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Algorithms for the evaluation of polynomials on a hypothetical computer with k 
independent arithmetic processors are presented. It is shown that, provided the 
degree of the polynomial to be evaluated exceeds k[Iog2 k], an algorithm given is within 
one time unit of optimality. 

I. INTRODUCTION 

The usual algorithm for evaluating a polynomial is Horner's rule, where to calculate 

p ( x )  = an X  n + "'" + a o 

we compute successively 

Pn ~" an 

P ~ = P i + l " x + a i  for i = n - -  1 ..... 0. 

Then p(x) ~ Po. This method is essentially sequential in that for each arithmetic 
operation at least one of its arguments is computed only at the immediately preceding 
step. In this paper we shall investigate algorithms for polynomial evaluation which 
allow a large amount of parallelism. 

This problem has previously been reported on by Estrin [1] and Dorn [2] and 
Muraoka [3]. The work of Estrin and Dorn is summarized by Knuth [4]. 
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Estrin's algorithm computes p(x)  as 

p(x) = q(x) x~"/~'+~ + r(x), 

where 

q(x) = a,~x"/~ + "" + a(./2)+ t 

and 

r(x) = a./~x"/s + "'" + a o 

and then computes q(x) and r(x) similarly by a binary splitting. Thus it starts by 
computing 

nix + ao , aax + as ,... 

and then 

(a3x + as) x ~ + (alx + ao),... , etc. 

I f  an unlimited number of processors are available, this algorithm runs in time about 
2 log n. 

Dorn gives an algorithm for the "k-th order Homer ' s  rule" which computes 

qo(X ~) = ao + akx ~ + a2kx 2k + "" ,  

ql(X k) =- a 1 + ak+l  x k  -~- . . . ,  

and then 

qk-l(xk) = ak-1 + ae+k-lx k + " " ,  

p(x) = qo(x~) + xql(x~) + ... + x~-%_~(x~). 

With k processors this algorithm takes time at least 2n/k + 2 log k. Dorn also makes 
the point that if the parallel computer has only one memory and only one of the 
arithmetic units may have access to the memory at any given time, then this is a serious 
limitation on the number of processors which can be usefully employed. 

II. ABSTRACT FORMULATION 

We shall assume that we have available k identical arithmetic processors, each of 
which can perform any one of the binary operations of + ,  - - ,  •  or + in unit time. 
For this study we ignore all problems of memory access and programming to work 
within the following abstract framework. 

A k-computation from S O , where S O is a set of real numbers, is a sequence of sets 
$1, $2 .... such that for each i >~ O, 

S~+l = Si u {Yil , '", Yik}, 
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where each Yi~ ~ (Si * Si) = {Zl * '~2 1"  = + '  - - '  X ,  or +,  z 1 ~ S i ,  z~ ~ Si}. A set 
S is k-computable (from So) in t ime t if there is a k-computation from S O such that 
S C St �9 For an appropriate investigation of the evaluation of polynomials we consider 
computations of 

p(x) = anX ~ + "'" + ao 

from {x, a 0 .... , a~} U A, where x, a 0 ,..., as are algebraically independent reals and A 
is the set of algebraic reals. This  is what we shall mean when we talk about the 
evaluation of a general n-th degree polynomial. Thus  there can be no "short-cuts" 
and the formal theory should correspond to our intuitive ideas about polynomial 
evaluation. 

Let  Tk(n ) be the least running time of all algorithms which evaluate a general n-th 
degree polynomial. To(n) = mink Tk(n) and corresponds to an unlimited number  
of processors. 

I I I .  PRELIMINARY RESULTS 

LEMMA l. X ~ is 2-computable from {x) in time [log n] a. 

Proof. One processor successively computes x 2, x 4, x8,..., x2",..., while the other 
processor accumulates as a product the appropriate powers of x as they are generated. 
There  will be one term in the product corresponding to each 1 in the binary notation 
of  n. 

LEMMA 2.  {X, X z . . . . .  X n} is n-computable from {x} in time [log nl with only n -  1 
operations being performed. 

Proof. Trivial. 
Estrin's method of polynomial evaluation takes t ime approximately 2 log n. This  

t ime is achieved aIso by an algorithm which computes {x,..., x ~} in log n steps, then 
{%, alx,..., anx n} in one more step and finally combines these by pairwise additions 
in a further log n steps. A simple improvement of Estrin's algorithm to a binary 
splitting in the golden (Fibonacci) ratio instead of in halves can be shown to compute 
in t ime t any polynomial of degree less than Ft+a where F i is t h e / - t h  number  in the 
Fibonacci sequence. 

l, 1, 2, 3, 5, 8, 13, 21,.. . .  

Hence, 

To~(n) ~ ~" log n + o(log n), 

1 All logarithms are taken to base 2. 
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where 

= 1/log(l(x/5 + 1)) "~ 1.44. 

This algorithm was discovered independently by Muraoka [3] and has the merit of 
simplicity, but an asymptotically faster method is described in the next section. 

IV. MAIN RESULTS 

Tm~O~M 1. Suppose the computation of a single quantity Q requires q >~ 1 binary 
arithmetic operations. Then the shortest k-computation of Q is at least 

if 

and 

[((q + 1) - -  21a~ + [log kl steps 

q ~ 2 Fl~ 

[1og(q + 1)] otherwise. 

Proof. Let  t be the computation time for some algorithm which computes Q. 
At time t at most 1 processor is usefully employed. At time t - -  1 at most 2 processors 
are usefully employed. Indeed, for all r / >  0, at time t -  r, at most min(k, 2 r) 
processors can compute values to be used in the computation of Q. 

If  

Flogkl 
q ~ 2 Fl~ - -  1 = ~ 2 ~-I 

i=1 

(i.e., the boundedness of the parallelism affects the computation), then 

t > [log k], 

and so the total number of useful operations which the algorithm can perform is 

1 + 2 + 4 + "'" + 2 Ll~ -~- k --~ "" -~ k 
t terms �9 

= k(t -- [log k]) + 2 rl~ - -  1. 

Hence 

which implies 

q ~ k(t -- [log k]) -]- 2 n~ --  1 

t >~ [(q + 1 - -  2Fl~ + [log k]. 
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On the other hand, if the boundedness of the parallelism does not interfere with the 
computation, that is t ~< [log k], or q ~ 2rlogkl _ 1, the maximum number of useful 
operations which can be performed in t steps is 

Thus 

or  

t--1 
E 2i = 2t -- 1. 
i=0 

q ~ < 2 t - - 1  

t ~ [log(q + 1)]. 

COROLLARY 1. Zf n >~ hi2, Tk(n) >~ [(2n + 2 -- 2nogkl)/k] q- [log k]. 

Proof. Winograd [5] and others have shown that at least 2n arithmetic operations 
are required to evaluate a general n-th degree polynomial. Borodin [6] has shown that 
Homer's rule is the only way in which to perform the computation in as few 
arithmetics. It is obvious that Homer's rule cannot be used for parallel schemes, and 
so at least 1 more arithmetic operation must be performed. From this and the 
theorem, the corollary follows. This bound, although precise, is very awkward. At the 
risk of saying the obvious we note that the bound is roughly 

[(2n + 2)/k] + [log k] -- 1. 

In the same manner the result is obtained for the case of unbounded (which in this 
case basically means k > n) parallelism. 

COROLLARY 2. T~(n) ~ [log(n + 1)] + 1. 

We now return to algorithms for polynomial evaluation and show that the coefficient 
of o~ obtained in Section III can be improved to 1. 

THEOREM 2. To~(n) <~ log n + O((log n)X/2). 

Proof. We describe informally an algorithm to achieve this bound. 

Algorithm A 

Let Dr = �89 -k 1) -k 1. We define a recursive evaluation procedure for poly- 
nomials of degree n. Let p = [log(n + 1)] and suppose Dr-1 < p  ~< Dr .  The 
polynomial may be expressed in the form 

p(x) = qo(x) + ql(x)x 2"-~ 4- q~(x)x ~x2"-r + " "  -4- q2~_a(x)x (2~-1)2"-r, 

where the q,(x) are polynomials of degree <2v-L 
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So to compute p(x), we compute the q's, multiply by the appropriate power of x at 
the next step and then use r further steps to combine the 2" terms by binary addition. 

To prove inductively that the algorithm takes at most p q- r -q- 1 steps, suppose 
the result is true for all degrees less than n, then the q's can be computed in time 

( p - - r ) + ( r - - 1 ) +  1 = p ,  

since p - -  r ~< D, - -  r = D,_ 1 . The powers of x required are also available in this 
time. So the algorithm indeed runs in time p + r + 1. 

For the basis of the induction (n =- 1), we observe that r = O, p = 1, and that a 
polynomial of degree 1 can be computed in two time steps. Since 

r ( r -  1)/2 < p, 

we have show that 

T~(n) <~ log n + (2 log n)  1/~ -Jr- O(1). 

This algorithm may be improved somewhat at the cost of complication, for example, 
Table I I  illustrates the evaluation of polynomials of degree 21. Indeed, for polynomials 
of low degree, the Fibonacci splitting method is in some cases better. Table I shows 
the degree of polynomials which may be computed at time t. 

TABLE I 

t = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Fibonacci 

Algorithm A 

Best known 
(Modification of 
Algorithm A, see 
also Table II) 

1 2 4 7 12 20 33 54 88 143 232 376 609 986 1590 

1 1 3 3 7 15 15 31 63 127 127 255 511 1023 2047 

1 2 4 7 12 21 37 63 107 187 327 578 1010 1764 3124 

Greatest degree of general polynomial computable in time T~o(n) = t 

Algorithm A has also been discovered independently and essentially simultaneously 
by Maruyama [7]. 

I t  can be seen easily that this algorithm does not need more than n processors for 
the evaluation of polynomials of degree n. We now show how the algorithm may be 
modified for k < n. 

THEOREM 3. Tk(n) <~ 2n/k + log k + O((log k)a/~) if k >/O(log n). 
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TABLE II 

Illustrating T~(21) < 7 
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t = O  x (1, 0) 

I 
1 x ~ (1,1) ( 1 , 0 )  ( 1 , 0 )  

\ - /  
2 x 4 (2,0) (2,0) (2,0) (1,2) (2,0) 

3 x 8 (2, 4) (2, 2) (2, 3) (3,0) 

\+/  
4 x 16 (4, 2)' (5, O) 

I 
5 x m (4, 18) (5, 13) 

6 x ~4 

7 X 128 

(2, 3) (3,0) 

(2, 11) (3, 8) 

(5, 8) 

(3, O) 

(3,5) (5,0) 

<8, O> 

(9, 13) 

(22, O) 

(m, n) denotes an arbitrary polynomial of the form 

gm i xm+n "{- "'" -L CoXn, 

[n denotes a multiplication by x n, 
i means it has been done similarly elsewhere in the diagram. 
Remember that (m, O) denotes a polynomial of degree m -- 1. 

\+f  
(13, o) 

Algorithm A' 

If  we have only k processors, k < n, for an n-th degree polynomial p(x), we express 

p(x) E n0(x ) + i x ( x ) X  + . . .  ~ -  Ak_l(X) X/c-l, 

where X ~ xn/k and the A i are polynomials of degree n/k. We start the evaluation 

by computing all the Ai(x)'s and also X. The  computation of X takes at most 

2[(log n - -  log k)] operations and indeed [(log n - -  log k)] steps. By using processor i 
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compute A~ by Horner's rule but pre-empting at most 2 processors (spreading the 
load) in each of the first [(log n -- log h)] steps to compute X, all processors may be 
gainfully employed till the final step. Since, at most 2n q- 2[log n -- log hi operations 
are performed this initial stage is completed in time 

2n/k + 2(log n)/h + O(1). 

Next, Algorithm A is employed starting from {X, A 0 ,..., Ak_l}. The total running 
time is thus 

2n/k + 2(log n)/k + log k + O((log k)l/2) 

from which the theorem follows. 
One would expect that as the number of processors k decreases compared with n, 

it would be possible to use them more and more "efficiently," though of course the 
computation time must increase. We now turn our attention to polynomial evaluation 
for the cases in which k = o(log n), that is, when computing powers such as x '~ would 
seem wasteful. This approach yields an algorithm which is within one step of being 
optimal even if k is as large as n/log n. 

Algorithm B 

(1) Compute p~ = a2i q- a2i+xx for i = 0,..., In/2] and x 2, xa,..., x ~k-2, x 2k. 

(2) Using processor j ( j  = 1 .... , k), compute 

L,r,./2kj 
PJ* = ~ P~+j-1 (x~)' 

by Homer's rule. 

(3) Finally, evaluate 
k 

p(X) = E PJ* X2(J--1) 
J=l  

by forming the pj*x2~-l~'s and then adding them in obvious fan-in way. Note that 
unless 2k exactly divides n -k 1 some of the terms mentioned above vanish, with a 
consequent saving in arithmetic operations. 

To determine the number of steps required by this algorithm, first observe that all 
processors may be fully utilized until the final fan-in, provided the computing of 
powers of x can be interlaced with the p,'s (i.e., n > /k  log k). Hence the number of 
steps used in this case is basically that obtained as the optimum in Theorem 1. A quick 
inspection of the algorithm shows that n additions and n q- k multiplications, or a 
total of 2n q- k operations are performed. Therefore 

[((2n + h + 1) --  2rlogkl)/kl + [log k] 

steps are used provided n >7 k[log k]. 
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From this algorithm and Corollary 1 we have now shown the following: 

THEOREM 4. 

[((2n + 2) --  2rl~ + [log k] ~ T~(n) 

~< [((2n + k + 1) -- 2rl~ + [log kl provided n / >  h[log k]. 

This means, of course, that Algorithm B is within 1 step of being optimal under 
the given condition. It is conjectured that it is actually optimal for k > 1 when the 
given condition holds. 

V. "PREPROCESSING" 

If  a polynomial is to be evaluated iteratively at a large number of points, it may be 
appropriate to compute certain functions of the coefficients first. These may be used 
in evaluations, thus reducing the number of operations needed for the computation. 
Such techniques are referred to as preconditioning or preprocessing of coefficients. 

We can use the results of Motzkin [8] and Belaga [9] to establish a lower bound on 
the evaluation time. They show that at least [3n/2] operations are required to evaluate 
a polynomial of degree n, even if preconditioning is not counted. Hence by Theorem 1, 
the running time with k processors is at least 

[3n/2k] + [log k] --  2. 

There is a very simple algorithm which is within a constant number of steps of being 
optimal for this case. 

Algorithm C 

The preprocessed form that we choose for a polynomial of degree n is as a product 
of k polynomials each of degree at most In/hi + 1 

p(x) = r l (x  ) X r2(x ) X "'" X rk(x). 

Since p(x) can be expressed as a product of quadratic and linear factors with real 
coefficients, we can choose the r i to be real. Each ri(x ) can be computed separately 
with distinct processors and then they can be combined by binary multiplication in 
time [log k]. Where we have an unbounded number of processors available we 
use just n. 

Hence if T* corresponds to T with preprocessing: 

THEOREM 5. 

Tk*(n) = 3n/2k + log k + O(1) 

T~*(n) = log n + O(1). 

i f  n ~ k  

57117/2-6 
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VI. CONCLUSION 

We have investigated a model of arithmetic computation permitting parallelism, 

and presented several algorithms for the evaluation of polynomials. In  addition, 

we have proved that the computation times of these algorithms are, in many cases, 

within a constant of optimality for this model. 
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