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We introduce a new geometric quantity, the mean covariation for Finsler metrics,
and establish a volume comparison theorem. As an application, we obtain some
precompactness and finiteness theorems for Finsler manifolds. � 1997 Academic Press

1. INTRODUCTION

Early work in conjunction with the global comparison geometry of Finsler
manifolds was done by L. Auslander [A], who proved that if a complete
Finsler n-manifold (M, F ) satisfies RicM�(n&1), then the diameter
diamM�?. In particular, ?1(M) is finite. This is the Bonnet�Myers
theorem if F is Riemannian. Further, he proved that if a complete Finsler
manifold (M, F ) has non-positive flag curvature, then the exponential
map expx : TxM � M is a local C1-diffeomorphism. This is the Cartan�
Hadamard theorem if F is Riemannian. We point out that Auslander used
the Cartan connection and stated the above theorems under slightly
stronger conditions on curvatures, because he did not realize that the cur-
vature terms in the second variation formula can be simplified to the flag
curvature. See [AZ2, BCh] for simplified formulas. We remark that the
flag curvature is independent of a particular choice of connections, and
hence is of particular interest in the metric geometry of Finsler manifolds.
See [L, AZ1, D1�D3, GKR, Mo1, Mo2, K1, K2, BCh], etc., for other
interesting work on global Finsler geometry.

In Riemann geometry, the Bishop�Gromov volume comparison theorem
[BCr, GLP] plays a very important role in the global differential geometry
of Riemann manifolds. One of its applications is the Gromov precompact-
ness theorem for the class C(n, *, d ) with respect to the Gromov�Hausdorff
distance dGH , where C(n, *, d) denotes the set of all Riemann manifolds
(M, g) satisfying RicM�(n&1)* and diamM�d. For =>0, R�1, consider
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a sub-class C=, R(n, *, d )/C(n, *, d ), which consists of (M, g) satisfying that
any =-ball B(x, =) is contractible in B(x, R=)/M. It can be shown that if
two manifolds M0 , M1 # C=, R(n, *, d ) are sufficiently close with respect to
dGH , then they have to be homotopy equivalent. Combining this with the
pre-compactness of C(n, *, d ), one can conclude that there are only finitely
many homotopy types in C=, R(n, *, d ) ([P1]) (see also [GPW] for a
homeomorphism version of this). This is a generalized version of Cheeger's
finiteness theorem [C1, C2] and Grove�Petersen's finiteness theorem
[GP]. See also [Y, Z] for some other interesting finiteness theorems. Here
we shall not mention the references on the convergence theory of Riemann
metrics, because we will only focus on the finiteness problem. The reader
is referred to a recent paper of P. Petersen [P3] for a beautiful discussion
and references on the convergence of Riemannian metrics.

Petersen [P1, P2] studied the finiteness problem for metric spaces in
great generally. This enables us to find geometric (curvature) conditions
and establish a finiteness theorem for a much larger class of manifolds
equipped with ``smooth'' inner metrics.

First we shall briefly discuss inner metrics which naturally lead to Finsler
metrics. Let d be an inner metric on a C� n-manifold M. Suppose it
satisfies the following Lipschitz condition: at each point x # M, there is a
coordinate neighborhood .: V/Rn � U/M such that

A&1 |x0&x1 |�d(.(x0), .(x1 ))�A |x0&x1 |, \x0 , x1 # V; (1.1a)

|d(.(x0), .(x0+y )&d(.(x1), .(x1+y )|

�A |x0&x1 | | y |, \x0 , x1 # V, y # Bn(=). (1.1b)

We can prove that (1.1) implies that the following limit exists:

Fd (x, y ) := lim
r � 0

d(.(x), .(x+ry ))
|r|

�0, \x # V, y # Rn (1.2)

Further, F(x, y )=Fd (x, y ) has the following properties:

F(x, y )=|r| F(x, y ), \r # R, y # Rn ; (1.3)

F(x, y )=0 if and only if y=0; (1.4)

|F(x0 , y )&F(x1 , y )|�A |x0&x1 | | y |, \x0 , x1 # V, y # Rn ; (1.5)

F(x, y1+y2)�F(x, y1 )+F(x, y2), \y1 , y2 # Rn. (1.6)

A function F : TM � [0, �) is called a Lipschitz Finsler metric if it
satisfies (1.3)�(1.6) in local coordinates. One can show that if d=dF is the
inner metric induced by a Lipschitz Finsler metric F, then d satisfies (1.1)
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and reproduces F=Fd by (1.2) ([BM]; see also [V, DCP] for the study
of inner metrics satisfying (1.1a) only). Thus there is an one-to-one corre-
spondence between Lipschitz inner metrics and Lipschitz Finsler metrics.

To study the differential geometry of Finsler manifolds, we shall restrict
ourselves to C� Finsler metrics. A function F : TM � [0, �) is called a C�

Finsler metric if it satisfies (1.3) and the following convexity�regularity
conditions:

(1.7) F is smooth on TM"[0];

(1.8) the Hessian ( gij (x, y )), y{0, is positive definite, where

gij (x, y ) :=
1
2

�2F 2

�yi �y j (x, y ).

Note that (1.7), (1.8) imply (1.4), (1.5) and (1.6). The inner metric d=dF

induced by F reproduces F=Fd by (1.2). By the homogeneity of F, one
always has F(x, y )=- gij (x, y ) yiy j . F is called Riemannian if gij (x)=
gij (x, y ) are independent of y. F is called locally Minkowskian if gij (x, y )=
gij ( y ) are independent of x.

Let Fx denote the restriction of F onto TxM. When F is Riemannian,
(TxM, Fx) are all isometric to the Euclidean spaces Rn. But, for general
Finsler metric F, (TxM, Fx) may be not isometric to each other. Thus the
geometry of Finsler manifolds becomes more complicated.

The Finsler metric F induces a familly of inner products gv in TxM by

gv(u, w)=gij (x, y )uiw j, (1.9)

where v=yi (���xi )|x , u=ui (���xi )|x , w=wi (���xi )|x .
Take an arbitrary basis [ei ]n

i=1 for TxM. Let Bx(1)=[ y=( yi ):
F( yiei )�1]. Put gv

ij=gv(ei , ej ). Define the mean distortion +: TM"[0] �
(0, �) by

+(v) :=
vol(Bx(1))
vol(Bn(1))

- det( gv
ij ). (1.10)

Clearly, +(v) is independent of a particular choice of [ei ]n
i=1 , and

+(*v)=+(v), \*{0.
The mean covariation H: TM"[0] � R is defined by

H(v) :=
d
dt

[ln +(#* v)]| t=0 , (1.11)

where #v is the geodesic with #* v(0)=v. Put H(0)=0. It is easy to see that

H(*v)=*H(v), \* # R.
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Roughly speaking, the mean covariation H(v) measures the average rate of
changes of (TxM, Fx) in the direction v # TxM. We say |HM |�+ if
|H(v)|�+F(v), \v # TM"[0].

An important property is that H=0 for Finsler manifolds modeled on a
single Minkowski space. In particular, H=0 for Berwald spaces. Locally
Minkowski spaces and Riemann spaces are all Berwald spaces.

In order to introduce other geometric quantities, one needs (linear) con-
nections. In Finsler geometry, there are several important linear connec-
tions such as the Berwald connection [Be], the Cartan connection [C],
and the Chern connection [Ch1, Ch2, BCh]. See [S] for a new interesting
linear connection and its relationship with others. All of them are uniquely
determined by two equations (torsion equation and metric equation) and
reduce to the common one when F is Riemannian. Except for the Cartan
connection, all of them are torsion-free. But the Cartan connection is
metric-compatible. In a Finsler manifold (M, F ), one cannot get a connec-
tion which is torsion-free and metric-compatible, unless F is Riemannian.
Using any of these connections, one can define three curvatures R, P, Q
(Q=0 for torsion free connections). These curvature terms depend on a
particular choice of linear connections. The flag curvature tensor (defined
by R only) is independent of a particular choice of these connections, that
is, the term appears in the second variation of length, thus is of particular
interest to us. We remark that if F is Riemannian, then P=Q=0, and the
flag curvature tensor is the Riemannian curvature tensor. The average of
the flag curvature tensor is the Ricci curvature Ric: TM � R. It has the
property that Ric(rv)=r2 Ric(v), r>0, v # TM. We say RicM�(n&1)* if
Ric(v)�(n&1)*F(v)2, \v # TM. More details will be given in Section 2.

For a constant * # R and +�0, put

V*, +(r) :=Vol(Sn&1(1)) |
r

0
e+ts*(t)n&1 dt, (1.12)

where s*(t) denotes the unique solution to y"+*y=0 with y(0)=0,
y$(0)=1. Note that V*, +(r)=vol(Bn(r))(1+o(r)) as r � 0+. We shall show
that vol(B(x, r))=vol(Bn(r))(1+o(r)) as r � 0+. Thus

lim
r � 0+

vol(B( p, r))
V*, +(r)

=1. (1.13)

The following is our main theorem.

Theorem 1.1. Let (M, F ) be complete Finsler manifold. Suppose that

RicM�(n&1)*, |HM |�+. (1.14)
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Then for any 0<r<R,

vol(B(x, R))
V*, +(R)

�
vol(B(x, r))

V*, +(r)
. (1.15)

In particular,

vol(B(x, r))�V*, +(r). (1.16)

In Section 6, we shall discuss the case when the equality in (1.15) holds.
Given n, *, +�1, let M(n, *, +) denote the class of pointed complete

Finsler n-manifold (M, p, F ) satisfying the bounds (1.14). As a direct conse-
quence of Theorem 1.1, we have the following

Corollary 1.2. The class M(n, *, +) is precompact in the pointed
Gromov�Hausdorff topology.

This corollary follows from Theorem 1.1 and [GLP, P2].
A function \: [0, r) � [0, �) is called a contractibility function if it

satisfies (i) \(0)=0, (ii) \(=)�=, (iii) \(=) � 0 as = � 0, (iv) \ is non-
decreasing. Given a contractibility function \, a metric space X is said to
be LGC(\) if for every = # [0, r] and x # X, the ball B(x, =) is contractible
inside B(x, \(=)). For a number r>0, if every ball B(x, =) is contractible
inside B(x, =), x # X, 0<=<r, namely, X is LGC(\) for \(=)== : [0, r) �
[0, r), then we say X has contractibility radius c(X )�r. Given n, *,
+, \, d, let M(n, *, +, d, \) denote the class of compact LGC(\) Finsler
n-manifolds satisfying

RicM�(n&1)*, |HM |�+, diamM�d. (1.17)

Corollary 1.3. The class M(n, *, +, d, \) contains only finitely many
homotopy types.

In [C1, C2], J. Cheeger proved that if a compact Riemannian manifold
Mn satisfies the bound 4�KM�*, diamM�d, volM�v, then the injec-
tivity radius injM�io(n, *, 4, d, v)>0. Thus M is LGC(\) space for
\(=)==: [0, io] � [0, �). In [GP], Grove and Petersen proved that if a
compact Riemannian manifold Mn satisfies the bounds KM�*, diamM�d,
volM�v, then every ball B(x, =) is contractible in B(x, R=) for \=�
=o(n, *, d, v) and R=R(n, *, d, v). Thus M is a LGC(\) space for
\(=)=R= : [0, =o] � [0, �). It is an interesting question under what cur-
vature bounds is a compact Finsler manifold Mn satisfying the bounds
diamM�d, volM�v a LGC(\) space for some \ depending only on those
bounds. This problem will be discussed somewhere else. We remark that
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both arguments in [C1] and [GP] were carried out using Toponogov's
comparison theorem. However, we can show that, in a Finsler manifold,
Topogonov's triangle comparison theorem does not hold, unless it is
Riemannian. In other words, a Finsler manifold is not curved from below
in the sense of Alexandrov [A1, A2] unless it is Riemannian.

By the same argument as in [GLP], one can obtain the following

Corollary 1.4. Let (M, F ) be a complete Finsler n-manifold satisfying
the bounds (1.17). Then the first Betti number b1(M)�c(n, *, +, d ).

There are many other important theorems in Riemannian geometry are
false for Finsler manifolds. For example, the Cheeger�Gromoll splitting
theorem [CG] is no longer true, even for flat Finsler manifolds (say
Minkowski spaces). Nevertheless, Milnor's theorem still holds for certain
Finsler manifolds.

Corollary 1.5. Let (M, F ) be a complete Finsler n-manifold with

RicM�0, HM=0.

Then any finitely generated subgroup 1 of the fundamental group ?1(M) has
polynomial growth of order �n.

2. PRELIMINARIES

In this section we shall recall some basic facts of Riemann�Finsler
geometry. See [M, R, BCh] for more details.

We begin with the simplest Finsler manifolds. Let V be a vector space,
and let Fo : V � [0, �) be a function satisfying (i) Fo(*y)=|*| F( y ), (ii) Fo

is C� on V"[0], and (iii) gij ( y ) := 1
2 (�F 2

o��yi �y j )( y ) is positive definite
for y{0. Fo is called a Minkowski norm on V, and (V, Fo) is called a
Minkowski space. Each TxV is naurally identified with V. Thus Fo induces
a Finsler metric F on V.

There are lots of Minkowski spaces, but there is a unique Euclidean
space, up to an isometry. Let (M, F ) be an arbitrary Finsler manifold. By
definition, the restriction Fx of F to Tx M is a Minkowski norm in TxM.
(TxM, Fx) is called a Minkowski tangent space at x # M. In general,
(TxM, Fx) are not linearly isometric to each other. It is possible that on
(M, F ), we have infinitely many distinct Minkowski tangent spaces.

There is no notion of angles between two tangent vectors in a Finsler
manifold. Nevertheless, the volume form is well-defined [B1]. Let [ei ]n

i=1

be a local basis for TM and ['i]n
i=1 be its dual basis for T*M. Put
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Bx(1) :=[ y=( yi ) : F( yiei )�1]. Bx(1) is a strictly convex open subset
in Rn. Let Bn(1) denote the standard unit ball in Rn. The volume form dv
is defined by

dv=
vol(Bn(1))
vol(Bx(1))

'1 7 } } } 7 'n, (2.1)

where vol(A) denotes the Euclidean volume of a subset A/Rn. dv is inde-
pendent of a particular choice of positive basis [ei ]n

i=1! As usual, the
volume vol(U ) of an open subset U/M is defined by vol(B(x, r))=�U dv.
It is easy to see that the r-ball B(x, r) in a Minkowski space has the same
volume of Bn(r) in the Euclidean space Rn. Busemann [B1] proved that
for any bounded open subset U/M, vol(U )=Hd (U ), where Hd (U )
denotes the Hausdorff measure of U with respect to d=dF . This fact might
be true for Lipschitz inner�Finsler metrics (compare [V]).

In order to define curvatures, it is more convenient to consider the
pull-back tangent bundle than the tangent bundle, because our geometric
quantities depend on directions.

Let TMo=TM"[0] and let ?*TM denote the pull-back of the tangent
bundle TM by ?: TMo � M. Denote vectors in ?*TM by (v; w), v # TMo ,
w # T?(v) M. For the sake of simplicity, we denote by �i | v=(v; ���xi |x),
v # TxM the natural local basis for ?*TM. The Finsler metric F defines two
tensors g and A in ?*TM by

g(�i | v , �j | v)=gij (x, y), A(�i | v , � j | v , �k | v)=
1
2

F(x, y)
�gij

�yk (x, y),

where v=yi (���xi )|x . g and A are called the fundamental and Cartan
tensors, respectively. Note that (?*TM, g) is a Riemannian vector bundle.
A trivial fact is that F is Riemannian if and only if A=0.

In Finsler geometry, we study connections and curvatures in (?*TM, g),
rather than in (TM, F ). The pull-back tangent bundle ?*TM is a very
special vector bundle. It has a unit vector l defined by

lv=
1

F(v)
(v; v).

It is easy to see that A(X1 , X2 , X3)=0 whenever Xi=l for some i=1, 2, 3.
Let [Ei ]n

i=1 be a local frame for ?*TM. Define the dual co-frame
[|i ]n

i=1 on TMo by

(v; ?
*

(X� ))=|i(X� )Ei , X� # T(TMo).

Put l=l iEi , Aijk=A(Ei , Ej , Ek), gij=g(Ei , Ej ).
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We have the following

Theorem 2.1 (Chern). There is a unique set of local 1-forms [|j
i ]1�i, j�n

on TMo such that

d|i=| j 7 |j
i (2.2)

dgij=gkj|i
k+gik |j

k+2Aijk |n+k, (2.3)

where |n+k :=dlk+l l|l
k+l kd(ln F ). Further, [|i ; |n+i] is a local co-

frame for T*(TMo).

In a standard local coordinate system (xi ; yi ) in TM, take a natural
basis [Ei=�i]n

i=1 for ?*TM. We have

|j
i=1 i

jk(x, y) dxk

where

1 i
jk=#i

jk+
1
F

gil [AjksN s
l &AljsN s

k&Akls N s
j ]

N s
l =#s

la ya&
1
F

gsjAjlk#k
ab yayb (2.4)

#i
jk=

1
2

gil { �
�x j glk+

�
�xk glj&

�
�x l gjk= .

We call [|j
i] the set of local connection forms. It defines a linear connec-

tion { in ?*TM by

{X� Y=[X� Yi+Y j|j
i (X� )]Ei ,

X� # T(TMo), Y=YiEi # C�(?*TM). (2.5)

We also get two bundle maps \, +: T(TMo) � ?*TM, defined by

\ :=|i �Ei , + :=F|n+i�Ei (2.6)

Note that the VTM :=ker \ is the vertical tangent bundle of TMo . Put
HTM :=ker +. We have the direct composition T(TMo)=HTM�VTM.
Tangent vectors in HTM are called horizontal, and tangent vectors in VTM
are called vertical. An important fact is that \ |HTM and + |VTM are bundle
isomorphisms.

Define the set of local curvature forms 0j
i by

0j
i :=d|j

i&|j
k 7 |k

i.
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By (2.2), one can show that 0j
i does not have vertical part, that is, one can

write

0j
i= 1

2Rj
i
kl|k 7|l+Pj

i
kl|k 7 |n+l.

Define the curvature tensors R, P in ?*TM by

R(U, V )W=ukvlw jRj
i
kl Ei , P(U, V)W=ukvlw jPj

i
klEi ,

where U=uiEi , V=vi Ei , W=wiEi # ?*TM. A Finsler manifold (M, F ) is
called a Berwald space if P=0.

Let _=span[u, v]/TxM be a two-dimensional section. The flag cur-
vature K(_; v) of the flag [_, v] is defined by

K(_; v) :=
g(R(U, V )V, U )

g(V, V) g(U, U )&g(U, V )2 ,

where U=(v; u), V :=(v; v) # ?*TM. When F is a Riemannian, K(_)=K(_; v)
is independent of v # _, that is, the sectional curvature in Riemannian
geometry. Further, it is independent of the above-mentioned linear connec-
tions. Thus it really does not matter which connection should be used in
the metric geometry of Finsler manifolds.

Fixing a unit vector v # TxM, let [ei ]n
i=1 , en=v, be a basis for TxM

such that [(v; ei )]n
i=1 is an orthonormal basis for ?*TM. Let _i=

span[ei , v], 1�i�n&1. The Ricci curvature Ric(v) is defined by

Ric(v) := :
n&1

i=1

K(_i ; v)F(v)2.

The linear connection { in (2.5) defines the covariant derivative Dvu of
a vector field u on M in the direction v # TxM as follows. Let c be a curve
in M with c* (0)=v. Let ĉ=dc�dt be the canonical lift of c in TMo . Let
u(t)=u| c(t) and U(t) :=(ĉ; u(t)) # ?*TM. Define Dvu by

(v; Dvu) :={dĉ�dtU(0). (2.7)

Note that D satisfies all properties of linear connections in TM, except for
the linearity in v, that is, Dv1+v2

u{Dv1
u+Dv2

u. Thus D is not a linear con-
nection in TM in a usual sense. A vector field u=u(t) along c is called
parallel if Ddc�dt u=0.

A curve #: [0, a] � M is a geodesic if and only if #* is parallel along #, i.e.,

D#* #* =0. (2.8)

In this case, # must be parametrized proportional to arc-length.
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The exponential map expx : TxM � M is defined as usual, that is,
expx(v)=#v(1), where #v is a geodesic with #v(0)=x and #* (0)=v. The
Hopf�Rinow theorem says that if (M, dF ) is complete, then expx is defined
on all of TxM for all x # M. This implies that any two points x0 , x1 # M
can be joined by a minimizing geodesic. From now on, we always assume
that (M, dF ) is complete.

It is a well-known fact that the exponential map expx is C� away from
the origin in TxM and only C1 at the origin with expx | 0=identity [W].
In [B2], Busemann proved that if expx is C2 at the origin for all x # M,
then all (TxM, Fx) are isometric to each other. On the other hand, Ichijyo�
[I] proved that in a Berwald space, all (TxM, Fx) are isometric to each
other. Finally, Akbar�Zadeh [AZ3] proved that expx is C� all over TxM
for all x # M, if and only if the Finsler metric is Berwald.

Using the exponential map expx , one can easily show that d 2
x=d(x, } )2

is C� near x and C1 at x. We remind the reader that (Fx)2 is only C1 at
the origin, although expx is C� in a Berwald space.

Proposition 2.2. If d 2
x is C2 at x, then F is Riemannian at x.

Proof. Let .: V/Rn � U/M be a local coordinate system at x with
.(0)=x. Let h(z)=d 2

x b .(z), z # V. Note that h(z)�h(0)=0, z # V. By
assumption h is C2 in V. Thus

h(z)=
1
2

�2h
�zi �z j (0) ziz j+o( |z| ).

As we have pointed in Section 1, d=dF reproduces F=Fd by (1.2), that is,

F(x, y)2= lim
r � 0

h(ry )2

r2 =
1
2

�2h
�zi �z j (0) yiy j.

By definition, F is Riemannian at x. K

The cut-value tv of a vector v # TxM is defined to be the largest number
r>0 such that #v is minimizing on [0, r]. Let Ix :=[v # TxM, F(v)=1].
The map v # Ix � tv # [0, �) is continuous. The cut-locus Cx=
[expp tvv: v # Ix] has zero Hausdorff measure in M. The injectivity
radius injx at x is defined by injx=infv # Ix

tv . Let 0x :=M"Cx , and
Ox=[(t, x): t<tv]. Then expx : Ox � 0x is a diffeomorphism (C1 at the
origin).

For v # Tx M, define Rv : TxM � TxM by

Rv(u)=R(U, V )V, (2.9)

where U=(v : u), V=(v; V ) # ?*TM.
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Fix v # Tx M, and let #v be a normal geodesic from x with #* v(0)=v.
Along #v , we have a family of inner products gt=g#* v (t) in T#v (t) M (see
(1.9)) and flag curvatures Rt=R#* v (t) : T#v (t) M � T#u (t)M. For the sake of
simplicity, we shall denote Dt=D#* v

, if no confusion is caused. (2.3) implies
that for any vector fields u=u(t), w=w(t) along #v ,

d
dt

( gt(u(t), w(t))=gt(Dtu(t), w(t))+gt(u(t), Dtv(t)). (2.10)

A vector field J=J(t) along #v is called a Jacoby field if it satisfies

DtDt J(t)+RtJ(t)=0. (2.11)

Lemma 2.3. A vector field Ju along #v with Ju(0)=0 and DtJu(0)=u is
a Jacobi field if and only if

Ju(t)=d(expx) |tv (tu). (2.12)

In particular, a vector field J given by (2.12) is smooth along #v .

We shall always denote by #* v the geodesic with #* v(0)=v # TxM and by
Ju the Jacobi field along #* v defined by (2.12).

Lemma 2.4 (Gauss Lemma). For every Jacobi field Ju , Ju(t) is per-
pendicular to #v(t) for all t with respect to gt, if and only if u is perpendicular
to v with respect to gv.

From (2.12), we can see that expx is singular at rv # TxM if and only if
there is 0{u # TxM, such that the Jacobi field Ju satisfies Ju(r)=0. In this
case we call #v(r) a conjugate point with respect to x. By the standard argu-
ment, one can show that if the flag curvature K(_; v)�*, then there are
no conjugate points on # | [0, r) , for r=?�- * (=� if *�0). This is the
so-called Cartan�Hadamard theorem in Finsler geometry [A].

The index lemma is still true. For a vector field W=W(t) along #v with
W(0)=0, define

I(W, W )=|
r

0
[ gt(Dt W(t), Dt W(t))&gt(RtW(t), W(t))] dt.

Lemma 2.5 (Index Lemma). Suppose that #v does not contain conjugate
points on [0, r]. Let J be a Jacobi field along #v with J(0)=0. Then for any
vector field W along # with W(0)=0 and W(r)=J(r),

I(J, J )�I(W, W ),

the equality holds if and only if W=J.

316 ZHONGMIN SHEN



File: 607J 163012 . By:DS . Date:15:07:07 . Time:08:48 LOP8M. V8.0. Page 01:01
Codes: 2552 Signs: 1445 . Length: 45 pic 0 pts, 190 mm

For a Jacobi field Ju , we have

I(Ju , Ju)=gr(Dt Ju(r), Ju(r)).

By a standard argument and the index lemma, one can easily prove Bonnet
and Myers' theorem for Finsler manifolds ([A]).

A Finsler space (M, F ) is said to be modeled on a single Minkowski space
if for every geodesic #, the parallel translation Pt0 , t1

: (T#(t0)M, F#(t0)) �
(T#(t1)M, F#(t1)) is an isometry for all t0 , t1 . In this case, all (TxM, Fx) are
linearly isometric to each other. The class of such manifolds contains all
Riemann manifolds and locally minkowski manifolds. Define F* : TRn �
[0, �) by

F* \ yi �
�xi } x+=� :

n

i=1

( yi )2+*� :
n

i=1

( yi )4 , (2.13)

where *: Rn � [0, �) is a C� function. Clearly, (Rn, F*) in (2.13) is not
modeled on a single Minkowski space, if *: Rn � [0, �) is not constant.
See [AIM] for more interesting Finsler metrics from physics.

Proposition 2.6. If (M, F ) is modeled on a single Minkowski space,
then H=0.

Proof. By definition, if u=u(t) is a parallel vector field along a geodesic
#v , then F(u(t))=constant. Let [ei (t)]n

i=1 be a parallel basis for T#v (t) M
with ei (0)=ei , 1�i�n. We have

B#v (t)(1) :=[( yi ): F( yiei(t))�1]=Bx(1).

We also have det( gt(ei (t), ej (t)))=det( gv(ei , ej )). Thus +(#* v(t))=constant.
This implies H(v)=0. K

Proposition 2.7 ([I]). Any Berwald space is modeled on a single
Minkowski space.

3. THE SINGULAR RIEMANN METRICS ĝx AND gx

The Finsler metric F induces a singular Riemann metric ĝx on Tx M"[0]
by

ĝx(u, w) :=gv(u, w), \u, w # Ttv(TxM)tTxM, v # TxM. (3.1)
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Let Ix=[v # TxM: F(v)=1]. Let g* x be the induced Riemann metric of ĝx

on Ix/TxM. Regard TxM as the cone C(Ix) over Ix . By the homogeneity
of F, we have

ĝx=dt2� t2g* x. (3.2)

Let '̂x denote the volume form of ĝx on TxM"[0]=C(Ix)"[o]. Let
[ei ]n

i=1 be a basis for T0(TxM)tTx M. Extend it to a global basis for
T(Tx M). Let [%i]n

i=1 be the dual basis for T*(TxM). We have

'̂x
|tv=- det( ĝx(ei , ej )) |tv %1 7 } } } 7%n

=- det( gv(ei , ej )) %1 7 } } } 7 %n. (3.3)

Let '* x denote the volume form of g* x on Ix . By (3.2) we have

'̂x
|tv=tn&1'* x | v 7 dt, \(t, v) # C(Ix). (3.4)

Define the density 3x at x # M by

3x=
vol(Ix , '* x)

vol(Sn&1(1))
. (3.5)

When F is Riemannian, 3x=1, \x # M. In general, 3x does not have to be
constant unless F is a weak Landsberg space (see [BS]). It is still an open
problem whether or not there are two universal constants 0<an<bn ,
n=dim M such that

an�3x�bn , \x # M. (3.6)

If the norm of the Cartan tensor A is small enough, say &A&�- 3�10, then
(3.6) holds for some an , bn .

Define a smooth Riemannian metric gx inside 0x"[x] by

gx | #v (t)=g#* v (t) (3.7)

(see (1.9)). Put

g~ x :=(expx)* gx. (3.8)

In general, gx is singular at the origin, unless F is Riemannian. Regard expx

as a map C(Ix) � M. By the Gauss Lemma, we have

g~ x=dt2�ht , (3.9)

where ht is a family of Riemannian metrics on Ix .
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Lemma 3.1. The metric g~ x satisfies

1
t2 ht � g* x,

1
2t

�ht

�t
� g* x. (3.10)

Proof. Let u, w # Tv(IxM)/Ttv(TxM)tTxM. Let gt=g#* (t). Clearly,

gt(u(t), w(t)) � g* x(u, w), (3.11)

where u(t), w(t) are parallel vector fields along # with u(0)=u, w(0)=w.
For u # TxM, let Ju(t)=d(expx) |tv (tu). We have

ht(u, w)=gx(d(expx) |tv (tu), d(expx) |tv (tw))=gt(Ju(t), Jw(t)). (3.12)

Thus by (2.10)

�ht

�t
(u, w)=gt(DtJu(t), Jw(t))+gt(Ju(t), DtJw(t)). (3.13)

Put J� u=(1�t) Ju(t), for t{0. Since J is smooth along # and J(0)=0,
then J� u :=(1�t)Ju(t) converges, as t � 0. Put J� (0)=limt � 0 J� u(t). Then J� u is
smooth. Thus Dt J� u is bounded. Observe that Dt Ju(t)=J� u(t)+tDt J� u(t). We
can conclude that

1
t

Ju(t) � DtJu(0)=u. (3.14)

Now (3.10) follows from (3.11)�(3.13). K

The following proposition is important in computing the flag curvature.

Proposition 3.2. (i) Let Dx be the Levi�Civita connection of gx in 0x .
The along any normal geodesic #v , v # Ix ,

Dx
t =Dt . (3.15)

(ii) Let u # Tv(Ix), and let _t=span[d(expx) |tv (u), #* v(t)]/T#* v (t)M.
Let Kx(_t) denote the sectional curvature of gx. Then the flag curvature
K(_t , #* v(t)) of F satisfies

K(_t ; #* v(t))=Kx(_t)=
&

1
2

�2

�t2 (ht)uu+
1
4

�
�t

(ht)u: (ht)
:; �

�t
(ht)+;

(ht)uu
, (3.16)

where [e:]n&1
:=1 is a basis for Tv(Ix), (ht)uu=ht(u, u), (ht)u:=ht(u, e:), and

(ht):;=ht(e: , e;).
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Proof. Let (t, x� ) be the conical (or polar) coordinate system in
0x=expx(Ox), regarding TxM as C(Ix). Let (t, x� ; s, y� ) be the standard
coordinate system in T0x. By the Gauss lemma or (3.9), we have

\1
0

0
( gx):; (t, x� )+=\1

0
0

g:;(t, x� ; 1, 0)+=\1
0

0
(ht):; (t, x� )+ .

Put Dx
���t(���x:)=#;

t:(t, x� )(���x;). We have

# ;
t:(t, x� )=

1
2

(ht)
;& (t, x� )

�
�t

(ht):&; (t, x� ).

We can put D(���t)(���x:)=1 ;
t:(t, x� ; 1, 0)(���x;). By (2.4),

1 ;
t:(t, x� ; 1, 0)=# ;

t:(t, x� )&(ht)
;& (t, x� ) A:&{(t, x� ; 1, 0) #{

tt(t, x� ).

An easy computation yields that #{
tt(t, x� )=0. Thus

1 ;
t:(t, x� ; 1, 0)=# ;

t:(t, x� ).

This implies (3.15).
Let Rx denote the Riemann curvature tensor of gx on 0x . Note that

J:(t) :=d expx | (t, x� ) (t(���x:)=t(���x�)| (t, x� ) is a Jacobi field of both F and
gx. By the Jacobi equation (2.11), one obtains

(Rx)t �
�x:=&

1
t

Dx
���tD

x
���t J:(t)=&

1
t

D���tD���t J:(t)=Rt �
�x: .

By an easy computation, one obtain that for _t=span[���t, ���x:],

Kx(_t)=
&

�
�t

[ gt(D���tJ:(t), J:(t))]&gt(D���tJ:(t), D���t J: (t))

( gt)(J:(t), J:(t))

=
&

1
2

�2

�t2 (ht)::+
1
4

�
�t

(ht):; (ht)
;& �

�t
(ht)&:

(ht)::
. K

See [LS] for further discussions on Riemann metrics with conical
singularities.
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4. THE VOLUME FORMS OF ĝx and gx

Let v # Ix . Let 'x denote the volume form of gx and put

'~ x=(expx)* 'x. (4.1)

Note that '~ x is the volume form of g~ x. Define 3(v, t), t<tv , by

'~ x
|tv=3(v, t) t&(n&1) '̂x

|tv .

Let #v(t)=expx(tv), t�0, and [e:]n&1
:=1 be an orthonormal basis for

v=/TxM with respect to gv. Extend [e:]n&1
:=1 to a global set for T(TxM).

Let J:(t)=d(expx) |tv (te:). We have

3(v, t) :=�det(ht(e: , e;))
det( g* x(e: , e;))

=�det( gt[J:(t), J;(t)])
det( gv(e: , ;))

, t<tv . (4.2)

Clearly, 3(v, t) is independent of a particular choice of [e:]n&1
:=1. Lemma 3.1

implies

lim
t � 0+

3(v, t)
s*(t)n&1=1. (4.3)

Lemma 4.1. For t<tv , the function t � 3(v, t)�s*(t)n&1 is monotone
decreasing. In particular,

3(v, t)�s*(t)n&1. (4.4)

Proof. For r<tv , one can choose [e:]n&1
:=1 such that gr(J:(r), J;(r))=0,

:{;. Note that Jv(t)=t#* v(t) and is orthogonal to J:(t) for all t>0,
:=1, ..., n&1. Let e:(t) be the parallel vector fields along # such that
e:(0)=e: and e:(r)=J:(r)�gr(J:(r), J:(r))1�2.

Let W:(t)=(s*(t)�s*(r)) e:(t). By the index lemma and (2.10),

3$(v, r)
3(v, r)

= :
n&1

:=1

gr(Dt J:(r), J:(r))
gr(J:(r), J:(r))

� :
n&1

:=1

I(W: , W:)

=
1

s*(r)2 |
r

o
[(n&1) s$*(t)2&Ric(#* (t)) s*(t)2] dt

�
1

s*(r)2 |
r

0
[(n&1) s$*(t)2&(n&1)*s*(t)2] dt

=(n&1)
s$*(r)
s*(r)

.
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This implies

d
dr

ln
3(v, r)

s*(r)n&1�0.

Therefore 3(v, r)�s*(r)n&1 is monotone decreasing in r # (0, tv). This
together with (4.3) implies (4.4). K

Put 3(v, t)=0 for t�tv . The pointed volume of a metric ball B(x, r) is
defined by

Vx(r) :=vol(B(x, r), gx).

Let V*(r)=V*, 0(r). It is easy to see that

Vx(r)=|
r

0 \|Ix

3(v, t)+* x+ dt. (4.5)

By the standard argument, one can show that r � Vx(r)�V*(r) is decreasing.
By (4.3) we have

lim
t � 0+

Vx(r)
V*(r)

=3x .

Therefore we have

Theorem 4.2. Suppose that (M, F ) satisfies RicM�(n&1)*. Then for
every x # M, the function r � Vx(r)�V*(r) is monotone decreasing. In
particular,

Vx(r)�3x V*(r).

5. PROOF OF THEOREM 1.1

Fix a basis [ei]n
i=1 for T0(Tx M)tTxM. Extend [ei ]n

i=1 to be a global
basis for T(Tx M). Let [%i ]n

i=1 be a dual basis for T*(TxM).
Let #v : [0, �) � M be a normal geodesic with #* v(0)=v # TxM. Let Ji(t)=

d(expx) |tv (tei ) and J� i (t)=d(expx) |tv ei . Put B� t=[( yi ) : F( yiJ� i (t))�1].
Let ['~ i ]n

i=1 be the co-frame dual to [J� i (t)]n
i=1 . The volume form dv has

the form

dv |expv (tv)=
vol(Bn(1))
vol(B� t(1))

'~ 1 7 } } } 7 '~ n.
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We have

%i
|tv=(expx)*|tv '~ i.

Thus

(expx)*|tv dv=
vol(Bn(1))
vol(B� t(1))

%1 7 } } } 7%n.

Since the mean distortion is independent of a particular choice of [ei]n
i=1 ,

we have

+(#* v(t))=
vol(B� t(1)) - det( gt(J� i (t), J� j (t))

vol(Bn(1))
.

Thus

(expx)*|tv dv=
1

+(#* (t))
- det( gt(Ji (t), Jj (t))) t&n%1 7 } } } 7%n. (5.1)

Choose [ei]n
i=1 with en=v such that e: , 1�:�n&1, are orthogonal to

v with respect to gv. By the Gauss lemma, all J:(t), 1�:�n&1, are
orthogonal to Jn(t)=t#* v(t). Therefore

(expx)*|tv dv=
1

+(#* (t))
- det( gt(J:(t), J;(t))) t&(n&1)%1 7 } } } 7 %n

=
3(v, t)
+(#* v(t))

t&(n&1)
- det( gv(e: , e;)) %1 7 } } } 7 %n

=
3(v, t)
+(#* v(t))

t&n(n&1)'̂x

=
3(v, t)
+(#* v(t))

'* x 7 dt.

Here '* x is the volume form of (IxM, g* x).
To prove Theorem 1.1, one needs the following

Lemma 5.1. Suppose that |HM |�+. Then the function t � e&+t�+(#* v(t))
is monotone decreasing.
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Proof. By the definition of H, we have

H(#* (t))=
d
dt

[ln +(#* v(t))]�&+=
d
dt

[ln e&+t]. (5.2)

This implies that t � (e&+t�+(#* v(t))) is monotone decreasing. K

Let

_x(r)=|
Ix

3(v, r)
+(#* v(r))

'* x, _*, +(r)=vol(Sn&1(1))e+rs*(r)n&1. (5.3)

We have

vol(B(x, r))=|
r

0
_x(t) dt, V*, +(r)=|

r

0
_*, +(t) dt.

By Lemma 4.1 and Lemma 5.1, we conclude that h(r) :=_x(r)�_*, +(r) is
monotone decreasing. By the standard argument [G], the function

h� (r) :=
�r

0 _x(t) dt
�r

0 _*, +(t) dt

is also monotone decreasing.
Next we are going to prove that limr � 0+ h� (r)=1.

Lemma 5.2. For every x # M,

lim
= � 0+

vol(B(x, =))
V*, +(=)

=1. (5.4)

Proof. The proof is standard. Take the normal coordinates (xi ) at x.
Clearly, x$ � vol(Bx$(r)) is continuous. For small =>0, the =-ball B(x, =)/M
is mapped onto Bx(=)/Rn by exp&1

x . Thus as = � 0+,

vol(B(x, =))
vol(Bn(=))

=
1

vol(Bn(=)) |Bx (=)

vol(Bn(1))
vol(Bx$(1))

dx$=
vol(Bx(=))
vol(Bx $=

(=))
� 1. K

Lemma 5.2 implies that

|
Ix

1
+(v)

'* x=1.

Suppose the mean distortion satisfies

+&1�+(v)�+ \v # TM. (5.5)
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By (5.3), we have

+&1Vx(r)�vol(B(x, r))�+Vx(r).

We obtain the following

Theorem 5.3. Let (M, F ) be a complete Finsler n-manifold satisfying
RicM�(n&1)* and (5.5). Then for all r<R,

vol(B(x, R))
V*(R)

�+2 vol(B(x, r))
V*(r)

.

In particular,

vol(B(x, R))�+2V*(R).

This theorem is sharp for Riemann manifolds, since +(v)=1, but it is not
sharp for Finsler manifolds (say Minkowski spaces). Nevertheless, the
precompactness and finiteness theorems can be established for +(v) instead
of H(v).

6. THE RIGIDITY PROBLEM

In this section we shall study the case when

vol(B(x, r))
V*, +(r)

=1. (6.1)

By the proof of Theorem 1.1, one can see that injx�r. Further,

3(v, t)=s*(t)n&1, 0�t�r. (6.2)

and

H(#* v(t))=+, 0�t�r. (6.3)

We have H(v)=H(&v), \v # Ix , since (6.3) holds for all v # Ix and t=0.
On the other hand, by the definition of H(v), it is easy to see that
H(&v)=&H(v), \v # TxM. Thus +=0 and

H(#* v(t))=0, 0�t�r. (6.4)

Lemma 4.1 and (6.2) imply that any Jacobi field Ju(t) along #v has the form

Ju(t)=s*(t)u(t), 0�t�r, (6.5)

325RIEMANN�FINSLER GEOMETRY



File: 607J 163021 . By:DS . Date:15:07:07 . Time:08:48 LOP8M. V8.0. Page 01:01
Codes: 3398 Signs: 1537 . Length: 45 pic 0 pts, 190 mm

where u=u(t) is a parallel vector field along #v . By the Jacobi field equa-
tion, one has

Rtu(t)=u(t). (6.6)

This means the flag curvature for the flag [_t , #* v(t)] is constant 1, where
_t=span[#* v(t), u]. We remark that this does not say the flag curvature at
#v(t) is constant. We have

Proposition 6.1. If Ju satisfies (6.5) for all u # TxM, then

g~ x
|tv=(expx)* gx

|tv=dt2�s*(t)2 g* x.

Proof. By (3.9),

g~ x
|tv=(expx)* gx

|tv=dt2�ht

where ht is a family of Riemann metrics on Ix . By Proposition 3.2 and
(6.6), for any basis [e:]n&1

:=1 for Tv(Ix),

(ht)uu=&
1
2

�2

�t2 (ht)uu+
1
4

�
�t

(ht)u: (ht)
:; �

�t
(ht)u; .

Lemma 3.1 says that ht satisfies the initial condition (3.10). By the rigidity
theorem in [LSY], one can conclude that ht=s*(t)2 g* x. K
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