
 

  

 

 

 

 

 

 

 

 
 

 
Introduction 
 

Proteins, polymers of amino acids, are the main building blocks 
and functional molecules of the cell. They are the most multifaceted 
macromolecules in living systems and have various important 
functions, including structural, catalytic, sensory, and regulatory 
functions. The ability of proteins to cluster together to form well-
defined structures comprising amino acid sequences make these 
numerous roles possible. The collection of data regarding protein 
sequences is rapidly growing, with approximately 6 million entries in 
Universal Protein Resource (UniProt) knowledgebase at present [1-
8]. To completely understand the function of a protein, knowledge of 
its three-dimensional structure is essential. Unfortunately, 
experimental structure determination is only possible for a small 
fraction of these proteins [2,8-10], with only approximately 2% 
having experimentally verified structural annotation at present. For 
the remaining 98%, prediction of the structure is the only alternative. 
Therefore, the structural characterization of proteins is a major goal 
in computational biology [1-8]. 

Advances in molecular modeling have expanded the area of 
computational protein design, from creating new proteins based on 
known protein sequences present in nature to designing new proteins 
that fold into a specific structure or perform a specific function. 
Before aiming at protein design by using computational methods, one 
should understand the underlying physical principles governing the 
folding, stability, and function of a protein. For all these decades, 
scientists and researchers have been following a perturbation or an 
alternation-based paradigm in order to determine the functionality of  
 

 
 
 
 
 

 
 

 
  

a protein. The method relies on the generation of hundreds and 
thousands of protein mutants, coupled with selective pressure to 
identify variants with desired properties. Alternatively, in 
computational protein design one aims at a design-based paradigm 
instead of a perturbation-based paradigm. In design-based paradigm, 
biologists combine design paradigms or methods for problem solving 
with computational modeling techniques to predict the success of 
their designs. This paradigm has been effective for the creation and 
implementation of new ideas and inventions. Design-based paradigm 
is used for the identification of the boundaries of possible designs and 
for the elimination of impossible, impractical, inefficient, or otherwise 
undesirable designs which would have otherwise been difficult to 
identify using alternation-based paradigm. In a structure-based 
computational method, a computational or a mathematical framework 
is constructed by taking into consideration the evolution, function, 
stability, and functionality of a protein. The designed proteins are 
then checked experimentally for their specific function. If the 
designed proteins exhibit all these characteristics, then it can be 
concluded that the mathematical model or the framework can 
fundamentally capture the essence of a protein. On the other hand, if 
the experiments do not work then one can learn from the failures to 
modify and create a new model, which will ultimately serve the final 
goal of computationally designing a novel viable protein. Protein 
design from scratch is thus the most precise way of testing our 
knowledge on how natural proteins implement their functions. 

Engineering proteins with improved functionality or novel 
applications has been experimentally achieved by screening of large 
mutant libraries. However, most of these proteins do not provide 
quantitative design principles and/or comprehend the structural 
features that support the desired function. Computational protein 
design has helped overcome these drawbacks. With reliable structural 
predictions [11-14], protein stability at the desired conditions, and 
accurate description of intermolecular interactions (protein–protein 
interactions [15,16] and DNA–protein interactions [17]), the 
technique of computationally designing proteins has been one of the 
fast-emerging trends in biotechnology and biomedicine. Furthermore, 
computational protein design  has attained significant breakthrough, 
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for example, in the design of novel biocatalysts [18-21] and 
biosensors for non-natural molecules, redesign of proteins with 
improved binding affinity [22], redesign of proteins with greater 
binding specificity [16,23,24], and design of proteins capable of 
binding non-biological cofactors [25] (Figure 1). 

Enzyme design presents a huge challenge, not only in the de novo 
design of catalysts for which no natural counterparts are known, but 
also in the design of multipurpose enzymes, which may have a wide 
range of biotechnological applications in fields, such as industrial 
organic synthesis and metabolic engineering [26-29]. This review 
mainly discusses the strengths and recent successes of computational 
protein design approaches. We also summarize advancements of 
design methodology and the application of protein design strategies 
over the past few years. Other recent reviews can provide additional 
backgrounds and perspective [30-33]. 

 
Rational computational design 
 

The creation of biocatalysts from scratch enables scientists and 
engineers to build synthetic enzymes for a series of different chemical 
reactions, e.g., retro-aldol reaction [20] and Kemp elimination [21]. It 
also presents a testing ground for our fundamental understanding of 
the complexities of protein structure and function. Computational 
protein design starts with the coordinates of a protein main chain and 
uses a force field to identify sequences and geometries of amino acids 

that are optimal for stabilizing the backbone geometry [35]. Even for 
small proteins, the number of possible sequences far exceeds that 
which can be thoroughly searched. The development of powerful 
search algorithms to find optimal solutions has provided a major 
stimulus to the field [36]. Computational protein design requires 
correlation of structural predictions and experimental stability. 
Artificial enzymes have been developed with varying degrees of 
computational involvement, which includes de novo enzymes, where 
both the protein topology and the active site are built from scratch 
[20,34,37,38]. 

 

The introduction of amino acid residues in the form of active site 
residues into the existing scaffolds is essential for computationally 
designed enzyme catalysis. These active site residues of the enzymes 
are responsible for enhancing the chemical reactions by lowering the 
activation barrier via stabilization of the transition state [39]. 
Accurate modeling of important forces in the active site requires 
quantum mechanical (QM) calculations [38]. Potential binding 
pockets capable of binding tightly to the transition state and retaining 
the desired geometry of the functional groups are identified within 
different protein scaffolds. Using geometry-based identification, the 
transition state is matched with the binding site and the position of 
the transition state and the catalytic side chains are optimized. Finally, 
the remaining residues for tight binding of the transition state are 

Figure 1. Computationally designed structures and enzymes. (A) A novel Top7 globular protein fold with atomic-level accuracy [34]. (B) Designed SspB adaptor 
protein [15]. (C) Redesigned endonuclease DNA binding [17]. The redesigned enzyme binds and cleaves the redesigned recognition site ~10,000 times more 
effectively than does the wild-type enzyme, with a level of target discrimination comparable to the original endonuclease. (D) A novel retro-aldol enzyme 
designed within a TIM-barrel scaffold [20]. 
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designed and the designs are ranked on the basis of transition state 
binding energy and catalytic geometry. Although the simultaneous 
design of structure and catalysis promises to broadly expand the scope 
of artificial enzymes, this area is still in its infancy. 

Computational techniques have been used to design novel metal 
binding sites into proteins [40-42]. Nascent metalloenzymes with a 
variety of oxygen redox chemistries have been generated by leaving 
one of the primary coordination spheres of the metal unligated by the 
protein [43,44]. The diverse and powerful chemistry of metals makes 
metalloprotein design a promising approach to enzyme design [45]. 
Early pioneering work included the modeling of iron with one 
primary coordination sphere ligated with dioxygen, and a number of 
metalloproteins were designed in the thioredoxin fold [44]. These 
proteins were experimentally shown to bind iron and catalyzed a 
variety of oxygen chemistries. A high-energy state of histidine-
catalyzed p-nitrophenyl acetate (PNPA) hydrolysis as a series of side 
chain rotamers was modeled by Bolon and Mayo [18]. They had 
followed a method analogous to that used for the design of catalytic 
antibodies. Escherichia coli thioredoxin [46] was selected as a scaffold 
because of its favorable expression properties, thermodynamic stability 
[47], and successful history in computational design [44]. A 
composite side chain composed of the histidine covalently linked to 
PNPA was introduced and sampled conformationally around 
accessible bond rotations in order to computationally model this 
reaction. To facilitate substrate binding and recognition, amino acids 
adjacent to the His-PNPA site were allowed to mutate to alanine. 
The conformations of His-PNPA and surrounding side chains were 
optimized using Dead End Elimination [48]. This was followed by 
the synthesis of the top two scoring candidates, protozyme design 
(PZD) 1 and PZD2. PZD2 demonstrated significant rate 
enhancements over the uncatalyzed reaction and saturation kinetics 
with increasing substrate concentration. Although initial extension of 
these computational methods to the design of a triose phosphate 
isomerase turned out to be unsuccessful, many important ideas put 
forth in these studies were incorporated into the recent, successful 
design of chemically ambitious artificial enzymes. Recently a strategy 
was devised to design an organophosphate hydrolase starting from a 
functionally diverse set of mononuclear zinc-containing 
metalloenzyme scaffolds [49]. For the computational design of 
organophosphate hydrolysis activity, a dinuclear bacterial 
organophosphate hydrolase, a zinc-containing enzyme, was selected as 
the template. Computational design of mononuclear zinc-containing 
active sites successfully identified a set of mutations in an adenosine 
deaminase that confer on it the target organophosphate hydrolysis 
activity (Figure 2). It was found that only four simultaneous 
mutations were required for the emergence of organophosphate 
hydrolysis activity in the deaminase. The engineered zinc-containing 
mouse adenosine deaminase catalyzed the hydrolysis of a model 

organophosphate with a catalytic efficiency (kcat/Km) of ~104 M-1 s-1, 
representing a net increase in activity greater than 107-fold. 

In parallel with computational advances, active-site designs 
continue to progress using rational, intuition-based strategies. Using 
protein and substrate engineering, esterase activity was successfully 
introduced into human carbonic anhydrase (HCAIII) [50]. The 
affinity of HCAIII for benzenesulfonamide-containing molecules was 
used to model a substrate such that the scissile bond was positioned 
within a cleft in the protein. Grafting a His dyad from previous de 
novo helix-loop-helix designs resulted in an HCAIII variant with 
enhanced esterase activity over wild-type. The general application of 
these approaches promises interesting future results, including the 
ability to design proteins to catalyze reactions that are inaccessible by 
natural enzymes. 

 
  
 
 
 
 

 

Computational protein design tools to date have been useful for 
engineering proteins with a wide range of functions 
[17,20,21,25,33,51,52]. Many of these successes rely on fixed 
backbone approaches that maintain the backbone conformations seen 
in the original high-resolution crystal structures and focus on 
remodeling only the side chains [53,54]. Computational protein 
design programs typically contain two major components: an energy 
or scoring function to evaluate how well a particular amino acid 
sequence fits a given scaffold and a search function that samples 
sequences as well as backbone and side chain conformations. Energy 
functions for protein-design often contain a combination of 
physically-based and knowledge based terms [55].  

Exceptional progress is seen in de novo design of enzymes 
catalyzing a chemical reaction for which a natural biocatalyst does not 
exist. Researchers have devised different computational tools to assist 
designing and engineering of proteins with desired catalytic properties 
aiming to improve the catalytic efficiency of the designed biocatalysts. 
Programs like METAL SEARCH [36,42,56,57], DEZYMER [45], 
ORBIT [58], and ROSETTA [59] have laid a strong foundation and 
launched the development of de novo design of enzymes. METAL 
SEARCH uses an “on-the-fly binning” algorithm. Binning can be 
defined as a process of mapping continuous values into categorical 
values or bins. Binning can amplify data effects and can also reduce 
the effort required for exception detection by providing a sampling 
approach. METAL SEARCH helps design tetrahedrally coordinated 
metal binding sites in proteins of known structure. The program 
assumes fixed backbones, uses rotamers in the initial stages of the 
search, and uses simple geometric criteria for evaluating potential sites. 
The program specifies the 4 residues that might form tetrahedral sites 
using the backbone coordinates of a protein if wild-type amino acids 
were replaced by cysteine or histidine. The program has been used for 
the introduction of zinc binding sites in the designed 4-helix bundle 

protein α4 and in the B1 domain of streptococcal protein G, and in 
both cases, the tetrahedral coordination of a bound metal ion has been 
confirmed. DEZYMER, on the other hand, is a much more versatile 
computer program than METAL SEARCH, and helps design metal 

Figure 2. Computational design of an organophosphate hydrolase. 
Engineered zinc-containing mouse adenosine deaminase PT3.1 design 
crystal structure, with catalytic residues in yellow [49]. 

Computational protein design 

3 

Volume No: 2, Issue: 3, September 2012, e201209002 Computational and Structural Biotechnology Journal | www.csbj.org 



sites in proteins of known structure. DEZYMER is a molecular 
model building computer program that builds new ligand binding 
sites into a protein of known 3D structure by altering only the 
sequence and the side-chain structure of the protein, leaving the 
protein backbone folds intact by definition. This program enabled 
computer-aided modeling of sites with pre-defined geometry, 
providing a general method for the design of ligand-binding sites and 
enzyme active sites, which can then be tested experimentally. Using a 
crystal structure as the starting point the program can help maximize 
the stability of a target state by optimizing the side chain metal-ligand 
geometries.  

Dahiyat and Mayo, via an automation algorithm called ORBIT 
(optimization of rotamers by iterative techniques), introduced a 
cyclical protein design strategy by coupling theory, computation, and 
experimental testing. By using a rotamer description of the side chains, 
they implemented a fast discrete search algorithm, based on the Dead-
End Elimination (DEE) theorem, to rapidly find a globally optimal 
sequence in its ideal geometry from the vast number of possible 
solutions. DEE is a powerful algorithm capable of reducing the search 
space for structure-based protein design by a combinatorial factor. By 
using a fixed backbone template, a rotamer library, and a potential 
energy function, DEE identifies and prunes rotamer choices that are 
probably not part of the Global Minimum Energy Conformation 
(GMEC), effectively eliminating the majority of the conformations 
that must be subsequently enumerated to obtain the GMEC [48,60]. 
Since the discovery of the DEE algorithm in 1992 several major 
theoretical and practical improvements have matured the method as a 
novel and promising tool in the fields of protein modeling and design.  

ROSETTA, a milestone for protein design, is a suite of 
computational tools developed in the laboratory of David Baker. The 
most widely used computational protein design tool, Rosetta was 
originally developed for de novo fold prediction [11,12,61]. But it 
has been expanded to include methods for design, docking, 
experimental determination of structure from partial datasets, protein-
protein interaction design and prediction, enzyme design, RNA 
structure prediction and protein-DNA interaction prediction and 
design [17,20,21,25,51,52]. The Rosetta de novo enzyme design 
protocol has been used to design enzyme catalysts for a variety of 
chemical reactions, and in principle can be applied to any arbitrary 
chemical reaction of interest. The process has four stages: i) choice of 
a catalytic mechanism and corresponding minimal model active site, 
ii) identification of sites in a set of scaffold proteins where this 
minimal active site can be realized, iii) optimization of the identities 
of the surrounding residues for stabilizing interactions with the 
transition state and primary catalytic residues, and iv) evaluation and 
ranking the resulting designed sequences. Stages two through four of 
this process can be carried out with the Rosetta package, while stage 
one needs to be done externally [62]. The code is developed by the 
RosettaCommons. This working collaborative is composed of over 
15 academic groups and thus the code is being applied to a very wide 
diversity of problems [63]. Recently, ROSETTA was used to develop 
artificial enzymes that catalyzed retro-aldol reaction [20] and Kemp 
elimination [21]. These designs were impressive in the extent to which 
the relationship between structure and reactivity was modeled and 
characterized. 

Kemp elimination and retro-aldol reactions are considered 
milestones in the field of biocatalyst design. Kemp elimination is a 
model reaction for proton transfer from carbon. Seven rounds of 
random mutagenesis and shuffling resulted in an enzyme named 
KE07 (PDB accession code 2RKX) showing a >200-fold increase in 
catalytic efficiency and >1000 catalytic cycles exhibiting multiple 
turnovers. KE07 is based on the triose phosphate isomerase barrel 
scaffold of the Thermotoga maritime derived thermostable imidazole-

3-glycerolphosphate synthase (HisF). Some of the mutations 
introduced during directed evolution were localized in the residues 
adjacent to designed positions; some changed flexibility of the region 
neighboring the active site; or adjusted pKa of the catalytic residues. 
The position and functional role of these mutations provide 
important insight into the strength and shortcomings of current 
designs, which need to be understood in order to match efficiency of 
natural catalysts in the future. On the other hand, retro-aldol reactions 
targeted retro-aldolase as biocatalysts and involved the breaking of 
carbon–carbon bonds in a non-natural substrate. The design required 
implementation of hashing methodology in ROSETTA to improve 
the algorithm in order to meet the requirements for a multistep 
reaction. The designs spanned a broad range of protein folds and 32 
out of 72 experimentally characterized designs showed detectable 
retro-aldolase activity. 

Though Rosetta has been shown to be capable of designing active 
enzymes in various cases [20,21,51], in each case the best designed 
proteins only had very modest activity, while many of the designs 
tested had no activity at all. Thus, while this protocol constitutes a 
powerful tool in the development of novel catalysts, success is by no 
means guaranteed [62]. In spite of the remarkable success, several 
shortcomings and potentials for improvement exist, some of which 
have been briefly summarized in this review. i) To increase the quality 
of designs, it is beneficial to include as many interactions in the 
theozyme as possible, and concurrently run matching for as many 
scaffolds as possible, ii) The enzyme design protocol so far only 
considers one state of the reactant, or one snapshot of the reaction 
trajectory. This means that Rosetta will try to design a sequence that 
optimally stabilizes this state, while ignoring the other states that also 
occur along the reaction coordinate. Finally, ranking and selection of 
designs could be improved by the development of faster more 
thorough computational examination methods [62]. Recently Jacak, 
R. et al. also pointed out in their study that that in many cases the 
Rosetta scoring function fails to prevent large hydrophobic clusters 
on the surface of proteins, even though the overall amino-acid 
composition of the protein surface is not significantly different from 
other soluble proteins [64]. Despite the limitations listed above, what 
distinguishes Rosetta’s computational approach is that it is capable of 
generating catalytic activity from an inert scaffold, whereas most 
experimental methods, such as directed evolution approaches, rely on 
an existing catalytic activity as a starting point. 

Several other novel algorithms or methods were also developed for 
de novo design of enzymes. A method for designing a new de novo 
protein was developed where one could search suitable scaffolds 
directly in the Protein Data Bank (PDB) [65]. Triose phosphate 
isomerase enzyme was used for the authentication of this method. 
Another novel algorithm based on dead-end elimination was useful 
for identifying minimized global minimum energy conformations and 
for the filtering of ensemble-based scoring [66]. A fast and precise 
algorithm that identified point mutations responsible for changing the 
net charge of the enzyme was also developed. This was done by 
bearing in mind that the enzyme maintained its fold and activity for 
redesigning. This resulted in the change in the pKa values of the 
catalytic residues placed into the putative catalytic sites [67]. The 
initial de novo designs could be additionally fine-tuned by simulations 
employing transition states [68,69]. 

Another open-source, freely-available computational structure-
based protein design suite of programs OSPREY (Open Source 
Protein REdesign for You) developed in the lab of Bruce Donald at 
Duke University identify protein mutants that possess desired target 
properties (e.g., improved stability, switch of substrate specificity, 
etc.). OSPREY can also be used for predicting small-molecule drug 
inhibitors. OSPREY incorporates set of several different algorithmic 
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modules for structure-based protein design, including a number of 
powerful Dead-End Elimination (DEE) algorithms and the ensemble-
based K* algorithm for protein-ligand binding prediction. This suite 
allows the incorporation of continuous protein side-chain and 
continuous or discrete backbone flexibility, while maintaining 
provable guarantees with respect to the input model (input structure, 
rotamer library, and energy function) for a given protein design 
problem. OSPREY also includes many extensions and improvements 
to the DEE framework (e.g., minDEE, iMinDEE, K*, DACS, BD, 
BRDEE). These extensions improve efficiency and allow the 
modeling of molecular flexibility. OSPREY includes the K* module, 

which is a provably-good ε-approximation algorithm for computing 
binding constants (KD) over molecular ensembles of the bound and 
unbound states of a protein:ligand complex using minimized 
DEE/A* (namely, minDEE/A*/K*) [70,71]. In 2009, Chen et al. 
reported a computational structure-based redesign of the 65-kDa 
phenylalanine adenylation domain of the nonribosomal peptide 
synthetase (NRPS) enzyme gramicidin S synthetase A (GrsA-PheA) 
for a set of noncognate substrates [70]. They applied the K* 
algorithm [66,72] to predict mutations to the active site of GrsA-
PheA to switch the enzyme specificity from the wild-type Phe toward 
the target noncognate substrates Leu, Arg, Glu, Lys, and Asp [70] and 
to predict mutations in dihydrofolate reductase from methicillin-
resistant Staphylococcus aureus (MRSA) [73].  

Amy E. Keating and her coworkers at Massachusetts Institute of 
Technology have been working on how the interaction properties of 
proteins (alpha-helical coiled coils and Bcl-2 family proteins) are 
encoded in their sequences and structures. Multicoil2, an algorithm 
predicting both the location and oligomerization state (two versus 
three helices) of coiled coils in protein sequences was developed by 
the Keating’s group. It combines the pairwise correlations of the 
previous Multicoil method with the flexibility of Hidden Markov 
Models (HMMs) in a Markov Random Field (MRF). This new 
method significantly improves oligomer-state prediction, as well as 
coiled-coil detection, over the algorithms Multicoil and Paircoil2 
[74,75]. The performance of Multicoil2 is especially notable in the 
twilight zone of sequence identity, where HMM profile-based 
methods typically fail [76]. Recently Joe DeBartolo et al. at the 
Keating’s laboratory used a combination of experimental assays and 
computational models to explore Bcl-2 homology 3 (BH3) peptide 
interactions with Bcl-2 family receptors [77]. They evaluated a novel 
structure-based protein–protein interaction statistical potential called 
STATIUM that can score interactions of BH3-like peptides with all 
five Bcl-2 receptors and is rapid enough to evaluate data sets 
containing more than 106 sequences in less than 1 s. The very general 
structure-based STATIUM model shows remarkably good 
performance compared to the experimentally derived position-specific 
scoring matrix (PSSM) models. STATIUM demonstrates great 
potential for evaluating candidate protein–protein interactions and 
can be used to complement other structure-based modeling techniques 
such as Rosetta, DFIRE, or MM/PBSA that require accurate 
construction of all atom models [78-81]. 

A recent milestone in the field of computational enzyme design 
has been the de novo design of a Diels-Alderase (DA) [51]. David 
Baker and his group had previously used the Rosetta computational 
design methodology to design novel enzymes [20,21] that catalyze 
bond-breaking reactions. Using DA reactions, they have tried to 
establish bimolecular bond-forming reactions. The concept required 
carbon-carbon bond formation between two separate substrates, 
catalyzing an intermolecular Diels-Alder reaction that requires the 
concomitant binding of two substrates in their proper relative 
orientation in order to accelerate the reaction and impart 
stereoselectivity. Quantum mechanical (QM) simulation to create a 

comprehensive theozyme library (~1019 variants), which was fitted 
into a library of protein scaffolds by the RosettaMatch software, was 
employed. The ~1019 active site configurations were reduced to about 
106 possible protein scaffolds. Optimization of these protein scaffolds 
led to 84 protein designs. The 84 possible proteins were then 
synthesized within E. coli and then tested for catalytic behavior in the 
Diels-Alder reaction, resulting in the identification of two candidates 
having detectable DA activity. The catalytic efficiency of these two 
synthetic DAs matched the performance of catalytic antibodies raised 
for Diels-Alder cycloadditions and exhibited stereoselectivity and 
substrate specificity. X-ray crystallography confirmed that the 
structure matched the design for the most active of the enzymes, and 
binding site substitutions reprogrammed the substrate specificity. 
Recently, an increased DA activity through backbone remodeling was 
achieved using the computer game called Foldit [82-85]. The active-
site loops of a computationally designed enzyme, DA_20_10 [51], 
that catalyzes the Diels-Alder reaction, were remodeled. DA_20_10 
catalyzed the well-studied reaction between 4-carboxybenzyl trans-
1,3-butadiene-1-carbamate (diene) and N,N-dimethylacrylamide. A 
24-residue helix-turn-helix motif, including a 13-residue insertion, 
was generated after several iterations of design and characterization, 
that increased the enzyme activity to >18-fold. Using this game Baker 
and coworkers aimed to exploit human problem-solving skills to 
improve the limitations of computer-designed proteins, which 
otherwise computers cannot solve alone. 

The de novo designed enzymes are functional but do not match 
natural catalysts in their efficiency. Their catalytic efficiency is still 
many orders of magnitude below the natural enzymes [86]. Current 
models still tend to lag behind laboratory-evolved variants in catalytic 
performance. While some experimental optimization is possible by 
directed evolution, refinements in the design algorithm will likely 
yield further improvements in the accuracy of structure predictions 
and hence provide superior catalytic performance. Separately, the 
integration of protein dynamics in future simulations might deliver 
additional functional enhancement and at the same time provide an 
excellent testing ground for assessing its relevance to biocatalysis. 

 
Engineering novel metalloproteins 
 

Metalloproteins are proteins containing metal atoms or clusters. 
They are responsible for a diverse range of important biological 
functions and are involved in all vital cellular activities. The metal, 
contained within a metalloprotein, may be an isolated ion or may be 
coordinated with a non-protein organic compound. For example, 
hemoprotein containsporphyrin. Alternatively, the metal is co-
coordinated with a side chain of the protein and an inorganic non-
metallic ion, such as in the case of iron-sulfur clusters. 
Metalloenzymes occur in all six Enzyme Commission (EC) classes, 
accounting for 44% of oxidoreductases, 40% of transferases, 39% of 
hydrolases, 36% of lyases, 36% of isomerases, and 59% of ligases 
[87]. Metal ions add new functionality to proteins and help catalyze 
some of the most difficult biological reactions. Furthermore, with 
their varying redox states and geometric arrangements, metal ions 
enhance protein reactions. Probably for these reasons, metal-binding 
proteins account for about 50% of all proteins [88]. 

A promising approach to metalloprotein design is the knowledge 
and utilization of the diverse and powerful chemistry of metals [89]. 
Early pioneering work included the development of a computational 
method to identify protein sites capable of using side chains to 
complex metal atoms [45]. A number of metalloproteins were 
designed in the thioredoxin fold by modeling iron with one primary 
coordination sphere ligated with dioxygen [44]. These proteins were 
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experimentally shown to bind iron and catalyzed a variety of oxygen 
chemistries. One such class of these metal binding proteins is the 
‘Duo-Ferri’ (DF) series of maquettes which was developed to mimic 
di-iron proteins [90]. The DF maquettes bind two iron atoms and 
can also bind other metals ions (Zn, Co and Mn) with the 
stoichiometry of two ions per protein [90,91]. 

The emphasis of designing as a tool has been expanded from the 
understanding of important characteristics or functionality of 
naturally occurring metalloproteins, to the design of functionally 
active novel artificial metalloproteins. However, designing of 
metalloproteins has proven to be more challenging than the design of 
non-metalloproteins. Most metal-binding sites are highly chromatic 
and display distinctive magnetic properties, making it easier to 
characterize the designed metalloprotein using metal-based 
spectroscopic techniques thus shortening design cycles. Therefore, the 
field of metalloprotein design has enjoyed much success recently, 
owing to advances in biophysical, computational and structural 
biology [92]. Therefore, designing and engineering novel 
metalloproteins is an important test of our ability to design proteins. 
One of the most important developments in the designing of 
metalloproteins has been the design and engineering of a novel metal-
binding site into a native protein with a characteristic scaffold. This 
achievement has given rise to novel proteins catalyzing some of the 
most complicated biological reactions. Another advantage of choosing 
metal-binding sites as targets for protein design is the rich 
spectroscopic data available for evaluating the design process. 

Extensive study of metalloproteins has been carried out using 
biochemical techniques such as site-directed mutagenesis [93-97]. 
The loss of function accompanied by certain mutations allows the 
identification of residues essential for function. Although serving a 
different purpose, the same mutagenesis techniques can be used in 
metalloprotein design to impart new function into a protein scaffold 
by introducing residues that bind metal ions. One of the most 
effective approaches in the design and engineering of novel 
metalloproteins is the redesign of existing metal-binding sites to new 
sites possessing totally different structural and functional properties. 
This approach can be best illustrated using heme proteins. Heme 
proteins catalyze a variety of reactions ranging from electron transfer, 
small molecule transport and sensing, to oxygen activation. Redesign 
of heme proteins, from one type into another, provides a test of the 
known factors governing the structure and function of a heme protein, 
and allows the direct comparison of two different heme proteins in 
the same framework. Heme proteins have been redesigned by varying 
the axial or proximal ligand, by redesigning the distal side of the heme 
and/or by redesigning one type of heme protein into another type.  

On the basis of sequence, mechanistic, and structural information, 
and a novel SIAFE (simultaneous incorporation and adjustment of 

functional elements) process, the active site of glyoxalase II αβ/βα 
metallohydrolase scaffold (GlyII) was reconstructed to bind and 

catalyze the hydrolysis of a typical substrate for metallo β-lactamase 

(MBL), cefotaxime [98]. In order to achieve β-lactamase activity the 
metal-binding sites of the GlyII had to undergo complex redesigning. 
In addition to heme, other metal ions/cofactors have been engineered 
into helical bundles by introducing metal-binding ligands at specific 
locations to mimic those in native proteins. Examples are the Cys2His2 
ligand set found in zinc-finger proteins [99] and the His3 set in 
carbonic anhydrase [100]. 

Introduction of metal-binding sites into a protein location where 
no native metal-binding site is found has provided insight into the 
structural features common to the metal-binding sites of template and 
target proteins. Using structural homology between the template 
protein (which contains no metal ions) and the target metalloprotein, 

metal-binding sites can be introduced into the template protein at the 
positions corresponding to those in which they are found in the 
metalloprotein. Using this strategy, new Zn(II)-binding sites were 
introduced into charybdotoxin [101] and retinol-binding protein 
[102] to mimic carbonic anhydrase. These developments in the field 
of metalloproteins lead to the design of dinuclear metal-binding sites 
or metal clusters. For example, the designing of CuA centres into the 
cupredoxinsazurin [103,104] and amicyanin [105,106], in which the 
copper-binding loop of a cupredoxin was replaced by the 
corresponding loop in cytochrome c oxidase (COX; also known as 
CcO), which has similar structural homology. A series of His3Fe sites 
were introduced to thioredoxin in various environments, classified as 
grooves, shallow pockets and a deep pocket, allowing the effect of the 
protein microenvironment on “nascent” enzymatic activity to be 
studied [43,44]. 

A sequence-homology modeling and molecular dynamics 
simulation was employed to assemble the presumptive active site 
metal complex of nitric oxide reductase (NOR) in whalesperm 
myoglobin (Mb) [107]. NOR is a metalloenzyme in the 
denitrification pathway of anaerobic bacteria, and is a key enzyme in 
the nitrogen cycle that is critical for all life [108]. Difficulties in 
obtaining the enzyme in high yield, and the lack of a three-
dimensional structure, have hampered structural and mechanistic 
studies of NORs. A strong model system to explore the spectroscopic 
properties, and to validate the catalytic function of the hypothetical 
metal complex in the Mb scaffold, was established using the assembly 
of the proposed catalytic site, consisting of a heme and a putative FeB 
site. A hydrophobic pocket near the heme cofactor was subjected to 
remodeling in order to establish the new non-heme Fe2+ binding site. 
The remodeling was done by introducing three histidines and one 
glutamate, predicted to be ligands in the active site of NOR, into the 
distal pocket of Mb. A crystal structure of the designed protein 
confirmed that the minimized computer model contained a 
heme/non-heme FeB. The designed protein also exhibited NO 
reduction activity, and thus modeled both the structure and function 
of NOR, offering insight that the active site glutamate is required for 
both iron binding and activity. The designed protein served as an 
excellent model for mechanistic studies of NOR. Engineering of the 
metal-binding sites of metalloproteins, and study of native enzymes, 
has enabled identification of the structural features that are necessary 
to confer the structure and function of these enzymes.  

Using a “metal-first” approach [109,110], a four-helix bundle 
protein was designed to bind four-iron four-sulfur (Fe4S4) in its 
hydrophobic core. This is particularly noteworthy given that natural 

Fe4S4-binding proteins are not α-helical and generally bind the ligand 
in flexible loops [111]. Recently, Kuhlman and his group devised a 
strategy of introducing a metal binding site at the target interface in 
order to promote protein interaction (Figure 3). In order to pursue 
their goal, they computationally designed a metal-mediated 
homodimer MID1 (metal interface design 1) with high affinity and 
orientation preference. The steps involved for the design of the 
symmetric metal-mediated interface are: i) examination of two-residue 
cysteine/histidine zinc binding sites using the RosettaMatch 
algorithm. During this step about 600 monomer scaffold surfaces 
were scanned, ii) grafting of all pairs of two-residue zinc binding sites 
for a given scaffold onto the surface, and the conversion of a 
monomer to a C2-symmetric dimer by rotation. This step resulted in 
the identification of 500,000 designable starting structures among 
600 scaffolds using their Rosetta protocol, iii) using Monte Carlo 
simulated annealing, iteration of symmetric interface design with 
symmetric backbone minimization, and iv) finally, identification of 
best design models on the basis of two primary metrics: computed 

binding   energy,  excluding  contribution  from  zinc  (ΔGbind),   and  
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binding energy per unit of interface surface area (ΔGbind/ΔSASA). 
Eight best models obtained were finally subjected to testing. The final 
computationally designed metal-mediated homodimer MID1 (metal 
interface design 1), with high affinity and orientation preference, was 
only successful after considering the crystal structures of previous 
iterations in the design process. In the absence of metal, the MID1 
design dimerized only weakly and with two types of nonspecific 
orientations. In the presence of metal, the desired binding orientation 
was achieved with high affinity, despite minor discrepancies at the 
atomic level between the computational model and the crystal 
structure [112]. De novo protein design thus provides an attractive 
approach for modeling the active sites of metalloproteins. The design 
strategy presented here enabled the conversion of an enzyme in the 
metallohydrolase superfamily into a new family member with a 
different catalytic function, providing experimental support for the 
divergent evolution of mechanistically diverse family enzymes. 

 
Design and engineering of therapeutic proteins 
 

Computational design holds great potential for the development 
of new protein-based therapeutics with novel modes of action. The 
method of systematic and quantitative engineering strategies for 
protein optimization is now being replaced by computational protein 
design methods. Antibodies are the predominant class of 
computationally designed proteins that are used as therapeutics. 
Rationally designed antibody molecules catalyze numerous chemical 
transformations, including many that cannot be achieved by standard 
chemical methods. Using computational methods different hapten 
[113] and antibody [114] design strategies have been developed. 
These strategies include a transition state analog approach. However, 
the catalytic efficiency of the resulting molecules has been low relative 
to natural enzymes [115].  

In a significant advance, catalytic antibodies that utilize a 
nucleophilic mechanism were selected by reactive immunization and 
resulted in efficient catalysts [115]. Rather than a transition state 
analog, a mechanism-based inhibitor was used to elicit the immune 
response. Antibodies that formed stable covalent attachments to the 
suicide inhibitor were effectively selected. This method was employed 

in the selection of an efficient abzyme (catalytic antibody) with a 
nucleophilic lysine for aldol condensations [116]. The efficiency of 
this aldolase demonstrates the effectiveness of covalent catalysis. The 
ability to select for powerful catalytic groups and active sites with 
high transition-state specificity could theoretically yield more efficient 
catalysts.  

Antibodies have several drawbacks despite their significant clinical 
success. They are large, which limits their entry into tumors and 
tissues, require expensive manufacturing and handling facilities, and 
often cause undesired effector functions. Although smaller antibody 
fragments have been developed, they are often associated with weaker 
binding than the intact antibody, they can exhibit lower stability, and 
they might expose immunogenic epitopes that were previously masked 
[117]. This has led to the development of ligand- and receptor-based 
agonists or antagonists with therapeutic potential. 

A program that utilizes the information embedded in a protein 
structure to optimize the function of a protein, including its activity, 
binding affinity and specificity, stability, expression level, and 
potency, was developed by Xencor. Xencor’s Protein Design 
Automation (PDA™) technology [58,118-121] couples 
computational design algorithms, which generate quality sequence 
diversity, with experimental high-throughput screening to discover 
proteins with improved properties. In order to capture the 
relationships between protein sequence, structure and function 
accurately the computational program uses atomic level scoring 
functions, side chain rotamer sampling and advanced optimization 
methods. Another method was used to design proteins that bind a 
conserved surface patch on the stem of the influenza hemagglutinin 
(HA) from the 1918 H1N1 pandemic virus [52]. Two of the 
designed proteins (HB36 and HB80), after affinity maturation, were 
found to bind H1 and H5 HAs with low nanomolar affinity. HB80 
was demonstrated to inhibit the HA fusogenic conformational 
changes induced at low pH. Such designed binding proteins may be 
useful for both diagnostics and therapeutics (Figure 4). 

The most effective way to design protein drugs are using 
computational methods in conjunction with functional screening 
techniques. In silico methods can explore much larger portions of 
sequence space than can be accessed  experimentally, and can be used  

Figure 3. Computationally designed protein-protein interactions with high affinity and desired orientation. (A) The symmetric homodimer design with two 
interface zinc sites each coordinated by four histidines at i, i + 4 positions on each helix [112]. A Rosetta-based approach for the rational design of a protein 
monomer to form a zinc-mediated, symmetric homodimer. Incorporating metal-binding sites at the target interface may be one approach for increasing affinity 
and specifying the binding mode. (B) Metal interface design, named MID1 (NESG target ID OR37), forms a tight dimer in the presence of zinc (MID1-zinc) with a 
dissociation constant <30 nM. 
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to design targeted libraries that are enriched in functional sequences 
[122-124]. Although computational design holds great potential for 
the development of new protein-based therapeutics with novel modes 
of action, many challenges remain. 

 
Conclusions 

 
Computationally designed proteins offer promise in many areas of 

research, from basic biology to application in the fields of industrial 
organic synthesis and biomedicine. There has been remarkable 
progress in the field of rational enzyme design. This field has evolved 
from the design of proteins with improved features, such as 
thermostability, catalytic activity, better metal affinity, substrate 
specificity, or stereoselectivity, to the design of novel proteins and 
folds ab initio. The field has made exciting progress, designing 
proteins with new structures and functions. In early 1998, a novel 
sequence that folded into a naturally occurring zinc finger structure 
was computed. Later in 2003, an exceptionally stable protein called 
Top7, which has a sequence and structure unrelated to any known 
protein, was designed using ROSETTA. This achievement, of having 
the power to create a brand new protein, encouraged the scientific 
community to design novel proteins with atomic-level accuracy. 
Recently in 2010, a non-natural aldolase capable of catalyzing 
reactions of non-natural substrates was designed. The aldol reaction 
constitutes one of the most powerful tools for the formation of 
carbon-carbon bonds both in nature and in the laboratory. In 2012, 
the most recent accomplishment in the field of computational design 
approach was the achievement of an increased Diels-Alderase (DA) 

activity through backbone remodeling, which was achieved using a 
game called Foldit. Table1 lists a number of different enzymes that 
have been evolved using the computational protein design approaches 
over the past few years.  

Despite all these major progresses and breakthroughs in the field 
of enzymology, the designed or engineered enzyme catalysts remain 
inferior to naturally evolved enzyme catalysts in terms of activity and 
efficiency. One such example is that of an artificially designed Kemp 
eliminase. However, the artificially designed enzyme exhibited an 
improvement in the catalytic efficiency of >200-fold when subjected 
to directed evolution, which resulted in a protein with multiple 
mutations. Accurate structure modeling, protein stability, and 
intermolecular interaction optimization remain the major challenges 
in the fields of computational protein design. Each of these major 
barriers has received significant attention in the past few years and 
many artificial protein designs have been produced as a result. In 
addition, incorporation of the protein backbone and ligand exchange 
between the active site and the solvent in the computational design 
methods will help improve artificially designed proteins. Although 
there is still a long way to go, with improvements to algorithms and 
increases in computing power, exciting progress is being made in both 
prediction and design. The success obtained by rational 
computational design is extremely encouraging, demonstrating that 
protein design represents a fundamental tool for understanding 
protein folding and interaction. Rational computational design 
promises a great positive impact on both the biotechnology and the 
therapeutic industry, thus revolutionizing the fields of molecular 
biology and biomedicine.  

Figure 4. Design of novel binding proteins. (A) Crystal structure of HB36.3-SC1918/H1 complex . (B) Close up view of SC1918 HA-HB36.3 interface [52]. 
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