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Abstract

This paper presents the implementation of a program transformation that removes square roots and di-
visions from functional programs without recursion, producing code that can be exactly computed. This
transformation accepts different subsets of languages as input and it provides a certifying mechanism when
the targeted language is Pvs. In this case, we provide a relation between every function definition in the
output code and its corresponding one in the input code, that specifies the behavior of the produced function
with respect to the input one. This transformation has been implemented in OCaml and has been tested
on different algorithms from the NASA ACCoRD project.

Keywords: Program transformation; Real number computation; Certifying transformation; Semantics
preservation

1 Introduction

Critical embedded systems, for example in aeronautics, require a very high level of

safety. One approach to produce code that may satisfy this required level of safety

is to verify its correctness in a proof assistant such as Pvs. The embedded systems

do not run the Pvs code but from the proved Pvs specification we can extract

a corresponding program in a real language that corresponds to this specification,

(see [6] for an example of extraction).

However, these embedded systems may also be cyber-physical systems and there-

fore have an extended use of mathematical operations over real numbers that can

not be computed exactly. In particular, this is a problem if we aim at satisfying

the usual requirements of embedded systems, i.e., bounded memory and bounded

loops. Indeed, some methods have been developed to compute exactly with real

numbers (see [2, 17, 18]) or sufficient precision using lazy evaluation (see [13]) but

these techniques usually involve unbounded behaviors. Therefore, for embedded
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systems, one usually rely on a finite representation and an analysis of rounding er-

rors via abstract interpretation or interval arithmetic [3,5]. Alternatively, one might

want to directly prove the correctness properties not on real numbers but on the

effective implementation the system uses, e.g., floating point numbers [1], but in

this case the proofs become very difficult since any mathematical intuition is lost.

Aeronautics embedded systems, for example, use square root and divisions in

conflict detection and resolution algorithms. These operations can not be exactly

computed in a finite memory since they may produce infinite sequence of digits.

This is not the case for addition and multiplication. These operations only produce

finite sequences of digits and therefore they can be exactly computed using some

fixed point representation. Determining the required size for this fixed point rep-

resentation is relatively easy in embedded systems with only bounded loops. This

paper presents a program transformation tool that eliminates these square roots

and divisions, this transformation allows the extracted code to be exactly com-

puted. The transformation also provides a certifying mechanism [16] to prove the

semantics preservation.

This paper focuses on the system description and the implementation aspects.

The theoretical aspects of this work are presented in [9–11]. The paper is structured

as follows. Section 2 focuses on the main implementation of the transformation in

OCaml. Section 3 describes the embedding of a subset of Pvs to provide the

certifying process. Section 4 introduces some of the technical details and features

of the transformation. Section 5 presents an application of this transformation to a

conflict detection algorithm from the ACCoRD 2 framework.

2 The OCaml Transformation

2.1 Language

The program transformation is defined in OCaml and operates on a language de-

noted MiniPvs that is a typed functional language containing numerical (R) and

Boolean constants, tests (if then else), pairs, the usual arithmetic operators +, −, ×
, /,

√
, the comparisons =, �=, >, ≥, <, ≤, Boolean operators (∧, ∨, ¬), variable

and function definition and application. Figure 1 presents the OCaml definition of

the language as an abstract datatype where uvar is the set of variable identifiers.

The semantics of such a language is quite straightforward. The expression Letin
x body scope is interpreted as let x = body in scope and Letfun f (v,tv) t body scope
is the definition of the function taking v as argument of type tv and returning an

element of type t, i.e., let f (v : tv) : t = body in scope; their semantics use call

by value. The detailed semantics of this language can be found in [11], Chapter

3 and 4. We denote �p�Env the semantics of a the program p in the environment

Env. Function and variable definitions allow for multi-variable definitions (e.g.,let
f (x,y) = x + y) but partial application is not allowed. This language can represent

a subset of many programming language and programs written in such a subset can

2 http://shemesh.larc.nasa.gov/people/cam/ACCoRD/
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t ype prog =
| Value o f uvar
| Const o f c on s t a n t s
| UOp o f unop ∗ prog
| BOp o f b inop ∗ prog ∗ prog
| Pa i r o f prog ∗ prog
| Fst o f prog
| Snd o f prog
| I f o f prog ∗ prog ∗ prog
| App o f uvar ∗ prog
| L e t i n o f va r ∗ prog ∗ prog
| Le t fun o f uvar ∗ ( va r ∗ t y p e s ) ∗ t y p e s ∗ prog ∗ prog

type unop =
| Sqr t | Umin | Neg

type b inop =
| Plus | Times | Div | And | Or
| Neq | Eq | Gt | Geq | Lt | Leq

type va r =
| Uvar o f uvar | Pa i r v a r o f va r ∗ va r

Fig. 1. MiniPvs Abstract Syntax

be translated using our transformation by building an input and output interfaces

(i.e., a parser and a pretty printer).

2.2 Transformation Specification

The goal of this transformation is to remove square roots and divisions from the

programs defined in this language. The transformation of a program relies on 2

distinct steps.

The first one is the transformation of all the variable definitions and functions, to

ensure that the values of variables or function calls that may appear in an expression

do not depend on square roots or divisions. This transformation relies on an anti-

unification algorithm to partially inline the variable and function definitions as in

the following example:

let x =
if F then a+

√
b · c+ d

else e · f/(g + h)
in SC

−→
let (x1,x2,x3) =
if F then (a, b · c+ d, 1)

else (e · f, 0, g + h)
in SC[x := (x1 +

√
x2)/x3]

The anti-unification problem introduced independently by Reynolds [15] and Plotkin

[14] in 1970 is the dual of the unification problem. Given two terms t1 and t2, an

anti-unification algorithm computes a term t and two substitutions σ1 and σ2 such

that tσ1 = t1 and tσ2 = t2. In the previous example, the term (x1 +
√
x2)/x3

(denoted t) is a template of a +
√
b · c+ d and e · f/(g + h) since we have the
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following equalities:

t[x1 
→ a; x2 
→ b · c+ d; x3 
→ 1] = a+
√
b · c+ d

t[x1 
→ e · f ; x2 
→ 0; x3 
→ (g + f)] = e · f/(g + f)

The second step of the transformation is the elimination of square roots and

divisions in Boolean expressions. It relies on the succesive application of simple

transformation rules for comparisons between arithmetic expressions that eliminate

all the square roots and divisions. These rules relies on usual equivalence of such

comparisons, e.g.

p · √q = r ⇐⇒ p · r ≥ 0 ∧ p2 · q = r2

a/b > c ⇐⇒ b > 0 ∧ a > b · c ∨ b < 0 ∧ a < b · c

Of course we can not remove square roots and divisions from all programs, (e.g.,

the program sqrt(2) will still have to return a rounded value of
√
2). However, when

square roots and divisions are eliminated from all the Boolean expressions and all

the definitions, the Boolean values of such a transformed program can be exactly

computed. Thus the control flow of the program is protected from any rounding.

Avoiding rounding errors in the control flow of a program prevents divergence

in its behavior. An error in the condition of an if then else statement can provoke

the execution of a completely different syntactic part of the program and therefore

provoke huge errors between the effective and the expected result. For example, if

executed with a standard implementation of floating point numbers, the following

program would return 1000:

if
√
2 ∗ √2 > 2 then 1000 else 0

This kind of divergence is no longer possible if the Boolean expressions deciding the

control flow of the program are computed exactly.

The transformation of Boolean expressions is described in [10] and the transfor-

mation of definitions using anti-unification and partial inlining is described in [9].

This transformation preserves the semantics of the program in every environment

where the semantics does not fail due to division by zero or square root or negative

numbers.

Definition 2.1 Semantics preservation Let tr be a program transformation

transformation and let �p�Env be the semantics of p in the environment Env (the

environment maps identifier to values); tr preserves the semantics if and only if for

all programs p and p’ be such that p’ = tr(p):

∀ Env, �p�Env �= Fail =⇒ �p�Env = �p’�Env

We do not consider the cases when the input program fails since we do not want

to throw explicit errors due to division by zero in the input program that do not

make sense in the output. Moreover the programs our transformation target have

already been proved free of such errors (in PVS it is not allowed to write sqrt(x)

without proving that this x is positive).
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PVS

MiniPVS

thy.pvs

Extraction

(PVSio + Lisp)

thy-elim.pvs

MiniPVS pretty

printer

(OCaml)

Transformation

(OCaml)

Fig. 2. PVS theory transformation

The semantics preservation has been proven in Pvs for the Boolean expression

transformation but the anti-unification is not certified and thus neither are the vari-

able and function definitions transformations. However, while an anti-unification

algorithm is not easy to be proven correct, its result is quite easy to check so we can

use this property to define a certifying transformation. Instead of formally prov-

ing that the transformation algorithm is correct we provide with each transformed

program, a proof that this program is equivalent to the input program.

3 Transformation of Pvs specifications

In this section, we present how we have been able to use the transformation defined

in OCaml on the language described in Figure 1, i.e., MiniPvs, to transform Pvs

specifications. The language of Pvs is much more complex that MiniPvs, however

this language embeds enough constructions to represent the subset of the Pvs lan-

guage that includes non-recursive function definitions and real valued expressions.

Thus the first step of the transformation is to translate Pvs specification to the

prog type of OCaml. In particular, we have to erase most of the logical part of

the Pvs specifications to make it fit the prog type. We are not interested in all

the sub-typing predicates that are encoded in the type of the Pvs functions. This

process is similar to the usual extraction of code in proof assistants (e.g., [7]). This

extraction produces a program in the concrete syntax corresponding to MiniPVS

that the OCaml program is able to process as an input.

The first step of the transformation is achieved by using the PVSio utility of

Pvs [8]. PVSio is a package that extends the ground evaluator with a prede-

fined library of imperative programming language features such as side effects, un-

bounded loops, input/output operations, floating point arithmetic, exception han-

dling, pretty printing, and parsing. This package allows us to access the underlying

Lisp structure representing the Pvs code, and therefore to print the correspond-

ing program in MiniPVS that can be parsed by the OCaml implementation. The

transformation scheme of a Pvs theory is presented in Figure 2
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However, there is one subtle difference between Pvs and MiniPvs. On one

side, in MiniPvs, every definition has a scope and thus every program is complete.

This allows us to specify that the transformation is correct by stating that the

semantics of such a program is preserved, as stated in Definition 2.1. On the other

side, a Pvs file is a sequence of definitions of variables, functions and lemmas

without any scope that would allow us to state the semantics preservation. In [9],

the mechanism introduced to transform definitions in this program transformation,

provides a correctness relation between every input definition and its corresponding

definition in the output program. Thus, we extend the MiniPVS language by adding

a constructor that adds a sub-typing predicate to every transformed definition. :

| L e t f s t o f uvar ∗ ( va r ∗ t y p e s ) ∗
( va r ∗ t y p e s ∗ prog ) ∗ prog ∗ prog

This constructor has to be interpreted in the following way, Letfst f (u,tu) (u,tu,pu)
body scope represents the function definition:

let f ( v : tv ) : { u : tu | P(v,u) } = body in scope

that is, a function taking argument v of type tv and returning an element of type tu

such that P (v, f(v)). {x : T | P (x)} denotes the subtype of T of elements satisfying

P . This notation is similar to the Pvs syntax for subtypes. Thus the subtyping

predicate will be used to encode the relation between the definition of the output

program with respects to the corresponding definition of the input one.

Example 3.1 The following Pvs function and its call:

f(x : real ) : real = (x - 1) / (x + 1)

... f(c + sqrt(d))

are transformed into the following code:

f_e(x1 ,x2 : real) : {z1 , z2 ,z3 : real |
(z1 + sqrt(z2)) / (z3 + sqrt(z2)) = f(x1 + sqrt(x2)) } =

(x1 -1, x2, x1+1)

... f_e(c,d)

In a more general way, the transformation of a Pvs function definition has the

following form:

f(x : T1 | P(x)) : { y : T2 | Q(y) } = ...

is transformed into a corresponding definition:

f_e(x’ : T1 ’) : {y’ : T2 ’ | g_o(y’) = f(g_i(x’)) } = ...

The predicate g o(y’) = f in(g i(x’)) is the relation specifying the behavior of

the output function (f out) relatively to the one of the input (f in). g i(x’) and

g o(y’) are terms computed by the transformation algorithm that depends on the

underlying anti-unification process (see [9] for details). The function f in appearing

in the predicate is the one from the input program. The input program is imported

into the transformed one to verify that the transformation is correct. The variables
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defined in the input program are only used in the subtyping predicates not in the

executable part of the transformed program. One can notice that in general the

input and output types of the input and output functions do not match. However

the transformation of Boolean functions does not change the output type, in such

a case, the transformation will have the following shape:

Example 3.2 Given Pvs function returning a Boolean expression:

f(x : T1 | P(x)) : { y : bool | Q(y) } = ...

Its corresponding transformed definition has the following form :

f_e(x’ : T1 ’) : {y’ : bool | y’ = f(g_i(x’)) } = ...

The input type can still be transformed since the input can be numerical values and

thus this function can be applied to square roots or divisions which would enforce

the change of the input type.

Embedding a correctness lemma for each transformed definition allows us to

transform usual Pvs theories that consist of sequences of definitions and to prove

the equivalence without requiring a returned expression (a scope for this defini-

tions), as it is required for the MiniPvs language (in this language every definition

has a scope). The problem of the absence of scope in a real Pvs specification is

overcome by using a simple fresh variable as the scope of the corresponding MiniPvs

program. The definitions being transformed and the correctness being established

independently from the scope transformation, the scope transformation is simply

the identity (a free variable is transformed into itself) and thus we can erase this

artificial scope when we print the output Pvs program.

The only step left to formally verify that the transformed program is correct is to

prove the lemmas corresponding to the subtyping predicates that are generated in

the output program. Pvs already decomposes the different cases that might appear

in the function bodies (corresponding to if then else expressions), thus the only

lemmas that we need to prove are equalities of arithmetic expressions containing

square roots and divisions e.g.,

Example 3.3 The proof of the subtyping predicates from example 3.1 relies on the

following equality:

((x1 - 1) + sqrt(x2))/((x1 + 1) + sqrt(x2)) = f(x1 + sqrt(x2))

In most cases, a simple Pvs strategy for arithmetic such as (grind-reals) is

enough. The more complicated cases might require first an elimination of square

roots and divisions appearing in these predicates. This can be done using the Pvs

strategy (elim-sqrt) that eliminates square roots and divisions from inequalities

in the proof context of PVS. This strategy is derived from the certified elimination

of square roots and divisions in Boolean expressions as described in [12]. This tools

lift this transformation to the program level by allowing the direct treatment of

variable and function definitions and certifying it.

The general principle of the transformation code being outlined, let us now focus

on the different features of the OCaml transformation.
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4 The transformation of MiniPvs

The OCaml implementation of the transformation embeds a few options that aim

at reducing the size of the produced code in some particular cases.

4.1 Rules for Boolean expressions

As mentioned previously the program transformation relies on a square root and

division elimination in Boolean expressions. This elimination is described in [10]

but in some places different rules can be preferred. For example the elimination of

divisions in a comparison can be done using case distinction or by using the square

of the denominator, e.g.,

Example 4.1 Assuming B �= 0, the following equivalences hold:

A/B > C ⇐⇒ (B > 0 ∧A > B × C) ∨ (B < 0 ∧A < B × C) (1)

A/B > C ⇐⇒ A×B > C ×B ×B (2)

Elimination (1) produces smaller arithmetic terms, thus the size of the fixed-point

representation for exact computation with +,×,− is smaller whereas rule (2) pro-

duces less comparisons and smaller formulas.

Depending on its objectives, the user might prefer one elimination scheme to

another for division elimination, thus the choice of the rule is an option of the

transformation.

In a similar way the elimination of square root can use variable definition inside

Boolean expressions to reduce the size of the output term, since its complexity is

exponential in the number of square roots in the expression. However the user

might want to use the transformation only for expressions built with Boolean and

arithmetic operators and restrict the transformation to such an expression language.

Thus the transformation provides two schemes for square root elimination.

4.2 Transformation of comparison operators

The elimination of square roots and divisions in Boolean expressions having an

exponential complexity, the transformed expressions greatly decrease the readability

of the output code, these eliminations producing large Boolean expressions. In order

to resolve this issue, we propose to handle this complexity in a different file by

defining template specific comparison expressions. The transformation of functions

using anti-unification is efficient regarding the size of the produced code and the

equivalence lemmas are relatively easy to prove using the (elim-sqrt) strategy.

Therefore we decided to use this function transformation in order to factorize the

large Boolean expressions produced by the elimination of square roots in Boolean.

This is done by first replacing the comparisons operators in the input program by

functions that have the same semantics before applying the transformation, e.g.,

the program from Figure 3 is transformed into the one in Figure 4.
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f(x1 ,y1 : posreal) : bool = x1 + sqrt(y1) * y1 > 0

g(x,y, z : posreal) : real =
IF z + sqrt(y + x) > 1 OR f(y,z)
THEN y
ELSE sqrt(x) + y
ENDIF

Fig. 3. Program using > operator

gt1(gt1l ,gt1r : real) : bool = gt1l > gt1r

gt2(gt2l ,gt2r : real) : bool = gt2l > gt2r

f(x1 ,y1 : posreal) : bool = gt1(x1 + sqrt(y1) * y1 ,0)

g(x,y, z : posreal) : real =
IF gt2(z + sqrt(y + x),1) OR f(y,z)
THEN y
ELSE sqrt(x) + y
ENDIF

Fig. 4. Program with > declared as function

This pre-processing produces one comparison function per comparison operator

used in the program. This process is required to produce comparisons function

whose specification exactly match the required use whereas creating only one com-

parison function would produce a transformed function whose specification has to

match all the use cases. The transformation of Boolean function being the cause of

the code size blowup we want to avoid such a generic function that would have a

huge definition body.

However since we create a new function for each comparison operator in the

input program we introduce some redundancy. In program in Figure 3 both of the

comparisons are applied to expressions that use only one square root. Thus both

of the comparisons have the following form: t + u.
√
v > 0 with t, u and v being

square root and division free expressions. Therefore the transformed functions cor-

responding to gt1 and gt2 will have the same specification and definition (modulo

α-equivalence), thus we can only use one of them and the program is re-factorized

in order to only use one of the equivalent functions. Our transformation produces

the program in Figure 5 that only contains one comparison function, namely gt0 e

taking four arguments. This function that has the following specification encoded

in its type:

gt0 e(x, y, z, sq)⇔ x+ y
√
sq > z

The definition body of this function is much larger than the one of the input func-

tion (i.e., x > y), however the result is now computed without any square root

or division. Therefore this transformation of Boolean expressions with functions

requires only an automatic pre and post process of the transformation:

• Before applying the main transformation, replace every occurrence of the com-

parison operators by a function whose definition is this operator.

• Apply the main transformation.

• For all the transformed functions corresponding to the comparison operator, fac-

torize the ones that have the same specification.
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gt0_e(gt0_1_1 , gt0_1_2 , gt0_2 , sq_2 : real) :
{res : bool |

res = gt0_1_1 + gt0_1_2 * sqrt(sq_2) > gt0_2} =
LET (at_p , at_r , at_rel , at_neq) =
(gt0_1_2 > 0, gt0_1_1 - gt0_2 > 0,
gt0_1_2*gt0_1_2*sq_2 -

(gt0_1_1 - gt0_2 )*( gt0_1_1 - gt0_2) > 0,
gt0_1_2*gt0_1_2*sq_2 -

(gt0_1_1 - gt0_2 )*( gt0_1_1 - gt0_2) /= 0)
IN

at_p AND at_r OR
at_p AND at_rel OR
at_r AND NOT at_rel AND at_neq

f_e(x1 , y1 : real) : {res : bool | res = f((x1 , y1))} =
gt0_e((x1 , y1 , 0, y1))

g_e(x, y, z : real) : {g_1 , g_2 , sq_0 : real |
g_1 + g_2 * sqrt(sq_0) = g((x, y, z))} =

IF gt0_e((z, 1, 1, y + x)) OR f_e((y, z))
THEN (y, 0, 0)
ELSE (y, 1, x)
ENDIF

Fig. 5. Transformed program with comparison function

This transformation greatly reduces the size of the output file since the large expres-

sions corresponding to the transformation of Boolean expression are now factorized

in functions. Moreover these new comparisons functions can also be generated in

a separate file and then imported in the transformed program and shared between

different transformed program. In this way the transformed programs have exactly

the same structure as the input one.

In order to illustrate our transformation on a real example, we present in Section

5 the transformation of a real Pvs program for conflict detection in two dimensions.

5 Application

A complete Pvs specifications can be processed by the OCaml implementation of

the transformation linked with PVSio. In this section we present the transformation

of a conflict detection algorithm, namely cd2d, that has been developed by NASA

in the ACCoRD framework. This algorithm aims at detecting loss of separation

between two aircrafts in a two-dimensional space. A formal verification of this al-

gorithm assuming floating point arithmetic has been presented in [4], the algorithm

is described in that paper but we recall its main characteristics.

Coordinates of the aircraft are represented relatively thus, given s1 = (x1, y1)

and s2 = (x2, y2) the positions in two dimension of the aircrafts, s = (x1−x2, y1−y2)
represents the relative distance between these aircrafts. The aircrafts are supposed

to have a constant speed during at least a lookahead time and their velocities are

also represented relatively in a two-dimensional space v = (vx1 − vx2, vy1 − vy2).

Given a distance D, a loss of separation occurs when the aircraft are too close,

this means that their distance is less than D:

loss?(s)⇐⇒
√
s2x + s2y < D

And a conflict occurs when a loss of separation is going to occur before the end of
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cd2d : THEORY
BEGIN

IMPORTING reals@sqrt , Elim

zero_vect2 ?( zerov : [real ,real]) : bool =
zerov ‘1 = 0 AND zerov ‘2 = 0

det(sdet ,vdet : [real ,real]) : real =
sdet ‘1 * vdet ‘2 - sdet ‘2 * vdet ‘1

horizontal_los ?( horizv : [real ,real], horizD : real) : bool =
horizv ‘1 * horizv ‘1 + horizv ‘2 * horizv ‘2 < horizD * horizD

minmax(maxv1 ,maxv2 , minv : real) : real =
LET maxi = IF maxv1 > maxv2 THEN maxv1 ELSE maxv2 ENDIF IN

IF maxi < minv THEN maxi ELSE minv ENDIF

maxmin(minv1 ,minv2 ,maxv : real) : real =
LET mini = IF minv1 < minv2 THEN minv1 ELSE minv2 ENDIF IN

IF mini > maxv THEN mini ELSE maxv ENDIF

Delta(sDelt ,vDelt : [real ,real], DDelt : real) : real =
(DDelt * DDelt) * (vDelt ‘1 * vDelt ‘1 + vDelt ‘2 * vDelt ‘2) -
det(sDelt ,vDelt )*det(sDelt ,vDelt)

Theta_D(sThe ,nzvThe : [real ,real], eps , Dthe : real):real =
LET a = (nzvThe ‘1 * nzvThe ‘1 + nzvThe ‘2 * nzvThe ‘2),

b = sThe ‘1 * nzvThe ‘1 + sThe ‘2 * nzvThe ‘2,
c = (sThe ‘1 * sThe ‘1 + sThe ‘2 * sThe ‘2) - Dthe * Dthe

IN
(-b + eps*sqrt((b*b) - a*c))/a ;

dtct_2D(s,v : [real ,real],B,T,D,Entry ,Exit : real) : [real ,real] =
IF zero_vect2 ?(v) AND horizontal_los ?(s,D)
THEN
(B,T)

ELSIF Delta(s,v,D) > 0 THEN
LET tin = Theta_D(s,v,Entry ,D),

tout = Theta_D(s,v,Exit ,D)
IN

(minmax(tin ,B,T),maxmin(tout ,T,B))
ELSE
(B,B)

ENDIF

detect ?(st, vt : [real ,real], Bt, Tt, Dt , Entryt , Exitt : real) : bool =
LET (tint ,toutt) = dtct_2D(st ,vt ,Bt ,Tt ,Dt ,Entryt ,Exitt) IN

tint < toutt

END cd2d

Fig. 6. cd2d Conflict Detection Program

a lookahead time T :

conflict?(s, v)⇐⇒ ∃ t ≤ T, loss?(s+ t · v)

Where + and · are the usual addition and constant multiplication in R
2. A function

named dtct 2D is defined in cd2d, it computes the interval of time where the loss of

separation occurs as described by the predicates in Figure 7 that have been proven

in Pvs.

In order to be able to transform the original program we had to clean it from all

the lemmas and theorems to only keep the computation part. The Pvs specification

of the conflict detection algorithm as defined in the ACCoRD system is presented

in Figure 6.

The only square roots and divisions of this program are in the Theta D function,

however in the body of the dtct 2D function, the result of Theta D is then used by
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dtct_2D_correct : THEOREM
LET (tin ,tout) = dtct_2D(s,v) IN

tin < t AND t < tout IMPLIES horizontal_los ?(s+t*v)

dtct_2D_complete : THEOREM FORALL (s,v)
LET (tin ,tout) = dtct_2D(s,v) IN

horizontal_los ?(s+t*v) IMPLIES
tin <= t AND t <= tout AND tin < tout

conflict_dtct_2D : THEOREM FORALL (s,v)
LET (tin ,tout) = dtct_2D(s,v) IN

conflict_2D ?(s,v) IFF tin < tout

Fig. 7. cd2d correctness lemmas

cd2d_elim : THEORY
BEGIN

IMPORTING cd2d , cd2d_operators , reals@sqrt , Elim

zero_vect2?_e(zerov : [real ,real]) :
{res : bool | res = zero_vect2 ?(zerov)} =

zerov ‘1 = 0 AND zerov ‘2 = 0

det_e(sdet , vdet : [real ,real]) :
{det : real | det = det((sdet , vdet ))} =

sdet ‘1 * vdet ‘2 - sdet ‘2 * vdet ‘1

horizontal_los?_e(horizv : [real ,real], horizD : real) :
{res : bool | res = horizontal_los ?(( horizv , horizD ))} =

horizv ‘1 * horizv ‘1 + horizv ‘2 * horizv ‘2 - horizD * horizD < 0

minmax_e(maxv1_n_1 , maxv1_n_2 , maxv1_d , maxv2 , minv , sq_4 : real) :
{minmax_n_1 , minmax_n_2 , minmax_d , sq_6 : real |

(minmax_n_1 + minmax_n_2 * sqrt(sq_6)) / minmax_d =
minmax ((( maxv1_n_1 + maxv1_n_2 * sqrt(sq_4)) / maxv1_d ,

maxv2 ,
minv ))} =

LET (maxi_n_1 , maxi_n_2 , maxi_d , sq_5) =
IF gt0_e ((maxv1_n_1 , maxv1_n_2 , maxv1_d , maxv2 , sq_4))
THEN (maxv1_n_1 , maxv1_n_2 , maxv1_d , sq_4)
ELSE (maxv2 , 0, 1, 0)
ENDIF

IN
IF lt1_e ((maxi_n_1 , maxi_n_2 , maxi_d , minv , sq_5))
THEN (maxi_n_1 , maxi_n_2 , maxi_d , sq_5)
ELSE (minv , 0, 1, 0)
ENDIF

maxmin_e(minv1_n_1 , minv1_n_2 , minv1_d , minv2 , maxv , sq_1 : real) :
{maxmin_n_1 , maxmin_n_2 , maxmin_d , sq_3 : real |

(maxmin_n_1 + maxmin_n_2 * sqrt(sq_3)) / maxmin_d =
maxmin ((( minv1_n_1 + minv1_n_2 * sqrt(sq_1)) / minv1_d ,

minv2 ,
maxv ))} =

LET (mini_n_1 , mini_n_2 , mini_d , sq_2) =
IF lt1_e ((minv1_n_1 , minv1_n_2 , minv1_d , minv2 , sq_1))
THEN (minv1_n_1 , minv1_n_2 , minv1_d , sq_1)
ELSE (minv2 , 0, 1, 0)
ENDIF

IN
IF gt0_e ((mini_n_1 , mini_n_2 , mini_d , maxv , sq_2))
THEN (mini_n_1 , mini_n_2 , mini_d , sq_2)
ELSE (maxv , 0, 1, 0)
ENDIF

Fig. 8. Transformed cd2d Pt. 1

the minmax and maxmin functions. Therefore, the results of square root and division

operations would propagate to these other functions during the execution.

The OCaml implementation of the transformation of programs with function

definitions with the subtype predicate generation outlined in Section 3 transforms

the Pvs program from Figure 6 into the program in Figures 8 and 9. The compar-
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Delta_e(sDelt , vDelt : [real ,real], DDelt : real) :
{Delta : real | Delta = Delta ((sDelt , vDelt , DDelt ))} =

DDelt * DDelt * (vDelt ‘1 * vDelt ‘1 + vDelt ‘2 * vDelt ‘2) -
det_e ((sDelt , vDelt )) * det_e ((sDelt , vDelt ))

Theta_D_e(sThe , nzvThe : [real ,real], eps , Dthe : real) :
{Theta_D_n_1 , Theta_D_n_2 , Theta_D_d , sq_0 : real |

(Theta_D_n_1 + Theta_D_n_2 * sqrt(sq_0)) / Theta_D_d =
Theta_D ((sThe , nzvThe , eps , Dthe ))} =

LET a =
nzvThe ‘1 * nzvThe ‘1 + nzvThe ‘2 * nzvThe ‘2

IN
LET b =

sThe ‘1 * nzvThe ‘1 + sThe ‘2 * nzvThe ‘2
IN
LET c =

sThe ‘1 * sThe ‘1 + sThe ‘2 * sThe ‘2 - Dthe * Dthe
IN (-b, eps , a, b * b - a * c)

dtct_2D_e(s, v : [real ,real], B, T, D, Entry , Exit : real) :
{dtct_2D1_n_1 , dtct_2D1_n_2 ,

dtct_2D1_d , dtct_2D2_n_1 ,
dtct_2D2_n_2 , dtct_2D2_d , sq_7 , sq_8 : real |

(( dtct_2D1_n_1 + dtct_2D1_n_2 * sqrt(sq_8)) /
dtct_2D1_d ,

(dtct_2D2_n_1 + dtct_2D2_n_2 * sqrt(sq_7)) /
dtct_2D2_d) =

dtct_2D ((s, v, B, T, D, Entry , Exit ))} =
IF zero_vect2?_e(v) AND horizontal_los?_e((s, D))
THEN (B, 0, 1, T, 0, 1, 0, 0)
ELSE
IF Delta_e ((s, v, D)) > 0
THEN
LET (Theta_D_n_1 , Theta_D_n_2 , Theta_D_d , sq_0) =

Theta_D_e ((s, v, Entry , D))
IN
LET (new_Theta_D_n_1 , new_Theta_D_n_2 , new_Theta_D_d , new_sq_0) =

Theta_D_e ((s, v, Exit , D))
IN
LET (maxmin_n_1 , maxmin_n_2 , maxmin_d , sq_3) =

maxmin_e (( new_Theta_D_n_1 , new_Theta_D_n_2 ,
new_Theta_D_d , T, B, new_sq_0 ))

IN
LET (minmax_n_1 , minmax_n_2 , minmax_d , sq_6) =

minmax_e (( Theta_D_n_1 , Theta_D_n_2 , Theta_D_d , B, T, sq_0))
IN (minmax_n_1 , minmax_n_2 , minmax_d , maxmin_n_1 ,

maxmin_n_2 , maxmin_d , sq_3 , sq_6)
ELSE (B, 0, 1, B, 0, 1, 0, 0)
ENDIF
ENDIF

detect?_e(st , vt : [real ,real], Bt, Tt , Dt , Entryt , Exitt : real) :
{res : bool | res = detect ?((st, vt , Bt , Tt, Dt, Entryt , Exitt ))} =

LET (dtct_2D1_n_1 , dtct_2D1_n_2 , dtct_2D1_d ,
dtct_2D2_n_1 , dtct_2D2_n_2 , dtct_2D2_d , sq_7 , sq_8) =

dtct_2D_e ((st, vt, Bt , Tt , Dt, Entryt , Exitt))
IN lt3_e (( dtct_2D1_n_1 , dtct_2D1_n_2 , dtct_2D1_d ,

dtct_2D2_n_1 , dtct_2D2_n_2 , dtct_2D2_d , sq_8 , sq_7))
END cd2d_elim

Fig. 9. Transformed cd2d Pt. 2

isons are replaced by functions such as gt 0 e or lt 1 e used in the minmax and

maxmin function. Their use is factorized since both minmax e and maxmin e use the

same comparison functions. These comparison functions are defined in a separate

file, namely cd2d operators.pvs, as introduced in Section 4.2.

As one can notice, the number of lines in the output program is more than twice

the length of the input one. However this is mainly due to the length of the sub-

typing predicates associated to the transformed functions. All of these subtyping

predicates can be proven by first unfolding the functions of the input program and

then using the (grind-reals) strategy.
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This transformed program is therefore equivalent to the input one according

to the type predicates embedded in the type of the functions and it does not use

square roots or divisions anymore except in these predicates. In particular, the last

function, detect? e, returning a Boolean value has not only the same signature but

also the same behavior then the corresponding input function, namely detect?, but

its result does not depend on any square root or division computation. Therefore,

being able to construct an exact implementation of real numbers computations

with addition, subtraction and multiplication would enable an exact execution of

this program.

Conclusion

We have presented a program transformation that eliminates square roots and divi-

sions from straight line programs in order to allow exact computation with addition

and multiplication. This transformation embeds a certifying mechanism that is

used to prove the semantics preservation between the definitions of the input and

the output program. Eliminating square roots and divisions in a proof assistant also

allows the use of some decision procedure that were not handling such operations

in a first place.

Future work on this transformation includes the extension of the language this

transformation applies to by including loops and more generally some kind of re-

cursion that are not supported by the anti-unification and inlining approach. The

transformation of Pvs types could also be improved by transforming the Pvs sub-

types predicates of the input programs into the equivalent ones about the definitions

of the output program.
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