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irolimus and Paclitaxel
n Polymer-Based Drug-Eluting Stents
imilar But Different
ainer Wessely, MD, Albert Schömig, MD, Adnan Kastrati, MD
unich, Germany

Recent clinical studies that investigated the efficacy of the two U.S. Food and Drug
Administration-approved drug-eluting stent (DES) platforms Cypher (Cordis, Johnson and
Johnson, Miami Lakes, Florida) and Taxus (Boston Scientific, Boston, Massachusetts)
suggest that there are differences between both DES concerning neointimal growth. Both
DES elute compounds that inhibit the cell cycle, but at different stages: Cypher stents elute
sirolimus, which induces G1 cell cycle inhibition, and Taxus stents release paclitaxel, which
predominantly leads to M-phase arrest. In an attempt to explain the differences observed in
human studies, the properties of these stent-based compounds on critical molecular and
cellular events associated with the pathophysiology of in-stent restenosis are discussed in
detail with the conclusion that both sirolimus and paclitaxel are different in their pleiotropic
anti-restenotic effects. This may be in part responsible for the differences observed in recent
clinical studies. (J Am Coll Cardiol 2006;47:708–14) © 2006 by the American College of

ublished by Elsevier Inc. doi:10.1016/j.jacc.2005.09.047
Cardiology Foundation
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he introduction of drug-eluting stents (DES) into clinical
ardiology at the beginning of the new millennium can be
onsidered a success story opening the gates for a new era in
nterventional cardiology. Comprehensive understanding of
he molecular and cellular basis of neointimal hyperplasia,
hich ultimately accounts for in-stent restenosis (1), has

nabled the identification of compounds that efficiently
nhibit mitogen-induced smooth muscle cell proliferation
2,3), the leading cause of in-stent neointimal hyperplasia
nd consequently restenosis. Currently, two U.S. Food and
rug Administration-approved DES platforms are com-
ercially available: Taxus (Boston Scientific, Boston, Mas-

achusetts) and Cypher (Cordis, Johnson and Johnson,
iami Lakes, Florida). Various studies have shown that

oth DES efficiently prevent angiographic and clinical
estenosis rates compared with bare-metal stents (4,5). The
ompounds applied on these particular DES platforms are
ifferent: Cypher elutes sirolimus (SRL), Taxus releases
aclitaxel (PTX).

LINICAL STUDIES DIRECTLY COMPARING
HE EFFICACY OF THE SRL-ELUTING
YPHER STENT WITH THE PTX-ELUTING
AXUS STENT ON THE PREVENTION OF RESTENOSIS

s expected, randomized, prospective multicenter trials
ere conducted to address the question of whether one of

hese stents is superior to the other, primarily concerning
fficacy but also safety. Efficacy is generally measured by

From the Deutsches Herzzentrum and 1. Medizinische Klinik, Klinikum rechts der
sar, University of Technology, Munich, Germany.
i
Manuscript received July 15, 2005; revised manuscript received September 17,

005, accepted September 26, 2005.
oth angiographic and clinical parameters. Angiographi-
ally, the late loss in in-stent lumen diameter at least six
onths after stent placement is a common parameter for

irectly assessing neointimal growth because of its greater
tatistical power compared with clinical restenosis rates (6).
mportantly, there is a close relationship between late
n-stent lumen loss and the incidence of binary restenosis
6) as well as target vessel revascularization (7), therefore,
ssessment of late lumen loss can be regarded as an
ppropriate marker for assessing the efficacy of a DES
latform. The Prospective Randomized Multi-Center
ead-to-Head Comparison of the Sirolimus-Eluting Stent

Cypher) and the Paclitaxel-Eluting Stent (Taxus) (REAL-
TY) trial is not yet published, but the findings of this study
ere presented at the 2005 annual meeting of the American
ollege of Cardiology (8). This trial compared the angio-

raphic and clinical outcome of Taxus and Cypher stents in
atients with de novo lesions between 2.25 and 3 mm in
iameter. A total of 1,353 patients were included in this
rial. Cypher stents did reveal significantly less in-stent late
umen loss (Cypher, 0.09 � 0.43 mm; Taxus, 0.31 � 0.44

m; p � 0.001) and an increased in-stent minimal lumen
iameter at eight months of angiographic follow-up
Cypher, 2.00 � 0.54 mm; Taxus, 1.85 � 0.52 mm; p �
.001). However, in this particular study, this did not
ranslate into a significant reduction of the binary restenosis
ate by the Cypher stent (Cypher, 7.0%; Taxus, 8.3%; p �
.32) as was reported in the recently published Sirolimus-
luting and Paclitaxel-Eluting Stents for Coronary Revas-

ularization (SIRTAX) (9) trial. In the latter study, which
ncluded 1,012 patients, Cypher stents yielded again signif-

cantly less late in-stent lumen loss compared with Taxus

https://core.ac.uk/display/82130881?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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tents (0.13 � 0.37 mm vs. 0.25 � 0.49 mm, respectively;
� 0.001) as well as a lower incidence of clinical restenosis,

s reflected in the target lesion revascularization (TLR) rate
4.8% vs. 8.3%, respectively; p � 0.025).

Additionally, in selected high-risk subsets for restenosis,
uch as patients treated for recurrent in-stent restenosis,
ypher stents prevented late in-stent lumen loss more

fficiently compared with Taxus stents in the Intracoronary
tenting and Angiographic Results: Drug-Eluting Stents
or In-Stent Restenosis (ISAR-DESIRE) study (10). Fur-
her, despite the relatively small patient number included in
his trial that was powered to show differences between
TCA alone and DES for the prevention of recurrent

n-stent restenosis, the significantly better late lumen loss in
he Cypher group did translate into a significantly lower
LR rate after one year compared with Taxus (Cypher,
.0%; Taxus, 19.0%; p � 0.02). Similar results are reported
or patients receiving stent-based percutaneous coronary
ntervention for the treatment of de novo diabetic lesions
11) with a decreased late lumen loss in Cypher compared
ith Taxus stents, but the trend toward lower clinical

estenosis rates in patients treated with Cypher did not
each statistical significance (6.4% vs. 12.0% for Taxus; p �
.13) because the trial was not powered to address this issue.

recent meta-analysis that included all presently available
ajor studies that directly compared outcomes between
ypher and Taxus (4) showed a significantly better angio-

raphic and clinical restenosis rate in patients who received
Cypher stent (Fig. 1).

Abbreviations and Acronyms
CKI � cyclin-dependent kinase inhibitor
DES � drug-eluting stent
mTOR � mammalian target of rapamycin
PTX � paclitaxel
SRL � sirolimus
TLR � target lesion revascularization
VSMC � vascular smooth muscle cell

igure 1. Odds ratio of angiographic restenosis, target vessel revasculariza
o a meta-analysis of studies that directly compared the performance of

uggested a superior performance of the sirolimus-eluting Cypher stent regardin
n the rate of stent thrombosis could be detected between the two DES platfor
Hence, there is emerging evidence showing that Cypher
tents are more efficient for the inhibition of in-stent
estenosis. This certainly leads to the question of what
ccounts for the difference between the two DES platforms.
n the pre-DES era, stent design was considered an impor-
ant predictor for the rate of restenosis (12); however, this
actor might be less important for DES, and there are no
tudies available yet that compare different stent designs
ith identical coatings. Additionally, release kinetics may be

mportant for both efficacy and safety of a DES platform.
mportantly, the presence and type of polymeric coating
ay also influence the rate of in-stent restenosis (13,14) and

tent thrombosis (15) because polymers can be associated
ith ongoing vascular inflammation and delayed vascular
ealing (16–18). However, little information is available
oncerning the detailed role of the polymers used on Cypher
nd Taxus, respectively, on vascular healing processes and
hus restenosis and late adverse events. However, data from
nimal stent models suggest that both stents have an
ncreased rate of ongoing vascular inflammation compared
ith bare-metal stents (19,20).
As implied in the term “drug-eluting stent,” the com-

ound and its pharmacologic properties hold a major key for
he safety and efficacy of a DES. In contrast to release
inetics and polymer issues, there is considerable informa-
ion available on how these drugs are different in terms of
heir anti-restenotic properties. To address these differential
ffects of SRL and PTX in the cardiovascular context, the
mpact of these substances on fundamental molecular and
ellular mechanisms associated with in-stent restenosis and
ascular healing must be revisited. These include smooth
uscle cell proliferation and migration, impact on endothe-

ial regrowth and function, immunosuppressive properties,
iffusion capacity of the compound and drug accumulation
n distinct layers of the vascular wall, the impact of release
inetics and dosage, as well as therapeutic range and
ytotoxicity, including impact on apoptosis and necrosis.

and stent thrombosis associated with Cypher and Taxus stents according
wo drug-eluting stent platforms in clinical trials (4). This meta-analysis
tion,
the t
g angiographic restenosis and target lesion revascularization; no difference
ms.
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MPACT ON SMOOTH MUSCLE
ELL PROLIFERATION AND MIGRATION

ercutaneous coronary intervention imposes vascular in-
ury that leads to the initiation of vascular healing
rocesses. Mitogen-mediated proliferation of vascular
mooth muscle cells (VSMC) represents a crucial event
or the formation of neointimal hyperplasia (1). Complex
ctivation of various partially redundant signaling path-
ays converge in a final common pathway, activation of

he cell cycle (21). Both compounds show inhibition of
he cell cycle but have different modes of action (Fig. 2).
ubsequent to binding to its major intracellular receptor
KBP12, SRL inhibits mammalian target of rapamycin

mTOR) and ultimately restrains the degradation of
27Kip1, a cyclin-dependent kinase inhibitor (CKI) that
lays a crucial role for VSMC cycle regulation (22,23).
levated levels of p27Kip1 inhibit cell cycle in the G1
hase (24), which represents the initial phase of cell cycle
rogression. Loss of the ability to upregulate p27Kip1 may

igure 2. Schematic illustration of the cell cycle and its regulatory mechan
aclitaxel (PTX). The cell cycle is regulated by the oscillating activities o
nhibitors (CKIs) negatively control the activity of distinct cyclin/CDK compl
tage, the G1/S phase. Cip/Kip CKI include p21Cip1 and p27Kip1, among oth
egulated at the post-transcriptional level via protein stability and translation.
RL inhibits the activity of mammalian target of rapamycin (mTOR). mTO

nhibition of mTOR by SRL attenuates p27Kip1 degradation, thus increasin
nhanced. Non p27Kip1-dependent mechanisms of mTOR that lead to stimul
nd eIF4E activation, the latter via induction of eIF4E binding protein-1 (4EB
f the cell cycle through centrosomal impairment, induction of abnormal spin
esult in SRL resistance (25). w
In contrast to SRL, PTX impacts predominantly during
he mitosis (M) phase of the cell cycle through centrosomal
mpairment, induction of abnormal spindles, and suppres-
ion of spindle microtubule dynamics (26). As a down-
tream event, consecutive up-regulation of p53 may occur
hat may lead to further cell cycle arrest in G1, possibly
hrough the induction of p21Cip1 (27). Because PTX arrests
ells at a stage at which they are supposed to divide,
ro-apoptotic mechanisms, in part mediated by p53, are

ikely to occur, thus eventually leading to apoptotic cell
eath (27).
Migration of smooth muscle cells from the media to the

ntimal region resembles an important step in the patho-
hysiology of restenosis. It has been well established that
RL inhibits migration of VSMC (28). Mechanistically,
his effect is again predominantly mediated by p27Kip1

ecause this CKI inhibits migratory cell capacity (29).
ikewise, it has also been shown that PTX may inhibit
SMC migration (3), most likely triggered by interactions

that are relevant for the inhibitory effect imposed by sirolimus (SRL) and
lin/cyclin-dependent kinase (CDK) complexes. Cyclin-dependent kinase

he CKIs of the Cip/Kip class are major regulators of the cell cycle in its initial
oth are critical cell cycle regulators in smooth muscle cells. p27Kip1 activity is
quent to binding its intracellular receptor FKBP12 (FK506 binding protein),
pivotal protein kinase that mediates mitogen-induced cell proliferation. The
Kip1 protein stability. Additionally, p27Kip1 protein translation may also be
of cap-dependent protein synthesis and are inhibited by SRL include p70S6K

Paclitaxel impacts predominantly during cell division in the mitosis (M) phase
nd suppression of spindle microtubule dynamics.
isms
f cyc
exes. T
ers. B
Subse
R is a
g p27
ation
ith the cytoskeleton.
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HERAPEUTIC RANGE,
YTOTOXICITY, AND APOPTOSIS

very one of these partially redundant factors is important
or the evaluation of compounds targeted for application on
ES because exaggerated vascular injury and necrosis as
ell as delayed vascular healing may impose a substantial

isk for adverse cardiac events. This was evident in several
linical trials. The QuaDDS DES-eluting (Quanam Med-
cal Corp., Santa Clara, California/Boston Scientific Corp.,

atick, Massachusetts) that elutes 7-hexanoyl-taxol deliv-
red cytotoxic drug dosages into the vascular wall, which
ranslated into an unacceptably high clinical event rate due
o a stent thrombosis of more than 10% (30), in the majority
f cases resulting in myocardial infarction. Another example
s the use of actinomycin D on DES. In pre-clinical in vivo

odels, actinomycin D-eluting stents showed a narrow
herapeutic range with cytotoxic dosages only exceeding
wo- to three-fold the dosage necessary to yield a therapeu-
ic effect (31). Toxic effects included vessel remodeling,
ural thrombus, and toxic changes in the vessel wall. The
ctinomycin-Eluting Stent Improves Outcomes by Reduc-

ng Neointimal Hyperplasia (ACTION) trial disclosed no
ignificant benefit toward the inhibition of neointima for-
ation (32). Whereas actinomycin D is considered cyto-

oxic, SRL is a cytostatic compound with a large therapeutic
ange (33). In the dose range used for clinical applications,
here is no appreciable pro-apoptotic effect in VSMC. This
s likely not the case for PTX, which is expected to facilitate
poptotic processes even in the dose range that is considered
o be therapeutic for the prevention of restenosis (27).
dditionally, PTX must be considered to induce cytotoxic-

ty either by apoptosis or, as has been shown in transformed
ell lines, necrosis, at least at higher dosages (34), therefore,
he therapeutic range can be considered smaller compared
ith SRL.

IFFUSION CAPACITY AND
ISTRIBUTION IN THE VASCULAR WALL

herapeutic efficacy of a specific compound on a DES
latform is not solely dependent on its cellular and molec-
lar impact on various mechanisms of neointimal hyperpla-
ia, but also on its physicochemical properties. It has been
hown that hydrophobic drugs such as PTX and SRL
ccumulate most efficiently in the vascular wall in compar-
son with hydrophilic substances (35). In a very elegant
tudy, Levin et al. (36) showed several important dissimi-
arities between the accumulation of SRL and PTX in
istinct areas of the vascular wall. Because the cellular
omponent of in-stent restenosis primarily originates from
he medial and intimal layer (37), drug concentrations
hould peak in these segments of the vascular wall. Whereas
RL distributes equally within the vascular layers, PTX
ccumulates in the adventitia (36), which is believed to play

n inferior role in the pathophysiology of in-stent restenosis. s
dditionally, the transmural diffusion coefficient of SRL is
ore than twice as high as the respective value of PTX (36).
s shown recently, penetration of the stent-based com-
ound into the vascular wall is also dependent on the
resence of thrombotic material. The PTX diffusivity is
everely impaired in the presence of thrombus with a direct
ependency on its red blood cell count (38). Corresponding
ata for SRL are presently not available.

MPACT ON ENDOTHELIUM AND STENT THROMBOSIS

he endothelium plays a protective role in the process of
eointima formation (39), and clearly, promotion of endo-
helial recovery is regarded as the next target for restenosis
revention (40). There are limited data regarding the effect
f SRL and PTX on endothelial (re-)growth. It seems that
oth compounds retard endothelial regeneration, thus neg-
tively affecting the restoration of its morphologic and
unctional integrity. This may facilitate, in some cases, the
evelopment of late stent thrombosis (41). Interestingly,
ecent findings from a human study suggest that endothelial
ysfunction is frequently apparent after implantation of a
ypher stent (42,43). At this point, data available from

arge DES trials suggest no significant increase of stent
hrombosis for the two established DES platforms (44,45)
ompared with bare-metal stents; however, these trials were
ot powered to show that difference. Yet, a recent case
eport raised the concern that late-stent thrombosis may
ccur in a subgroup of patients, especially when anti-platelet
herapy was completely stopped (41). Further, a recently
ublished study suggested that patients who are discontinu-
ng clopidogrel while maintaining low-dose aspirin therapy
lso are potentially at increased risk of late stent thrombosis,
hereas it seems that patients left on dual antiplatelet

herapy with clopidogrel and aspirin remain on the level of
tent thrombosis that is known for uncoated, bare-metal
tents (46). So far, exclusively in the REALITY trial, which
ompared both DES platforms directly, a significant in-
rease in the rate of stent thrombosis was reported for
atients who actually received a Taxus stent (1.8% vs. 0.4%
or Cypher; p � 0.0196), yet statistical significance was not
eached in the intention-to-treat analysis (Cypher, 0.6%;
axus, 1.6%; p � 0.0723) (8). This important topic is the

ubject of further investigations, and so far, no definite
onclusions can be drawn. However, there is evidence
howing that the rate of stent thrombosis may be higher in
eal-world patients than in controlled studies. Stent throm-
osis might be dependent on vascular factors such as
ifurcation stenting as well as on extravascular factors such
s decreased left ventricular function and renal failure (47).
s long as clear evidence is fostered, patients are now often

dvised to stay on prolonged anti-thrombotic therapy,
specially when they are considered at elevated risk for late

tent thrombosis.
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MMUNOSUPPRESSIVE PROPERTIES

oth DES platforms, Taxus and Cypher, use non-erodable
olymers for retardation of drug delivery. It is well known
hat polymers may induce acute and chronic inflammatory
esponses in vivo (48) that can consequently lead to late
dverse cardiac events in humans such as late stent throm-
osis (15) or late in-stent restenosis (49). Therefore, immu-
osuppressive properties are regarded as beneficial for the
uppression of local inflammatory responses that are pre-
ominantly precipitated by the polymer. Sirolimus was
eveloped as an immunosuppressive agent and is clinically
pplied in transplantation patients to prevent graft rejection
nd, concomitantly, the progression of cardiac allograft
asculopathy (50). In contrast, PTX primarily is not con-
idered to be a classical immunosuppressive agent and is not
sed clinically as an immunosuppressant drug. Being pri-
arily an anti-cancer drug, this may not even be desirable in

his particular background. Inferior immunosuppressive
roperties of PTX may explain at least in part the findings
n pre-clinical animal models in which Taxus-stented vas-
ular segments showed an increased presence of inflamma-
ory cells compared with Cypher stents (13).

ATTERNS OF IN-STENT RESTENOSIS
N SRL VERSUS PTX-ELUTING STENTS

oth the magnitude of neointimal hyperplasia as reflected
y assessment of late lumen loss via intravascular ultrasound
nd/or quantitative angiography as well as the pattern of
n-stent restenosis give valuable insight into the potency of
he compound to suppress restenotic processes in humans.
he pattern of restenosis within the Cypher stent is in the

arge majority of cases focal (51). However, the pattern of
eointima formation in Taxus stents seems to differ from
hat is observed with Cypher stents. In a recently published

tudy by Iakovou et al. (52), 50% of restenotic Taxus stents
howed a diffuse pattern of restenosis, and 21% of all
estenotic lesions even showed complete occlusion. To-
ether with the consistent finding that late in-stent lumen
oss is significantly less in Cypher stents (8–11), these
bservations implicate a better performance of the Cypher
tent platform compared with Taxus regarding the preven-
ion of neointimal hyperplasia and thus in-stent restenosis.

ELEASE KINETICS AND DRUG DOSAGE

he effectiveness of both SRL- and PTX-coated stents is
ependent not only on the totally delivered drug concen-
ration but also on release kinetics. For polymer-coated
RL-eluting stents, the results of four-year follow-up show
hat the slow-release SRL-coated stent, which is available as
ypher and maintains drug release for up to 60 days, has a
ore favorable outcome than a similar SRL-eluting stent

hat releases its total dose within 7 days (53). A polymer-
ree rapamycin-eluting stent that liberates most of the

ompound within 21 days (20) showed a dose-dependent c
eduction in angiographic and clinical restenosis rate (54).
or the Taxus stent, no significant difference was found
etween slow- and medium-release PTX-eluting stents in a
rospective human trial (55). In contrast, the polymer-free
upra-G stent (Cook, Bloomington, Indiana) showed a
ore favorable result in terms of restenosis for patients that

eceived higher stent-based PTX dosages (3.1 �g/mm2 vs.
.3 �g/mm2). In the recently published PISCES trial (56),
first-in-humans study that assessed the effectiveness of

TX-loaded Conor stents (Conor Medsystems, Menlo
ark, California), the better outcome of stents eluting PTX

or 30 days was not dependent on the absolute PTX dosage
ecause both concentrations that were studied, 10 �g and
0 �g per stent, had similar clinical restenosis rates. Inter-
stingly, the same dosages seemed to be less effective when
hey were eluted by the otherwise-identical stent platform
ithin 10 days after percutaneous coronary intervention.
aken together, recent findings from human trials suggest

hat the effectiveness of both PTX and SRL may depend on
otal drug dosage as well as release kinetics. However, the
ptimal release kinetic may depend on lesion and patient
haracteristics, the stent platform, and the compound itself,
s well as the presence of a polymer.

ONCLUSIONS

here is compelling evidence, both experimentally and
linically, showing that SRL and PTX are different con-
erning important features of vascular healing and the
revention of neointima formation (Table 1). These appar-
nt differences may account for a considerable part of the
isparities in angiographic and clinical outcomes now ob-
erved in several prospective randomized trials. However, a
rotracted follow-up period is required to confirm the
ifferences observed with both DES platforms. Evidently,
urther studies investigating the effect of release kinetics and
olymeric coating on critical mechanisms of neointima
ormation and vascular healing are warranted. For future
evelopments in the DES era, lessons learned from pre-

able 1. Comparison of Critical Parameters Associated With
estenosis and Adverse Vascular Events for Sirolimus and
aclitaxel as They Are Currently Used on FDA-Approved
rug-Eluting Stents

Sirolimus Paclitaxel

nhibition of SMC proliferation �� ��
nhibition of SMC migration �� �
nhibition of EC proliferation �� ��
mmunosuppressive properties �� (�)/�
ro-apoptotic effects (�) ��
herapeutic range Wide Narrow
ascular wall distribution ↔ 1 Adventitia
attern of restenosis Focal � 50% Proliferative
mpact on late in-stent lumen loss* �� �

Prospective multicenter studies directly comparing Cypher and Taxus stents (8–11).
EC � endothelial cell; FDA � U.S. Food and Drug Administration; SMC � smooth

uscle cell; ↔ � equal distribution.1 � accumulation.
linical studies in conjunction with results of clinical evalu-
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tions are indispensable for overcoming the remaining
roblems of current DES platforms.

eprint requests and correspondence: Dr. Rainer Wessely,
eutsches Herzzentrum, Lazarettstr. 36, 80636 Munich, Ger-
any. E-mail: rwessely@dhm.mhn.de.
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