the quotient of $\text{Cl}(V)$ by the subgroup generated by the finite number of the prime divisors in $V \setminus V'$. There are similar relations between $\text{Cl}(S)$, $\text{Cl}(W')$ and $\text{Cl}(W)$. Furthermore we have an exact sequence of groups

$$0 \to \text{Pic}(V) \to \text{Cl}(V) \to \text{NS}(V) \to 0$$

where $\text{NS}(V)$ is the finitely generated Neron–Severi group of V and $\text{Pic}(V)$ is the group of points of the Picard variety of V [3, Chap. III, Sect. 1]. We have a similar sequence for the variety W.

The inclusion of R in S induces a generically surjective rational map $\phi: W \to V$, which induces a homomorphism $j: \text{Cl}(V) \to \text{Cl}(W)$ and its restriction $j_0: \text{Pic}(V) \to \text{Pic}(W)$. The map ϕ also induces a surjective homomorphism of the Albanese varieties $\psi: A(W) \to A(V)$, which induces the same map j_0 of the Picard varieties

$$j_0: \text{Pic}(V) = \text{Pic}(A(V)) \to \text{Pic}(A(W)) = \text{Pic}(W).$$

By [3, Chap. V, Proposition 2], since ψ is surjective, $\ker(j_0)$ is finite. It follows that $\ker(i)$ is finitely generated.
We have proven

Theorem 1. Let k be an algebraically closed field. Let R be a Krull domain containing k and let S be a Krull overring of R integral over R and finitely generated over k. Then the kernel of the homomorphism $i: \text{Cl}(R) \to \text{Cl}(S)$ is finitely generated.

3. Galois Descent

Let the notation and assumptions be as at the beginning of Section 2. We shall also assume L separable over K. By [11, Theorem 16.1] we have:

Lemma 3. Suppose L is Galois over K with the Galois group G. Then $\ker(i)$ is naturally isomorphic to a subgroup of $H^1(G, S^*)$, where S^* is the multiplicative group of the invertible elements of S.

We shall prove that for an affine ring S the group S^* is finitely generated modulo the maximal subfield of S. This will imply that $H^1(G, S^*)$ and $\ker(i)$ are finitely generated.

Lemma 4. Let F be the maximal subfield of S. Then S^*/F^* is a finitely generated free abelian group.

Proof. F is the set of the elements of S algebraic over k. By the normalization theorem there exists a ring of polynomials $R_0 = k[x_1, \ldots, x_m]$, such that S contains R_0 and is integral over R_0. Let v be the "infinite" valuation of $k(x_1, \ldots, x_m)$, i.e., $v(f/g) = \deg(g) - \deg(f)$. There are only a finite number of extensions of v to valuations of L. Let v_1, \ldots, v_k be the valuations of L extending v. Then S^* is generated by S^* / F^*. Consider a homomorphism $h: S^* \to Z^k$ defined by $h(s) = (v_1(s), \ldots, v_k(s))$. If s belongs to $\ker(h)$, i.e., $v_i(s) = 0$ for every i, then s belongs to V' and it is integral over V'. Whenever an element u is integral over a unique factorization domain B the irreducible equation of u over B is monic. Therefore if s belongs to $\ker(h)$, its irreducible monic equation over the field $k(x_1, \ldots, x_k)$ has coefficients in $k = V \cap k[x_1, \ldots, x_k]$ and s is algebraic over k. It follows that $\ker(h) \subset F^*$ and S^*/F^* is isomorphic to a factor group of a subgroup of Z^k. If s has a finite order modulo F^* then it is algebraic over F^*, hence belongs to F^*. Therefore S^*/F^* is a free finitely generated abelian group.

Lemma 5. Suppose that L is Galois over K with the Galois group G. Then $H^1(G, S^*)$ is finitely generated.
Proof. Let $G = \{g_1, \ldots, g_m\}$ and let s_1, \ldots, s_n represent free generators of S^*/F^*. Let $\sigma: G \rightarrow S^*$ be a cocycle, such that $\sigma(g_i) = a_i \Pi(s_j)^{k_{ij}}$, $a_i \in F^*$, for $i = 1, \ldots, m$. Let us define a homomorphism of the group of cocycles into a free abelian group $\mathbb{Z}^{m \times n}$ letting $\phi(\sigma) = \{(k_{ij})\}$. Suppose that σ belongs to the kernel of ϕ, i.e., $\sigma(g_i)$ belongs to F^* for all i. Then σ represents an element of the group $H^1(G, F^*)$, which is trivial by Hilbert Theorem 90. Therefore σ is a coboundary in $H^1(G, S^*)$. It follows that $H^1(G, S^*)$ is isomorphic to a factor group of a subgroup of $\mathbb{Z}^{m \times n}$.

Theorem 2. Let k be a field, R a Krull ring containing k, and K the quotient field of R. Let L be a finite separable extension of K, and let S be the integral closure of R in L. Assume also that S is finitely generated over k. Then the kernel of the homomorphism $i: \text{Cl}(R) \rightarrow \text{Cl}(S)$ is finitely generated.

Proof. Let L_1 be a Galois extension of K containing L, and let S_1 be the integral closure of R in L_1. Then, by Lemmas 3 and 5, the kernel of the homomorphism $j: \text{Cl}(R) \rightarrow \text{Cl}(S_1)$ is finitely generated and $\ker(i)$ is a subgroup of $\ker(j)$.

4. Radical Descent

Let the notation and assumptions be as at the beginning of Section 2. By [1, Proposition 17.5], we have:

Lemma 6. Let $\text{char}(k) = p \neq 0$, let $[L: K] = p$, and let D be a derivation of L, such that $D(S) \subset S$, $D(K) = 0$, $1 \in D(S)$. Then $\ker(i)$ is isomorphic to the additive group $\{x \in S; x = U(s)/s, s \in S\}$ modulo the group $\{D(u)/u; u \in S^*\}$.

Lemma 7. Let $\text{char}(k) = p \neq 0$, let $[L: K] = p$, and let L be a purely inseparable extension of K. Assume also that k is algebraically closed in L. Then $\ker(i)$ is finitely generated.

Proof. Since S is affine, we can find $r \in R$ and $z \in S$ such that $R[1/r]$ is affine and $S[1/r] = R[z, 1/r]$. Therefore, by Lemma 2, we may assume that R contains $1/r$ and $S = R[z]$, and $z^p \in R$. There is a unique derivation D of L, such that $D(K) = 0$, $D(z) = 1$, $D(S) \subset S$. Let \overline{L} be the algebraic closure of L and $\overline{R} = k \cdot R$, and $\overline{S} = k \cdot S$ in \overline{L}. Clearly $\overline{S} = \overline{R}[z]$. Suppose that \overline{S} is integrally closed, and let R_1 be the integral closure of \overline{R}. There exists a unique derivation \overline{D} of \overline{L} such that \overline{D} extends D, $\overline{D}(R_1) = 0$, and $\overline{D}(\overline{S}) \subset \overline{S}$. Suppose that $\ker(i)$ is not finitely generated. Then, by Lemma 6, there are infinitely many distinct elements of the form $D(s)/s = \overline{D}(s)/s \in \overline{S}$. By
Theorem 1. $\ker(Cl(R) \to Cl(S))$ is finitely generated. The maximal subfield of \mathcal{S} equals \mathcal{k}, $D(\mathcal{k}) = 0$, $\mathcal{S}^{*}/\mathcal{k}^{*}$ is finitely generated, and therefore the group $\{D(u)/u; u \in \mathcal{S}^{*}\}$ is a finite group of exponent p. Therefore $\ker(i)$ cannot be infinite by Lemma 6. If \mathcal{S} is not integrally closed then, by Lemma 1, its integral closure is finitely generated over \mathcal{R} and there exists $r_{0} \in \mathcal{R}$, such that $\mathcal{S}[1/r_{0}]$ is integrally closed. r_{0} belongs to a finite extension L_{1} of K, $L_{1} \subset K$. Then there exists $r_{1} \in L_{1}$, r_{1} integral over \mathcal{R}, and the norm $N_{L_{1}/K}(r_{0}) = r_{0} \cdot r_{1} = r \in \mathcal{R}$. By Lemma 2 we may assume that \mathcal{R} contains $1/r$, and then \mathcal{S} is integrally closed and is generated by z over the integral closure \mathcal{R}_{1} of \mathcal{R}. It follows as before that $\ker(i)$ has to be finitely generated.

Theorem 3. Let k be a field, \mathcal{R} a Krull domain containing k, and K the quotient field of \mathcal{R}. Let L be a finite extension of K and let S be the integral closure of \mathcal{R} in L. Suppose that k is algebraically closed in L, and that S is finitely generated over k. Then the kernel of the homomorphism $i: Cl(\mathcal{R}) \to Cl(S)$ is finitely generated.

Proof. By Lemma 2 we may assume that \mathcal{R} is affine. Let K_{1} be the separable closure of K in L. If $\text{char}(k) = p \neq 0$ let $K_{1} \subset K_{2} \subset \cdots \subset K_{n} = L$ be such that $[K_{i}: K_{i-1}] = p$ for $i = 2, 3, \ldots, n$. The theorem follows from Lemma 7 and Theorem 2.

Theorem 4. Let S be a Krull ring finitely generated over a field k and such that $Cl(S)$ is finitely generated. Let \mathcal{R} be a Krull subring of S containing k. If either $\text{char}(k) = 0$ or k is algebraically closed in S then $Cl(\mathcal{R})$ is finitely generated.

Proof. If we add variables to \mathcal{R} its divisor class group does not change. Therefore we may assume S algebraic over \mathcal{R}. By Lemma 2 we may assume S integral over \mathcal{R}. Theorem 4 follows from Theorem 2 and Theorem 3.

As a corollary we get the following:

Theorem 5. A Krull subring of a ring of polynomials has a finitely generated divisor class group.

5. **Examples**

Example 1. $Cl(\mathcal{R})$ is trivial but becomes infinite after an extension of the field of constants.

Let F be an algebraically closed field, let x and y be algebraically independent over F, and let $t = y^2 + y + x^3 + x$. Let $k = F(t)$. Then $k[x, y]$ is a quotient ring of $F[x, y]$, hence $k[x, y]$ is a UFD. On the other hand the
equation $y^2 + y + x^3 + x - t = 0$ defines a nonsingular elliptic curve over k, hence over the algebraic closure \overline{k} of k the ring $\overline{k}[x,y]$ has a very large divisor class group.

Example 2. $\text{Cl}(R)$ is not finitely generated but becomes trivial after an extension of the field of constants.

Let F be an algebraically closed field of characteristic $p \neq 0$. Let t be transcendental over F and let k be the separable closure of $F(t^p)$. Let x, y be algebraically independent over k and let $u = y + x^{p+1} + tx$. Let $K = k(u)$, $R = K[y, x^p, 1/x^p]$, $S = R[x]$. Then S is the integral closure of $R[t]$, and $S = K(t)[x, 1/x]$, hence $\text{Cl}(S) = 0$. By Lemma 6 $\text{Cl}(R)$ is an abelian group of exponent p. We shall prove that it is infinite, hence not finitely generated.

Let D be the unique derivation of S, such that $D(x) = 1$, $D(R) = 0$. By Lemma 6 $\text{Cl}(R)$ is isomorphic to the group $V = \{D(s)/s \in S; s \in S\}$ modulo the group $V_0 = \{D(u)/u; u \in S^*\}$. The group S^* of the invertible elements of S is generated by x and by the elements of $K[t]$. We have $D(x)/x = 1/x$ and $D(t) = D((u - y - x^{p+1})/x) = (y - u)/x^2 = -(x^p + t)/x$. Therefore the elements of V_0 have the form $(ax^p + b)/x$, $a, b \in K(t)$. Let $c \neq 0$ be any element of F. There exists a solution $a \in k$ of the equation $\alpha^{p+1} + t\alpha + c^p = 0$. Then $a = -c^p/\alpha^p + t^p$. Let $\beta = -c/\alpha + t \in k(t)$. Then $\beta \in k$ and $\beta^{p+1} + t\beta + c = 0$. We have

$$D(\beta) = (c/(\alpha + t)^2) \cdot D(t) = (x^p + t)/x(\alpha + t)$$

$$D(x - \beta)/(x - \beta) = (x(\beta^p + t) - \beta(x^p + t))/x(x - \beta)(\alpha + t)$$

$$= (1 + x\beta^{p-1} + x^2\beta^{p-2} + \cdots + x^{p-1}\beta)/x(\beta^p + t).$$

Therefore every element $c \in F$ produces an element of V. Let $d \neq 0$ be another element of F, let $\gamma^{p+1} + t\gamma + d = 0$, and let $D(x - \gamma)/(x - \gamma) = (t + xy^{p-1} + x^2y^{p-2} + \cdots + x^{p-1}\gamma)/x(y^p + t)$ be the corresponding element of V. If $(D(x + \gamma)/(x + \gamma) = D(x - \beta)/(x - \beta)) \in V_0$ then all positive powers of x in the numerator cancel, i.e., $(\gamma^p + t)\beta^{p-i} = (\beta^p + t)\gamma^{p-i}$ and $d\beta^{p+1-i} = c\gamma^{p+1-i}$ for $i = 1, 2, \ldots, p-1$. If $p > 2$ we get $\beta = \gamma$, which contradicts $d \neq c$. If $p = 2$ we get $(\beta - \gamma)(\beta\gamma - t) = 0$ and $d\beta^2 = c\gamma^2$, hence $\beta^2 = c\gamma^2/d$. But we also have $\beta^3 + t\beta + c = 0$ which contradicts the fact that t is not algebraic over F. Therefore elements of F induce distinct elements of V modulo V_0 and $\text{Cl}(R)$ is not finitely generated.

Example 3. If S is not affine $\text{ker}(i)$ may be not finitely generated also in characteristic 0.

We shall construct an example by the method of Leedham–Green [4]. Let \overline{Q} be the field of the algebraic numbers and let Q_0 be the field of the real algebraic numbers. Let $A = Q^2$ be the plane over Q. For $P \in A$ let \overline{P} denote
the point complex conjugate to P. Let $(C_n : f_n(x, y) = 0)$ be a sequence of all irreducible curves defined over \overline{Q}. For each $i = 1, 2, \ldots$ we shall choose a curve $C_n(i)$ and a point $P_i \in A$ such that

(i) the coordinates of P_i do not both lie in Q_0;
(ii) for all $j < i$ P_i is not equal to P_j or \overline{P}_j;
(iii) neither P_i nor \overline{P}_i lie on any curve $C_n(j)$ for $j < i$;
(iv) if i is odd we shall choose $C_n(i)$ to be the first curve neither equal nor conjugate to any $C_n(j)$ for $j < i$, and we shall choose on $C_n(i)$ a simple point P_i satisfying (i), (ii), (iii);
(v) if i is even we shall choose a point P_i satisfying (i), (ii), (iii), and we shall choose a curve $C_n(i)$ not defined over Q_0, not containing any P_j or \overline{P}_j for $j < i$, and containing both P_i and \overline{P}_i as simple points.

Then every irreducible curve or its conjugate is equal to some $C_n(i)$. Let S be the ring of rational functions $f/g \in \overline{Q}(x, y)$, such that for every point $P = P_i$ or $P = \overline{P}_i$ we have $\text{ord}_P(f) \geq \text{ord}_P(g)$. Let $R = S \cap Q_0(x, y)$. Then R and S are Dedekind domains and S is integral over R. Prime ideals of S correspond to points P_i and \overline{P}_i while prime ideals of R correspond to pairs (P_i, \overline{P}_i). Ideals p_{2i} corresponding to distinct pairs $(P_{2i}, \overline{P}_{2i})$ represent distinct elements of $\text{Cl}(R)$. Indeed if a divisor of a rational function f/g contains P_{2i} and does not contain any P_{2k+1} or \overline{P}_{2k+1} then f and g have only prime factors of the form $f_{n(2i)}$ or $f_{n(2i)}$. If also $f/g \in Q_0(x, y)$ then these factors appear in pairs. The product $f_{n(2i)} \cdot f_{n(2i)}$ generates the square $(p_{2i})^2$ in R. It follows that the ideal p_{2i} has order 2 in $\text{Cl}(R)$ and is different from any other p_{2k} in $\text{Cl}(R)$. But the image of p_{2i} in S (i.e., $p_{2i} \cdot S$) is principal, generated by $f_{n(2i)}^{-1}$. Therefore $\ker(\text{Cl}(R) \to \text{Cl}(S))$ is not finitely generated.

References