CORRESPONDENCE

Re: ‘Galectin-3, Carotid Plaque Vulnerability, and Potential Effects of Statin Therapy’

We read with interest in our vascular department the article by Kadoglou et al.1 Although it is a novel marker to be studied in the setting of carotid arteries, there are considerable fallacies in the aim, methodology, and the conclusions drawn. We wish to draw attention to only some salient ones in this communication. The introduction with a reference states that “Galectin-3, propagates vascular inflammation by inducing the expression of pro-inflammatory mediators in macrophages and the migration of monocytes into vascular walls”. However the conclusion states that “the findings support the hypothesis that galectin-3 is predominantly an anti-inflammatory mediator in advanced carotid plaques”.

The primary or secondary aim of the study does not involve the grey-scale median; however, it is extensively used in the results and discussion. There was no mention of an ethical approval to study the plaque. Although the methodology suggests that Pearson’s correlation test was done, the results do not reveal them.

The authors attribute their results to the dual function of pro- and anti-inflammatory roles of the study marker supported by one animal study.

Overall, this study although interesting does not have a robust and clear message due to its intrinsic pitfalls. The authors however have been honest, declaring the limitations. This marker does have potential for more research based on the association with carotid plaque.

REFERENCE

N. Sharma*, S. Rajagopalan
UHNMC, Royal Stoke Hospital, Stoke, UK

*Corresponding author. UHNMC, Royal Stoke Hospital, Stoke, UK.

Email-address: n-sharma@doctors.org.uk (N. Sharma)

Available online 14 March 2015

© 2015 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.ejvs.2015.01.024

DOI of original article: http://dx.doi.org/10.1016/j.ejvs.2015.02.010

Re: ‘Response to Letter to the Editor on “Galectin-3, Carotid Plaque Vulnerability, and Potential Effects of Statin Therapy”’

We read with interest the letter by Sharma et al. regarding our study “Galectin –3, carotid plaque vulnerability, and potential effects of statin therapy”. We strongly disagree with the alleged fallacies of our study, as described by the authors of the letter.

Regarding the biological role of galectin-3 in atherosclerosis, there are conflicting reports in the literature. Galectin-3 has been increasingly recognized as an important modulator of several biological functions, by interacting with several molecules inside and outside the cell, and exerts various and contrasting effects according to its location, type, and site of damage. The contributory role of galectin-3 in both the acceleration and inhibition of atherosclerosis has been described in animal studies. Limited data exist regarding the role of galectin-3 in carotid plaque destabilization. Our study was designed to investigate the relationship between galectin-3 and carotid plaque embolization manifested by ipsilateral neurological symptoms. For all the abovementioned reasons we mentioned both theories about the role of galectin-3 in the “Introduction” (the phrase used by the authors of the letter, “galectin-3 propagates vascular inflammation”, skews what was actually written: “galectin-3 has been reported to propagate vascular inflammation”).

Moreover, as stated in the “Introduction”, the primary goal of the study was also “to investigate the relationship between galectin-3 and an ultrasound index of carotid plaque vulnerability”, namely the Gray Scale Median (GSM). The GSM is a uniformly accepted index of carotid plaque echogenicity and helps in identifying vulnerable plaques, as explained in the “Methods” section.

Regarding ethical approval, written informed consent from each patient was obtained before enrollment and all procedures were performed according to the principles of the Declaration of Helsinki, and were approved by the hospital’s human ethics committee, as clearly stated in the “Methods”.

The study, despite some limitations, which are carefully and extensively reported in the “Discussion”, is the first to evaluate galectin-3 in human carotid plaques in relation to clinical and ultrasonographic criteria of plaque vulnerability. The findings lean towards the hypothesis that galectin-3 is predominantly an anti-inflammatory mediator in advanced carotid plaques. Regarding the fact that galectin-3 is well validated and that there is expanding use in several cardiovascular diseases, we agree with Sharma et al. that galectin-3 has the potential to be further researched with regard to the association with carotid plaques.
Flück et al. are to be congratulated on their recent study.1 Ischemia reperfusion (IR) models are very common in experimental studies and currently two different methods are the most frequently used. The first of these is to assess the local injury on the organ where IR is generated, as performed by Flück et al.1 and the second is to investigate the reperfusion injury in an organ distant from where the IR injury is generated.1,2,5 Based on this information, we would like to ask Flück et al. some provocative questions: (1) Which affects the lung tissue more, IR injury following a locally generated ischemia or the systemic effects of IR injury generated in the lower limbs? (2) Which distant organ is most affected by IR injury following locally generated ischemia of the lower limbs? (3) What is responsible for how much of a tissue will be affected by IR injury? Is it the mass volume of the tissue, is it the vascularity, or is it the possession of vital functions like hormonal activity?

We believe that the thoughts of Flück et al. on these questions will shed light on the issues raised.

REFERENCES

\textbf{N.P. Kadoglu*, G.S. Sfyroeras}
Department of Vascular Surgery, Medical School, University of Athens, Athens, Greece

A. Spathis
Department of Cytopathology, “Attikon” University Hospital, Athens, Greece

C. Gkekas
Department of Vascular Surgery, Medical School, University of Athens, Athens, Greece

\textbf{A. Gastouniotti}
School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece

\textbf{G. Mantas}
Department of Vascular Surgery, Medical School, University of Athens, Athens, Greece

\textbf{K.S. Nikita}
School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece

\textbf{P. Karakitsos}
Department of Cytopathology, “Attikon” University Hospital, Athens, Greece

\textbf{C.D. Liapis}
Department of Vascular Surgery, Medical School, University of Athens, Athens, Greece

*Corresponding author.
Email-address: nikoskad@yahoo.com (N.P. Kadoglu)

Available online 14 March 2015

© 2015 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.ejvs.2015.02.010
DOI of original article: http://dx.doi.org/10.1016/j.ejvs.2015.01.024

Re: ‘Protective Effect of Focal Adhesion Kinase against Skeletal Muscle Reperfusion Injury after Acute Limb Ischemia’: Exciting Questions about Ischemia Reperfusion Injury

Flück et al. are to be congratulated on their recent study.1 Ischemia reperfusion (IR) models are very common in experimental studies and currently two different methods are the most frequently used. The first of these is to assess the local injury on the organ where IR is generated, as performed by Flück et al.1 and the second is to investigate the reperfusion injury in an organ distant from where the IR injury is generated.1,2,5 Based on this information, we would like to ask Flück et al. some provocative questions: (1) Which affects the lung tissue more, IR injury following a locally generated ischemia or the systemic effects of IR injury generated in the lower limbs? (2) Which distant organ is most affected by IR injury following locally generated ischemia of the lower limbs? (3) What is responsible for how much of a tissue will be affected by IR injury? Is it the mass volume of the tissue, is it the vascularity, or is it the possession of vital functions like hormonal activity?

We believe that the thoughts of Flück et al. on these questions will shed light on the issues raised.

REFERENCES

\textbf{N.P. Kadoglu*, G.S. Sfyroeras}
Department of Vascular Surgery, Medical School, University of Athens, Athens, Greece

A. Spathis
Department of Cytopathology, “Attikon” University Hospital, Athens, Greece

C. Gkekas
Department of Vascular Surgery, Medical School, University of Athens, Athens, Greece

\textbf{A. Gastouniotti}
School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece

\textbf{G. Mantas}
Department of Vascular Surgery, Medical School, University of Athens, Athens, Greece

\textbf{K.S. Nikita}
School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece

\textbf{P. Karakitsos}
Department of Cytopathology, “Attikon” University Hospital, Athens, Greece

\textbf{C.D. Liapis}
Department of Vascular Surgery, Medical School, University of Athens, Athens, Greece

*Corresponding author.
Email-address: nikoskad@yahoo.com (N.P. Kadoglu)

Available online 14 March 2015

© 2015 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

DOI of original article: http://dx.doi.org/10.1016/j.ejvs.2015.01.024