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Apolipoprotein E deficiency leads to familial dysbe
talipoproteinemia characterized by increases in se
rum lipid levels, atherosclerosis, and cutaneous xan
thoma. Apolipoprotein E is synthesized in many 
tissues in the body, including the epidermis. In the 
present study, we determined whether transgenic 
mice deficient in apolipoprotein E develop cutaneous 
xanthoma and the effect of dietary fat intake on these 
lesions. We also determined whether apolipoprotein 
E- deficient mice have abnormalities in cutaneous 
barrier function or stratum corneum structure. Ho
mozygous apolipoprotein E-deficient mice (- / -) fed 
a high-fat diet displayed a diffuse inflammatory infil
trate in the dermis surrounding fat droplets in mac
rophages. In homozygous mice (- / - ) fed a low-fat 
diet, similar lesions were seen but they tended t o be 
focal and less prominent. In heterozy gous mice (+ / - ) 
fed the high-fat diet, a few inflammat ory cells w ere 

polipoprotein E is a 34,000 kd molecular weight 
glycoprotein that plays a key role in lipoprotein 
metabolism [1,2]. In humans, apolipoprotein E exists 
as three major isoforms; the apolipoprotein E2 iso
form, which has a single cysteine substitution for 

argmme at amino acid 158, binds poorly with apolipoprotein E 
receptors [2]. Apolipoprotein E2 homozygosity is present in ap
proximately 1 % of the population, and these individuals have an 
increased risk of familial dysbetalipoproteinemia (type III hyperlip
idemia, broad beta disease) [2]. The combination of apolipoprotein 
E2 homozygosity and other disorders that affect lipid metabolism, 
such as hypothyroidism, or environmental factors such as diet, leads 
to the development of familial dysbetalipoproteinemia [2]. Rare 
individuals may have the genetic absence of apolipoprotein E and 
thereby also develop familial dysbetalipoproteinernia [3]. Familial 
dysbetalipoproteinernia is characterized by increases in serum cho
lesterol and triglyceride levels due to increased quantities of 
chylomicron and very-low-density lipoprotein remnants [2]. These 
alterations in lipoprotein metabolism are associated with an in
creased risk of not only atherosclerosis, but also cutaneous xan-
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present in the dermis but foam cells were not seen. 
Control mice (+ / +) fed a high-fat diet displayed 
scattered inflammatory cells in the dermis. Heterozy
gous mice (+ / -) fed a low-fat diet were similar t o 
control mice (+ / +) fed a low-fat diet. The extent o f 
foam cell formation correlated directly with the de
gree of atherosclerosis. There were no abnormalities 
in permeability-barrier function or stratum corneum 
structure in apolipoprotein E-deficient mice. Thus, 
the lack of apolipoprotein E production in the epi
dermis does not appear to lead to any detectable 
abnormality in structure or function of the stratum 
corneum. However, lack of apolipoprotein E leads to 
cut aneous foam cell formation, presumably second
ary t o disturbances in lipoprotein metabolism. Key 
words: stratum corneum/xanthoma/permeability bamer/trans
genic mice. ] Invest Dermatol 104:246-250, 1995 

thoma [2]. Palmar xanthoma, xanthelasma, and tuberoeruptive 
xanthoma are characteristic cutaneous lesions associated with fa
milial dys betalipoproteinemia [4,5]. 

Apolipoprotein E is synthesized not only in the liver and 
intestine, organs that make lipoproteins, but also in most other 
tissues in the body [6]. In addition to its importan t role in 
lipoprotein metabolism, it is likely that apolipoprotein E has other 
vital functions [7]. For example, very recent studies have suggested 
that apolipoprotein E produced in the brain m ay have a role in 
preventing the development of Alzheimer's disease [8]. The epi
dermis is also an active site of apolipoprotein E production [9,10]. 
Furthermore, studies by our laboratory have dem onstrated that 
disruption of the cutaneous permeability barrier results in a rapid 
increase in epidermal apolipoprotein E mRNA levels [11]. Al
though we have been able to demonstrate an important role in the 
maintenance or formation of the cutaneous permeability barrier 
for many of the proteins that increase in response to barrier 
disruption, the function of apolipoprotein E in the epidermis is 
unknown [12]. 

In recent years, advances in molecular biology have allowed 
manipulation of the mouse germ line. Mice that overexpress or 
carry genetically inactivated genes have been used to gain insight 
into the functional role of specific proteins . Normal mice do not 
develop atherosclerosis on a standard diet of low-fat chow and, 
even on a high-fat atherogenic diet, they develop only minimal 
atherosclerotic changes (Table I). In contrast, homozygous apoli-
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Table I. Serum Lipid Levels, Atherosclerosis, and Foam Cell Formation Directly Correlatea 

;erum triglycerideb (mg/dl) 
;erum cholesterolb (mg/ dl) 
\ ortic atherosclerosis' 
~oam cell fonnation' 

Nonnal (+ / +) 

Low Fat High Fat 

52 ± 2 53 ± 12 
90 ± 8 238 ± 23 

0 + 
0 + 

Heterozygous 
Apo E Def ( + / - ) 

Low Fat High Fat 

81 ± 5 53 ± 5 
77 ± 4 326 ± 44 

0 ++ 
0 ++ 

Homozygous 
Apo E Def (-/-) 

Low Fat 

104 ± 8 
672 ± 90 

+++ 
+++ 

High Fat 

64 ± 11 
2712 ± 290 

++++ 
++++ 

a Data are presented as mean ± standard error of the mean. Apo, apolipoprotein; def, deficient. 
b These results have been published previously in detail [15] and are included here to facilitate comparisons. 
c 0, no atherosclerosis or foam cells; +, minimal atherosclerosis or foam cells; + + + +, marked atherosclerosis or foam cells. 

poprotein E- deficient mice (- I -) are hyperlipidemic and develop 
atherosclerosis on a standard diet of low-fat chow (Table I) 
[13,14]. Moreover, feeding a high-fat diet induces marked hyper
lipidemia and extensive atherosclerosis [15]. In heterozygous apo
lipoprotein-E-deficient mice (+1-), a standard diet of low-fat 
chow results in only minimal atherosclerosis (Table I) [15]. 
However, feeding a high-fat diet increases atherosclerosis [15]. 
These studies demonstrate that these genetically engineered mice 
are valuable models for studying the development of atherosclero
SIS. 

The aims of the present study were twofold. First, we determined 
whether transgenic mice deficient in apolipoprotein E have abnor
malities in either cutaneous permeability-barrier function or stra
tum corneum structure. Second, we assessed whether cutaneous 
xanthoma occurs in apolipoprotein E- deficient mice and the effect 
of variations ill dietary fat intake on the development of these 
lesions. 

MATERIALS AND METHODS 

Heterozygous and homozygous apolipoprotein E-mutant mice were pre
pared as described previously [13,15]. These mice have mixed genetic 
backgrounds derived from two inbred strains, C57B1I6 and 129. All mice 
were maintained in a room illuminated from 7 AM to 7 PM. Anin1als were 
fed either regular mouse chow (5012, Ralston Purina , St. Louis, MO) which 
is low in fat (4.5% fat, 0.022% cholesterol), or a high-fat, high-cholesterol 
diet (TD88051 , Teklad Premier, Madison, WI) containing 15.8% fat, 1.25% 
cholesterol , and 0.5% sodium cholate. Food and water were provided ad 
libitum for 12 weeks. Previous studies have characterized extensively 
lipoprotein and vessel wall changes in these anin1als [13,15]. 

After sacrifice, the abdominal and thoracic cavities were opened and the 
heart and vascular tree were perfused with buffered parafonnaldehyde (4%, 
pH 7.4) under physiologic pressure. Skin samples from two mice in each 
treatment group were placed in fresh paraformaldehyde for light micro
scopic studies. Sections were embedded in paraffin, 5-f.Lm sections were cut, 
and the sections were stained with hematoxylin and eosin. Skin samples for 
electron microscopy were minced to 0.5 mm2

, fixed in modified Kar
novsky's fixative overnight, washed in 0.2 M cacodylate buffer, and 
post-fixed in both 1.5% osmium tetroxide containing 0.5% potassium 
ferro cyanide and 0.1 % ruthenium tetroxide containing 0.5% potassium 
ferro cyanide in 0.1 M cacodylate buffer for 30 min as described [16]. 
Ultrathin sections 600 - 800 nM were examined in a Z eiss 10A electron 
microscope operating at 60 kV. 

Transepidennal water loss was measured over the ears using a Meeco 
Electrolytic Water Analyzer (Warrington, PA), as described previously 
[17]. 

RESULTS AND DISCUSSION 

Apolipoprotein E Deficiency and a High Fat Diet Leads to 
Cutaneous Foam Cell Formation On gross inspection, no 
cutaneous abnormalities were noted in homozygous apolipopro
tein-E-deficient mice fed either a low-or high-fat diet, and the skin 
was indistinguishable from that of controls. However, during 
dissection, it was very difficult to separate the skin from the carcass 
in apolipoprotein-E-deficient mice (-1-) fed the high-fat diet. 
Moreover, on microscopic examination, the homozygous apoli
poprotein E-deficient mice fed the high-fat diet displayed a diffuse 
inflammatory infiltrate in the deeper layers of the dermis, which 
replaced most of the subjacent subcutaneous fat layer (Fig 2 as 

compared to control, Fig 1). Interspersed among the inflammatory 
cells were fat droplets within macrophages, surrounded by an 
intense foreign-body reaction, consisting of lymphocytes, macro
phages, foam cells, and multinucleated giant cells (Fig 3). 

Homozygous apolipoprotein E-deficient mice fed the low-fat 
diet demonstrated similar lesions, but they tended to be focal, and 
both fat droplets and foreign-body reaction were far less prominent 
(Fig 4). In heterozygous apolipoprotein E-deficient mice (+ I -) 
fed the high-fat diet, a few inflammatory cells permeated the 
dermis , but frank foam cells were absent (Fig 5). Heterozygous 
apolipoprotein E-deficient mice (+ I -) fed a low-fat diet appeared 
similar to control mice (+ I + ) fed the same diet (Fig 6, compared 
to control Fig 1). Control animals given the high-fat diet displayed 
scattered inflammatory cells in the dermis. 

These results demonstrate that genetically engineered mice with 
apolipoprotein E deficiency develop cutaneous foam cells. The 
extent of cutaneous foam cell formation correlates directly with the 
degree of atherosclerosis in the aorta, as reported previously (Table 
I) [15], which suggests that these processes occur by similar 
mechanisms. In fact , in both the aorta and the dermis, the 
pathologic lesions consist of macrophages filled with lipid. It is 
likely that the cellular processes that result in the increased uptake 
of lipoproteins by macrophages are the same in both tissues. Thus, 
the cutaneous manifestations of apolipoprotein E deficiency appear 
to mirror accurately the internal consequences of this metabolic 
disturbance. 

It is interesting that the cutaneous foam cells in this animal model 
are surrounded by inflammatory cells. These lesions are very similar 
in histologic appearance to tuberoeruptive xanthoma, which is well 
recognized to occur in patients with abnormalities in apolipoprotein 
E metabolism [4,5]. In contrast, animals with homozygous low
density lipoprotein (LDL)-receptor deficiency develop a different 
type of xanthoma [18-20). In LDL-receptor-deficient animals, 
xanthomas are located in digital joints, ears, and eyelids, and they 
lack an inflammatory component. Treatment of LDL-receptor
deficient animals with cholesterol-lowering drugs decreases both 
aortic atherosclerosis and xanthomas [19]. The lesions seen in 
LDL-receptor-deficient animals are analogous to the tendinous 
xanthomas that develop in patients with familial hypercholesterol
emia who are also LDL-receptor-deficient [4,5]. Whyapolipopro
tein E deficiency leads to an inflammatory component is not 
known, but a likely possibility is that the uptake of chylomicrons 
and/or very low-density lipoprotein remnants by macrophages 
leads to the secretion of chemo-attractant cytokines. 

Apolipoprotein E Deficiency Does Not Affect the Cutane
ous Permeability Barrier There were no differences in perme
ability-barrier function, as assessed by trans epidermal water-loss 
rates, in control (+ I +) or homozygous apolipoprotein-E-deficient 
mice (-1-). In both groups, water loss was less than 0.15 
mgl cm2 Ih. In addition, we observed no abnormalities in the 
structure of the lamellar bilayers in the stratum corneum interstices 
or in the appearance of lamellar bodies within stratum granulosum 
cells (Fig 7). Although the present study did not delineate the role 
of apolipoprotein E in the epidermis, the approach of eliminating a 
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Figure 7. Stratu m CJrne um membrane structure in homozygous apolipo protein-E-deficient mice. In ruthenium tetroxide post- fixed salnpies, 
the intercellular spaces are filled with normal-appearing membrane structures. These lamellar bilayers display a normal lamellar bilayer unit structure [16] 
(arrows indicate sites where membrane substructure can be clearly seen). Bar, 1 j1-m. 

protein to determine its potential function has limitations. For 
example, the protein under study may play an important role, but 
if other proteins can function in a similar manner, they may be able 
to compensate for the absence of the eliminated protein. In 
addition, only subtle changes may accompany elimination of a 
protein under basal or unchallenged conditions. For example, 
animals homozygous for a deficiency of tumor necrosis factor 55-kd 
receptor appear normal until infected with Listeria mOllocytogenes, 
after which they demonstrate an inability to contain the infection 
[21,22]. Thus, the fact that we did not encounter abnormalities in 
barrier function or epidermal appearance does not exclude impor
tant functions for apolipoprotein E in the epidermis. 

In conclusion, our study found that the lack of apolipoprotein E 
production in the epidermis does not appear to lead to any 
detectable abnormality in the morphology of lamellar lipid struc
tures or in cutaneous barrier function. On the other hand, the lack 
of apolipoprotein E leads to cutaneous foam cell formation, pre
sumably secondary to disturbances in lipoprotein metabolism. 
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