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Abstract

We derive the fourth-order q-di$erence equation satis&ed by the co-recursive of q-classical orthogonal polynomials. The
coe3cients of this equation are given in terms of the polynomials � and  appearing in the q-Pearson di$erence equation
Dq(��) =  � de&ning the weight � of the q-classical orthogonal polynomials inside the q-Hahn tableau. Use of suitable
change of variable and limit processes allow us to recover the results known for the co-recursive of the classical continuous
and classical discrete orthogonal polynomials. Moreover, we describe particular situations for which the co-recursive of
classical orthogonal polynomials are still classical and express these new families in terms of the starting ones. c© 2001
Elsevier Science B.V. All rights reserved.

MSC: 33C25
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1. Introduction

Let (Pn)n be the monic orthogonal family de&ned by the three-term recurrence relation

Pn+1 = (x − 	n)Pn − 
nPn−1; n¿1; P0 = 1; P1 = x − 	0; (1)

where 	n and 
n are complex numbers with 
n �= 0 and 
0 ≡ 1. The rth associated (P(r)
n )n and the

co-recursive [5] (P[�]
n )n of Pn are the monic polynomial families obtained by modifying relation (1),

∗ Corresponding author.
E-mail address: foupoua@uycdc.uninet.cm (M. Foupouagnigni).

0377-0427/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00655-5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82130645?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


356 M. Foupouagnigni, A. Ronveaux / Journal of Computational and Applied Mathematics 133 (2001) 355–365

and de&ned, respectively, by the relations

P(r)
n+1 = (x − 	n+r)P(r)

n − 
n+rP
(r)
n−1; n¿1; P(r)

0 = 1; P(r)
1 = x − 	r; (2)

P[�]
n+1 = (x − 	n)P[�]

n − 
nP
[�]
n−1; n¿1; P[�]

0 = 1; P[�]
1 = x − 	0 − �; (3)

where �, in general, is a complex number.
The family (P[�]

n )n which is orthogonal by Favard’s theorem [6], belongs in general to the
Laguerre–Hahn class [3,8–10,15,22] and therefore any polynomial P[�]

n satis&es a fourth-order linear
di$erential or di$erence equation.

The fourth-order di$erence equation satis&ed by P[�]
n was given in [25,28] for classical continuous

orthogonal polynomials and for classical discrete orthogonal polynomials in [19,26].
In this work, we use relations between the Pn, P[�]

n , P(1)
n and the fourth-order q-di$erence equation

satis&ed by the associated orthogonal polynomials of the Laguerre–Hahn class [10,12,13] to derive
the factorized form of the fourth-order q-di$erence equation satis&ed by the co-recursive of all
q-classical orthogonal polynomials.

Moreover, we use suitable change of variable and formal limit processes to deduce the fourth-order
di$erence equation (resp. di$erential) equation for the co-recursive of all classical orthogonal polyno-
mials of a discrete and continuous variables, respectively. We also use these di$erence, q-di$erence
or di$erential equations to prove that under certain conditions, the co-recursive of Jacobi, Hahn, little
q-Jacobi and big q-Jacobi polynomials are still classical and express the new polynomials families
in terms of the starting ones. q-classical orthogonal polynomials involved in this work belong to
the q-Hahn class introduced by Hahn [16]. They are represented by the basic hypergeometric series
appearing at the level 3�2 and not at the level 4�3 of the Askey–Wilson orthogonal polynomials
[14,17].

The di$erence or di$erential equation obtained in the framework of this paper can be used, for
instance, to solve connection coe3cients and linearization problems [2,20,21,26], to represent &nite
modi&cations inside the Jacobi matrices of the classical starting family [27] and also to prove the
existence of the classical orthogonal families for which the co-recursive are still classical and express
these families in terms of the starting ones.

The orthogonality weight � for q-classical orthogonal polynomials is de&ned by a Pearson-type
q-di$erence equation

Dq(��) =  �; (4)

where the q-di$erence operator Dq is de&ned [16] by

Dqf(x) =
f(qx)− f(x)

(q− 1)x
; x �= 0; 0¡q¡ 1: (5)

� is a polynomial of degree at most two and  is polynomial of degree 1.
The monic polynomials Pn(x; q), orthogonal with respect to � satisfy the second-order q-di$erence

equation

[�(x)DqD1=q +  (x)Dq + �q;nId]y(x) = 0; (6)

an equation which can be written in the q-shifted form

[(�(1) +  (1)t(1))G2
q − ((1 + q)�(1) +  (1)t(1) − �q;nt2(1))Gq + q�(1)Id]y(x) = 0 (7)
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with

�q;n =−[n]q

{
 ′ + [n− 1]1=q

�′′

2q

}
; [n]q =

1− qn

1− q
;

�(i) ≡ �(qix);  (i) ≡  (qix); t(i) ≡ t(qix); t(x) = (q− 1)x (8)

and the geometric shift Gq de&ned by

Gi
qf(x) = f(qix); G0

q ≡ Id(≡ identity operator): (9)

2. Fourth-order di�erence equation for the co-recursive q-classical orthogonal polynomials

2.1. Known materials

In the &rst step, we recall the main result we shall need for this work.

Theorem 1 (Foupouagnigni [10,12,13]). Let (Pn)n be a polynomial family orthogonal with respect
to the classical weight � satisfying Dq(��) =  �; where � is a polynomial of degree at most two
and  is a :rst degree polynomial. The :rst associated P(1)

n−1 of Pn−1 satis:es

(�(1) +  (1)t(1))Q∗
2; n−1[P

(1)
n−1(x; q)] = [eGq + fId]Pn(x; q) (10)

with

Q∗
2; n−1 = �(2)G

2
q − ((1 + q)�(1) +  (1)t(1) − �q;nt2(1))Gq + q(�+  t)Id;

e =
(
�′′

2
−  ′

)
((1 + q)�(1) +  (1)t(1) − �q;nt2(1))t(1);

f =−
(
�′′

2
−  ′

)
((q+ 1)�(1) +  (1)t(1))t(1): (11)

2.2. The q-di<erence equation

In the second step, we use Eqs. (10) and (11) taking into account the relation [7,8]

P[�]
n = Pn − �P(1)

n−1 (12)

and the fact that Pn(x; q) satis&es Eq. (7). This give after some computations:

Theorem 2. The co-recursive P[�]
n of the q-classical orthogonal polynomials Pn; orthogonal with

respect to the q-classical weight � satisfying Dq(��) =  �; where � is a polynomial of degree at
most two and  a :rst degree polynomial satis:es:

(�(1) +  (1)t(1))Q∗
2; n−1[P

[�]
n (x; q)] = [ IeqGq + IfqId]Pn(x; q) (13)
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with

Ieq =
(
−
(
�′′

2
−  ′

)
�t(1) − �(1) −  (1)t(1) + �(2)

)
((1 + q)�(1) +  (1)t(1) − �n;qt2(1));

If q =
(
�′′

2
−  ′

)
�((q+ 1)� (1) +  (1)t(1))t(1) − q�(1)�(2) + q(�+  t)(� (1) +  (1)t(1)): (14)

Remark 3. Since P[0]
n = Pn, the Eq. (13) taken for � = 0, coincide with (7).

In the third step we use Eq. (7) for Pn(x; q), (10) and (11) to obtain after some computations with
Maple V.4 [4] the operator Q[�]

2; n annihilating the right-hand side of (9):

Theorem 4. The co-recursive P[�]
n of the q-classical orthogonal polynomials Pn; orthogonal with

respect to the weight � satisfying Dq(��) =  � (degree of �62 and degree of  = 1) satis:es a
fourth-order q-di<erence equation given in the factorized form as

Q[�]
2; n

Q∗
2; n−1

[t(qx)]2
(P[�]

n ) = 0 (15)

with

Q[�]
2; n = A2(x)G2

q + A1(x)Gq + A0(x)Id; (16)

where Aj, j = 0; : : : ; 2 are polynomials of :xed degrees.

Proof. The proof is obtained by applying twice the operator Gq to Eq. (13) and using the second-order
di$erence equation satis&ed by Pn (see (7)). Notice that we have decided not to give the polynomials
coe3cients Aj; j = 0; : : : ; 2 since they are space consuming. However, the operators Q∗

2; n−1 and Q[�]
2; n

are given below for the discrete q-Hermite II case.

2.3. Example

For the discrete q-Hermite II polynomials (�(x) = 1;  (x) = x=(1 − q)), the operators Q∗
2; n−1 and

Q[�]
2; n are given by

Q∗
2; n−1 = G2

q + (�q2x2 − q− 1)Gq − q(x − 1)(x + 1)Id; Q
[�]
2; n = A2(x)G2

q + A1(x)Gq + A0(x)Id

with the notation �= qn and

A2 =−(q3x − 1)(q3x + 1)(−1 + q− x2q5�− x2q6�+ xq6��

+ xq5�� + 2xq3�� + xq2�� + 2xq4�� − 2xq2� − 2xq5� − xq3�

− 2xq4� + q4�2 + q2�2 + q3�2 + q�2 + x2q6 − q��2 − q3��2 − q4��2

− q2��2 + 2x2q4 + q3 − q4 − x2q4�− x2q3�+ x4q7�2 + xq��

− x3q5�2� − x3q7�2� + x2q5�2�2 − qx� − x2q5�2 + x3q5� + x3q6�

+ x2q2 − q6x4);
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A1 = q12�(q�2 − 1)x6 − q10��(−q2 + �2q3 + �2 − 1)x5

+ q6(q4�3�2 − �2q3 − q�2 + q4 + q4�− q5�2 + 2q2�− q6�2 + q5 − q2�2

− q4�2 − q4��2 + �)x4 + q4�(q6�2 + 2�2q3 + 2q4�2 + q2�2 + q8�2

− q3�− 2q2�− q4 + q�2 − q6�− q6 − q�+ q7�2 + 2q5�2 + �2 − q7 − �

− 2q4�− q5)x3 − q2(�+ 2q5 + 2q2 + q8�+ q2�2�2 + q4�2�2 − q2�

− q6�− 2q4�− 2q3�− 2q5�+ q7�2�2 − q7�+ q6�2�2 + q5�2�2

− q5��2 − q3��2 − q4��2 − q2��2 + q3�2�2 + 2q3 + 2q4 − q7�2

− q�− q6�2)x2 − q�(q+ 1)(q2 + 1)(q4�− 2q3 + 2q2�− q− 1 + �)x

+(q+ 1)(q4 + q4��2 − q4�2 − q3�2 + q3��2 − q3 − q2�2 + q2��2

− q�2 + q��2 − q+ 1);

A0 = q(−1 + q− x2q5�− x2q6�+ xq6�� + 2xq5�� + xq3��

+ xq2�� + 2xq4�� − x4q10 − xq2� − 2xq5� − 2xq3� − xq4�

+ q4�2 + q2�2 − x3q8�2� + x2q7�2�2 + x4q11�2 − x2q7�+ q3�2

− x3q10�2� − x2q8�+ xq7�� + q�2 + 2x2q6 − q��2 − q3��2

− q4��2 − q2��2 + x2q4 + q3 − q4 + x2q8 − x2q7�2 + x3q9� − 2xq6�

+ x3q8�):

2.4. Some applications on co-recursive classical orthogonal polynomials

2.4.1. q-classical orthogonal polynomials
For the little q-Jacobi polynomials and for the big q-Jacobi polynomials, the coe3cients Ieq and Ifq

(see (14)) vanishes under certain conditions. This implies that P[�]
n satis&es a second-order (instead

of fourth-order) di$erence equation of hypergeometric type, and is therefore q-classical.

• For the little q-Jacobi polynomials pn(x; a; b|q) [2,17]

�(x) = x(x − 1);  (x) =
1− aq+ (abq2 − 1)x

q− 1
; (17)

Ieq = If q = 0 when ab= 1 and � = (1− a)=(q− 1).
• For the big q-Jacobi polynomials Pn(x; a; b; c; q) [2,17]

�(x) = (x − qa)(x − qc);  (x) =
cq+ aq(1− (b+ c)q) + (abq2 − 1)x

q− 1
; (18)

Ieq = If q = 0 when ab= 1 and � = (q(1− a)(c − 1))=(q− 1).
• Computations involving the coe3cients 	n and 
n (see (1) and (22)) generate the following

relations:
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Proposition 5. The monic little q-Jacobi and the monic big q-Jacobi polynomials are related with
their respective co-recursive ones by

p[(1−a)=(q−1)]
n

(
x; a;

1
a
|q
)
= anpn

(
x
a
;
1
a
; a|q

)
; (19)

P[(q(1−a)(c−1))=(q−1)]
n

(
x; a;

1
a
; c; q

)
= anPn

(
x
a
;
1
a
; a; c; q

)
: (20)

Proof. The proposition is proven using the three-term recurrence relation (3) satis&ed by the co-
recursive orthogonal polynomials taking into account the following relations:

	0

(
a;
1
a
|q
)
+

1− a
q− 1

= a	0

(
1
a
; a|q

)
;

	n

(
a;
1
a
|q
)
= a	n

(
1
a
; a|q

)
; n¿1;


n

(
a;
1
a
|q
)
= a2
n

(
1
a
; a|q

)
; n¿1;

	0

(
a;
1
a
; c; q

)
+

q(1− a)(c − 1)
q− 1

= a	0

(
1
a
; a; c; q

)
;

	n

(
a;
1
a
; c; q

)
= a	n

(
1
a
; a; c; q

)
; n¿1;


n

(
a;
1
a
; c; q

)
= a2
n

(
1
a
; a; c; q

)
; n¿1: (21)

	n(a; b|q) and 
n(a; b|q) (resp. 	n(a; b; c; q) and 
n(a; b; c; q)) denote the coe3cients of the three-term
recurrence relation (see (1) satis&ed by the little q-Jacobi (resp. big q-Jacobi) polynomials. The
coe3cients 	n and 
n of the three-term recurrence relation satis&ed by the monic q-classical polyno-
mials family, orthogonal with respect to the weight � are given in terms of the polynomials � and
 appearing in Eq. (4) by [2,10,13]

	n(q; �;  ) =−�((−(q+ 1)(−1 + �)(−q+ �)�1 − (q− 1)(−�q2 + q− q�+ �2) 0)�2

−�(q− 1)(q+ 1)(−1 + �) 1�1 − �2(q− 1)2 0 1)=

((−1 + �)(�+ 1)�2 + �2(q− 1) 1)(−(−q+ �)(q+ �)�2 − �2(q− 1) 1); (22)


n(q; �;  ) =−(−1 + �)((−�+ q2)�2 − (q− 1)� 1)((−q+ �)2(q+ �)2�0�2
2

+(−q�(−q+ �)2�2
1 − q�(q− 1)(−q+ �)2 0�1

+ 2�2(q− 1)(−q+ �)(q+ �) 1�0 + q2�2(q− 1)2 2
0)�2

− �2q(q− 1)(−q+ �) 1�2
1 − q�3(q− 1)2 0 1�1

+ �4(q− 1)2 2
1�0)�q=(((−q+ �2)�2 + �2(q− 1) 1)

((q− �)(q+ �)�2 − �2(q− 1) 1)2((q3 − �2)�2 − �2(q− 1) 1)) (23)

with �(x) = �2x2 + �1x + �0;  (x) =  1x +  0:
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2.4.2. Classical continuous orthogonal polynomials
Since limq→1 Dq = d=dx, from Eqs. (13)–(15) and by formal limit processes, we recover the

following known results [25]:
1. The co-recursive P̃

[�]
n of the polynomial P̃n, orthogonal with respect to classical weight �̃

satisfying (�̃�̃)′ =  ̃ �̃ (degree of �̃62 and degree of  ̃ = 1) satis&es [25]

Q∗; c
2; n−1(P̃

[�]
n ) =

(
(2�̃

′ − 2 ̃ − �(�̃
′′ − 2 ̃

′
))

d
dx

+ (�̃
′′ −  ̃

′
)Id

)
P̃n; (24)

where

Q∗; c
2; n−1 = �̃

d2

dx2
+ (2�̃

′ −  ̃ )
d
dx

+ (�̃n −  ̃
′
+ �̃

′′
) (25)

with �̃n =−n((n− 1)(�̃
′′
=2) +  ̃

′
).

The operator Q[�; c]
2; n annihilating the right-hand side of (24) is obtained from the second derivative of

(24) and using the second-order di$erential equation satis&ed by the classical continuous orthogonal
polynomials P̃n(

�̃
d2

dx2
+  ̃

d
dx

+ �̃nId

)
P̃n = 0 (26)

in order to eliminate (d2=dx2)P̃n in the equation obtained from derivation of (24). The fourth-order
di$erential equation satis&ed by P̃

[�]
n reduces in the factorized form as

Q[�; c]
2; n Q∗; c

2; n−1[P̃
[�]
n ] = 0; (27)

where Q[�; c]
2; n is a second-order linear di$erential operator with polynomial coe3cients. The operators

Q∗; c
2; n−1 and Q[�; c]

2; n for the co-recursive Laguerre polynomials (�̃(x) = x;  ̃ (x) = 1 + � − x) are given
by

Q∗; c
2; n−1 = x

d2

dx2
+ (x + 1− �)

d
dx

+ (n+ 1)Id; Q�; c
2; n = B2

d2

dx2
+ B1

d
dx

+ B0Id (28)

with

B2 = 4x(x − �+ �)2n+ x(x − 4x�+ 2x� + 2x2 + 2�+ 2�2 − 2� − 2��);

B1 =−4(x2 + x� − 2x�− ��− 2� + �2 + 2�)(x − �+ �)n

− 6x�2 + 6�x2 + x + 4�− 2��2 + 4�x�− 2x3 − x2 − 2x2� + 4x�

+6�2 − 4� + 2�3 − 5x�− 6��;

B0 = 4(x − �+ �)2n2 + (12�+ 2��+ 2x2 − 4�2 − 12� + 3x + 2�2 − 4x�− 2x�)n:

The fourth-order di$erence equation for the co-recursive Laguerre polynomials given above coin-
cide obviously with those obtained in [18] (with � replaced by −�) and in [25], checking carefully
because of few misprints already corrected in [28, p. 304].

2. For the Jacobi polynomials P̃n(�; 	; x),

�̃(x) = 1− x2;  ̃ (x) =−(�+ 	 + 2)x + 	 − �; �¿− 1; 	¿− 1; (29)
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the right-hand side of Eq. (24) vanishes when �+ 	 = 0 and � = �− 	 = 2�. We therefore deduce
the following relation between the Jacobi polynomials and it is co-recursive.

P̃
[2�]
n (�;−�; x) = P̃n(−�; �; x); −1¡�¡ 1: (30)

2.4.3. Classical discrete orthogonal polynomials
In this subsection we extend the result obtained for the co-recursive of q-classical orthogonal

polynomials to the co-recursive of classical orthogonal polynomials of a discrete variable by using
suitable change of variables and formal limit processes (for more details, see [10]).

• Di$erence equation linking classical discrete and its co-recursive
In the &rst step, we substitute in (13) and (14) �;  ; Pn and P[�]

n by T!=(1−q)
I�;T!=(1−q)

I ;
T!=(1−q) IPn and T!=(1−q) IP

[�]
n respectively; and use the relation [15,23]

T!=(1−q)Aq;! = GqT!=(1−q) (31)

to get an equation involving IPn and it’s co-recursive. The operators Ta and Aq;! are de&ned by
[10,23] TaP(x) = P(x + a); Aq;!P(x) = P(qx + !). In the second step we multiply the above
mentioned equation by T−!=(1−q) and take the limit of the last equation as q and ! go to one
and we recover the following result (see [10] for more details on this formal limit processes and
change of variables) obtained for the co-recursive of classical orthogonal polynomials of a discrete
variable [26].

Proposition 6 (Ronveaux et al. [26]). The co-recursive IP
[�]
n of the classical orthogonal polynomials

of a discrete variable IPn; orthogonal with respect to the discrete classical weight I� satisfying
"( I� I�) = I I�; where I� is a polynomial of degree at most two and I a :rst degree polynomial
satis:es:

( I�[1] + I [1])Q
∗; d
2; n−1[ IP

[�]
n (x; q)] = [ IedT+ IfdId] IPn(x; q) (32)

with

Q∗; d
2; n−1 = I�[2]T

2 − (2 I�[1] + I [1] − I�n)T+ ( I�+ I )Id;

Ied =

(
−
(

I�
′′

2
− I 

′
)

� − I�[1] − I [1] + I�[2]

)
(2 I�[1] + I [1] − I�n);

If d =
(
I�
′′
2− I 

′)
�(2 I�[1] + I [1])− I�[1]

I�[2] + ( I�+ I ) ( I�[1] + I [1]); (33)

where I�n =−n((n− 1)
I�′′

2 − I 
′
); I�[ j] ≡ I�(x + j); I [ j] ≡ I (x + j) and the operators " and T are

de:ned respectively by LP(x) = P(x + 1)− P(x);TP(x) = P(x + 1).

The factorized form of the fourth-order di$erence equation satis&ed by the co-recursive of the
classical discrete orthogonal polynomials P[�]

n

Q[�;d]
2; n Q∗; d

2; n−1P
[�]
n = 0 (34)
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is obtained by applying twice the operator T to (32) and using the second-order di$erence equation
satis&ed by the classical discrete orthogonal polynomials [24].

( I�"� + I "+ I�nId)Pn = 0 (35)

in order to eliminate the factor T2Pn appearing after applying the operator T to (32). Here, the
operator � is de&ned by �P(x) = P(x − 1) − P(x). Since the operator Q[�;d]

2; n is space consuming,
we give the di$erence equations for the Charlier case.

Example.

• For Charlier orthogonal polynomials c(a)n [24] (�(x)= x,  (x)=a− x, a¿ 0), the operators Q∗; d
2; n−1

and Q[�;d]
2; n are given, respectively, by

Q∗; d
2; n−1 = (x + 2)T2 − (x + 1 + a− n)T+ aId; Q[�;d]

2; n = D2T
2 + D1T+ D0Id

with

D0 = (R+ a+ 1) (� + 2a+ R) (� − 2 + 2a+ R)n2

+ (R+ a+ 1) (2R− 1) (� + 2a+ R) (� − 2 + 2a+ R)n+ (R+ a+ 1)

(2�Ra+ 2a+ 4Ra2 + �R2 + R3 + 2R− 3a2 − �a− 3R2 − 6Ra− �R+ 4R2a);

D1 =−(� + 1 + 2a+ R) (� − 2 + 2a+ R)n3

− 3R(� + 1 + 2a+ R) (� − 2 + 2a+ R)n2 + (−2− � + 6�Ra+ 2a�2

− 4a+ 8Ra2 + 3�R2 + 2R3 + �2R− R+ a2 + 8�a2 + �a+ 8a3

− 8a2R2 − 2R4 − 8R3a+ 5R2 + Ra− 2�2R2 − 8�R2a+ �2 + 6R2a

− 4�R3)n+ �Ra− 2a+ 7Ra2 + 2R3 − 2R+ a2 + 2�a2 + �a+ 4a3

− 4a2R2 − R4 − 4R3a+ R2 + Ra+ �R− 2�R2a+ 5R2a− �R3;

D2 =−a(� + 1 + 2a+ R) (� − 1 + R+ 2a)n2

− a(2R+ 1) (� + 1 + 2a+ R) (� − 1 + R+ 2a)n

− a(2�Ra+ 4Ra2 + �R2 + R3 − R+ a2 + �a+ 2Ra+ �R+ 4R2a);

where R = −x − a − 2: It should be mentioned that the above results on co-recursive Charlier
orthogonal polynomials coincide with those given in [19,26] (replace � by −� when comparing
our results with those obtained in [19]).

• For Hahn polynomials Hn(�; 	; N ; x) [24],

�(x) = x(N + �− x);  (x) =−(�+ 	 + 2)x + (	 + 1) (N − 1); �¿− 1; 	¿− 1; (36)

Ied = If d =0 when �+	=0 and �=N�. Since N is an integer and � a real number, the complex
number �, in this case, is real.

Proposition 7. The co-recursive Hahn family Hn(�;−�; N; x)[N�] belongs to the Hahn family and
obeys the relation

Hn(�;−�; N; x)[N�] = Hn(−�; �; N; x − �); −1¡�¡ 1: (37)
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Proof. The above relation is derived using the three-term recurrence relation satis&ed by the co-
recursive Hahn polynomials and the following relations between the coe3cients 	H

n (�; 	; N ) and

Hn (�; 	; N ) of the three-term recurrence relation (see (1)).

	H
0 (�;−�; N ) + N�= 	H

0 (−�; �; N ) + �;

	H
n (�;−�; N ) = 	H

n (−�; �; N ) + �; n¿1;


Hn (�;−�; N ) = 
Hn (−�; �; N ); n¿1; (38)

where 	H
n (�; 	; N ) and 
Hn (�; 	; N ) are the coe3cients of the three-term recurrence relation satis&ed

by the monic Hahn polynomials given in [1,24]

	H
n (�; 	; N ) =

�− 	 + 2N − 2
4

+
(	2 − �2) (�+ 	 + 2N )

4(�+ 	 + 2n) (�+ 	 + 2n+ 2)
;


Hn (�; 	; N ) =
n(N − n) (�+ n)(	 + n) (�+ 	 + n)(�+ 	 + N + n)
(�+ 	 + 2n− 1) (�+ 	 + 2n)2(�+ 	 + 2n+ 1)

:

It should be mentioned that the coe3cient 	H
0 (�;−�; N ) is given by

	H
0 (�;−�; N ) = lim

	→−�
	H
0 (�; 	; N ) =

(1− �) (N − 1)
2

:

2.5. Concluding remark

The di$erence equations involved in this work can be used to solve linearization problems and
compute connection coe3cients, etc. (see the Introduction), they can be used also in order to derive
the di$erence equations satis&ed by the co-recursive associated classical orthogonal polynomials.
Co-recursive associated orthogonal polynomials, which are de&ned as the co-recursive of the rth
associated orthogonal polynomials, are very useful (see, for example, [18,19]). Works on di$erence
equation for the co-recursive associated of all classical orthogonal polynomials are under investig-
ation [11].
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