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Abstract. A word is called kth power-free if it does not contain any non-empty factor u*. A
morphism is kth power-free if it preserves kth power-free words. A morphism is power-free if it
is kth power-free for every k> 1.

We show that it is decidable whether a morphism is power-free; more precisely, we prove that
a morphism h is power-free iff: h is a square-free morphism and, for each letter a, the image
h(a?) is cube-free.

Introduction

The notion of kth power-free words (i.e., words containing no factor of the form
u® with u # 1) has been the subject of several works since Thue’s paper [8].

An account of basic results may be found in [6, 7]. Berstel [3] gives a survey of
some recent results about square-free words and related topics. Properties of kth
power-free morphisms and of power-free morphisms are investigated in [1], where
the more general concept of an avoidable pattern is introduced.

Usually infinite kth power-free words are constructed by iterating special morph-
isms. This naturally leads to the notion of kth power-free morphisms (ie., morphisms
which preserve the kth power-free property).

For k = 2, the decidability of kth power-free property for morphisms was proved
in [2]. The characterization of square-free morphisms has been sharpened in [4, 5]
and is now optimal.

On the other hand, Bean et al. [1] study, among others things, what we will call
here power-free morphisms. These are morphisms which preserve kth power-free
words for every k> 1.

Here we give an effective and simple characterization of power-free morphisms
(Theorem 2.1). This result is obtained as a consequence of another result (Theorem
2.2) which shows the relationship between square-free morphisms and kth power-
free morphisms.
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Section 1 presents some technical lemmas about morphisms which preserve the
square-free property of words of length three. Section 2 gives the announced
theorems about power-free morphisms and square-free morphisms.

1. Preliminaries

Given a finite alphabet A, we denote by A* (respectively A™) the free monoid
(respectively semigroup) generated by A. The empty word is denoted by 1, thus
AT =A%-1,

A k-th power is a nonempty word of the form u*,

A word is kth power-free if none of its factors is a kth power. If k=2 (k=3) we
say square (cube) instead of kth power. A morphism is a k-th power-free morphism
provided h(w) is a kth power-free word whenever w is kth power-free.

A morphism is power-free if it is a kth power-free morphism for every k= 2.

A word w is said primitive if it is not a proper power of another word (i.e., weu™
implies that w = u), otherwise w is said unprimitive.

The following statement concerning unprimitive words is well known (see, for
example, [6]).

Proposition 1.1. A non-empty word w is unprimitive iff w = uv = vu for some nonempty
words u, v.

We now turn to the study of special morphisms.

Proposition 1.2. Let h be a morphism from A* into B* such that h(A) # {1}. Assume

further that h(w) is square-free whenever w is a square-free word of length <3. Then
h(A) is a biprefix code.

Proof. Let a be a letter of A. If h(a)=1, let be A with h(b)#1; then h(bab)
contains a square. Thus h(a) # 1.

Suppose now that h(a) # 1 and h(a) is a prefix (respectively suffix) of h(b); then,
h(ab) (respectively h(ba)) contains a square; a contradiction. []

Lemma 1.3. Let h be a morphism from A* into B* such that h(w) is square-free
whenever w is a square-free word of length <3. Let e,, e;€ A be two letters, and let
ve A* be a word. Let h(e;)=EE! (i=1,2) be factorizations of h(e;) such that
EVE,# 1. Assume finally that E{h(v)E), is a prefix or a suffix of h(e,) for a letter
eo€ A. Then v=1.

Proof. By symmetry we consider only the case E{h(v)E5= E} with h(e,) = E{E}
(see Fig. 1).
Arguing by contradiction, suppose that v # 1 and set v = ev’ with e A.
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h(e,) h(v) h(e,)
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E1 E1 E2 p E2
!
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Eo

Fig. 1. E{h(v)E} is a prefix of h(e,).

Note first that E # 1; indeed, on the contrary one would have E5 =1, since h(A)
is a prefix code, contradicting the hypothesis. Then h(e,e,) = E{(E})*h(v)E%E}
contains a square, hence e ,=e¢, It follows that h(eyeey)=h(e ,ee;)=
E}{(Eh(e))*h(v')E4E} also contains a square, and consequently e, = e.

Thus, h(ey) = EqEq = ETh(eyv')E5Eg and E7 E’ # 1 implies that h(e,) is a proper
factor of itself, which yields the contradiction. [

Proposition 1.4. Let h be a morphism from A* into B* such that h(w) is square-free
whenever w is a square-free word of length <3. Let w, v be two words of A* such that
h(w)=xh(v)y with x, y ¢ h(A*).

Then there exist a letter a € A and two words w,, w, of A* such that w = w,aw, and
h(a) = x,h(v)x,, x = h(w,)x,, y = x;h(w,).

Proof. Assume the conclusion is false. There is a letter ¢ of v such that h(e)=
E{h(u)E’ where e ue, is a factor of w with e,, e,€ A, ue A*, and h(e;)=E'E/
(i=1,2).

Note that E] and E; are nonempty words since h(A) is a biprefix code and x,
y € h(A*). By Lemma 1.3 we obtain that u=1.

On the other hand, h(e,e) contains E}* and h(ee,) contains E5>. Thus we have
e,=¢e=e,.

From h(e)=E{E{=E{E,=E4E; we derive that h(e)= E,E| = E/E), since
|Ei|=|E}|. This means that h(e) is unprimitive and thus h(e) contains a square.
This yields the contradiction and completes the proof. [

At last we state the following lemma.

Lemma 1.5. Let h be a morphism for A* into B* such that h(w) is square-free whenever
w is a square-free word of length <3. Let e; (i=1,2, 3,4) be letters of A and v, © be
two words of A*, with vd # 1.

Assume that E{h(v)E5= EJh(D)E, with h(e;)=E/E! (i=1, 2, 3, 4) for some
factorisations such that E',, E), are nonempty words.

Then E%=E).

Proof. Assume the contrary. By symmetry it suffices to consider the case |E}| < |E}|.
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According to Proposition 1.4 we have that h(v) is a factor of h(e,) since |E5| <|E}).
Consequently, E}= E/h(v)E}, where E/ is some suffix of E{.

A first application of Lemma 1.3 gives us v=1. Hence E{E,= E5h(D)E} and
more precisely E} = E5h(#)E} where E,= E/ is a prefix of E}.

A second application of Lemma 1.3 gives us o = 1. Thus, v = 1 and this contradicts
the assumptions of the lemma. [

2. Power-free morphisms

This section is devoted to an effective characterization of power-free morphisms.
That is, we shall prove the following theorem.

Theorem 2.1. A morphism h is power-free iff h is a square-free morphism and h(a?®)
is cube-free for each letter a.

For a morphism h let us define the deviation e(h) of h by
e(h) =max{|u|| h(u) is a proper factor of h(e) for a letter e}.

This is closely related with the notion of the so-called deviation introduced in [2].

Theorem 2.1 is an immediate consequence of the next theorem. Effectiveness of
characterization (we only consider finite alphabets) is shown by condition (iii) which
has been proved independently in [4] and [5].

Theorem 2.2. Let h be a morphism from A* into B* such that h(w) is square-free
whenever w is a square-free word of length <3. Then the following conditions hold:
(1) h is k-th power-free for all k> 3.
(ii) if h(a®) is cube-free for each letter a € A, then h is cube-free.
(it1) if h(w) is square-free whenever w is a square-free word of length <e(h)+2,
then h is square-free.

Proof of Theorem 2.2. Let w be a word such that h(w) is not kth power-free with
k> 1. Then |w|=2 since each letter is square-free by hypothesis. Weset w=ce, ... e,
(e;€ A). By shortening w if necessary we can assume that h(w)= E u*E” where
E7{, u, E, are nonempty words and h(e,) = E{E{, h(e,) = E",E’ for some factoriz-
ations.

Let us define the growing sequence (i;), 0<s=<k, by: h(e,...¢, )= Eju’E] where
h(e,)=E;E{ and E| #1 if s#0.

Since h(w)=E u*E” and E',# 1 we have i;=1 and i, = n. Now we prove the
followings claims.

Claim 2.2.1. If 1=i,_, ori,=n, then k =2 and |w|<e(h)+2.
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Proof. By symmetry we suppose i_, = 1. By definition of the sequence (i), h(e,)
contains a (k—1)st power. Hence, k=2 and i;=1. Then, u=E]h(e,...¢,,)E,
and h(e,)= EjuE]. Thus, h(e,...e,_;) is a factor of h(e,) which implies
e . .. e,_,|<e(h). Therefore, |w|<e(h)+2. O

Claim 2.2.2. If i,=i,_,=2 and n=3, then w is not k-th power-free.

Proof. Since i, = i,_, =2, all factors u from the second up to the (k—1)st ‘lie’ in
h(e,); thus, u*~? is a factor of h(e,), and consequently k<3. Let w = ¢,e,e;. We
have u*'= E{E}= E4E} with h(e;)= E{E? (i=1, 2, 3).

If k =2, then u” is a factor of w; hence w is not square-free since |w|=3. If k=3,
then u? is a factor of h(e,e,) and of h(e,e;). Hence, e, =e,, e,=e; and w=ej is
not cube-free. []

Claim 2.2.3. Ifi,<i,_, and n=2, then w=e* and k=3.

Proof. Let w=e¢e,e,. We have i;=1, i,_, =2, and k=3 since i; <i,_,. If k>3, then
i, <ix_, since h(e,) is square-free. But then h(e,) is not square-free since 2 =i, =
i,_, = ix—o. Consequently, k= 3: u® is a factor of h(e,e,), thus h(e,e,) is not square-
free, and hence e, =e,. [

Proof of Theorem 2.2 (continued). If 1=4._, or i,=n we apply Claim 2.2.1. If
;=2 and i;,=n—1 we apply Claim 2.2.2 or Claim 2.2.3 according to whether
i,=Ix_, or ij<ie,. Thus, we can assume that 1<i,_,, iy<n, and (2<i._, or
i;<n-—1). We have

uk—l_—'E’l,h(ez---e —I)E’ =E:',1h(eil+l"'e"“1)E’"'

fg—y fk—-1

!

By construction E;_, E, are nonempty words and by applying Lemma 1.5 on
factorizations of u*~! we obtain E i, = E 5. Since h(A) is a biprefix code, this implies

(see Fig. 2) for all j, t with 0<j <i,, 0<t <k, the equalities
e.;=e¢ and ¢ =e, if E,=1.
e,-l+]-=ej+1, E;’=E:,’ and E:'=E£«, ifE,,,.?él.

The asymmetry of these formulas is due to the fact that Ej # 1.

We deduce from them that w=(e,... e,-l)k if E,=1 and that h(e,ee,)=
E’I(E;’Eﬁl)zE:, if En#1.

In the second case, e, =e¢; (or ¢, =e,) since h(e,e; e,) contains a square, and
hence w=e¢, (e,... e,-,)" (orw=(e,... e,-,_l)"e,,). Thus w is not kth power-free and
this completes the proof. [

The condition that h(a?) is cube-free for each letter a is necessary, as is shown
by the following example due to Bean et al. [1].
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Fig. 2. u*'=E{h(e,... e, _)E|_=E/h(e,, ... e, ,)E".

i1

Example. Let h be an endomorphism on {a, b, ¢, d}* induced by
at-abacbab, ¢t cdacabcbd,
b+ cdabcabd, dV\cdacbcachd.

h is square-free according to Theorem 2.2 (e(h) = 0) but h(a®) = abac(ba)’cbab and
so h is not power-free.
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