
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 7, 189--198 (1973)

Optimal Algorithms for Parallel Polynomial Evaluation

Inn MUNRO

Department of Applied Analysis and Computer Science, University of Waterloo,
Waterloo, Ontario, Canada

AND

MICHAEL PATERSON

Department of Computer Science, University of Warwick, Coventry,
Warwicks CV4 7AL, England

Received February 3, 1972

Algorithms for the evaluation of polynomials on a hypothetical computer with k
independent arithmetic processors are presented. It is shown that, provided the
degree of the polynomial to be evaluated exceeds k[Iog2 k], an algorithm given is within
one time unit of optimality.

I. INTRODUCTION

The usual algorithm for evaluating a polynomial is Horner's rule, where to calculate

p (x) = an X n + "'" + a o

we compute successively

Pn ~" an

P ~ = P i + l " x + a i for i = n - - 1 0.

Then p(x) ~ Po. This method is essentially sequential in that for each arithmetic
operation at least one of its arguments is computed only at the immediately preceding
step. In this paper we shall investigate algorithms for polynomial evaluation which
allow a large amount of parallelism.

This problem has previously been reported on by Estrin [1] and Dorn [2] and
Muraoka [3]. The work of Estrin and Dorn is summarized by Knuth [4].

189
Copyright �9 1973 by Academic Press, Inc.
All rights of reproduction in any form reserved.

190 MUNRO AND PATERSON

Estrin's algorithm computes p(x) as

p(x) = q(x) x~"/~'+~ + r(x),

where

q(x) = a,~x"/~ + "" + a(./2)+ t

and

r(x) = a./~x"/s + "'" + a o

and then computes q(x) and r(x) similarly by a binary splitting. Thus it starts by
computing

nix + ao , aax + as ,...

and then

(a3x + as) x ~ + (alx + ao),... , etc.

I f an unlimited number of processors are available, this algorithm runs in time about
2 log n.

Dorn gives an algorithm for the "k-th order Homer ' s rule" which computes

qo(X ~) = ao + akx ~ + a2kx 2k + "" ,

ql(X k) =- a 1 + ak+l x k -~- . . . ,

and then

qk-l(xk) = ak-1 + ae+k-lx k + " " ,

p(x) = qo(x~) + xql(x~) + ... + x~-%_~(x~).

With k processors this algorithm takes time at least 2n/k + 2 log k. Dorn also makes
the point that if the parallel computer has only one memory and only one of the
arithmetic units may have access to the memory at any given time, then this is a serious
limitation on the number of processors which can be usefully employed.

II. ABSTRACT FORMULATION

We shall assume that we have available k identical arithmetic processors, each of
which can perform any one of the binary operations of + , - - , • or + in unit time.
For this study we ignore all problems of memory access and programming to work
within the following abstract framework.

A k-computation from S O , where S O is a set of real numbers, is a sequence of sets
$1, $2 such that for each i >~ O,

S~+l = Si u {Yil , '", Yik},

PARALLEL POLYNOMIAL EVALUATION 191

where each Yi~ ~ (Si * Si) = {Zl * '~2 1" = + ' - - ' X , or +, z 1 ~ S i , z~ ~ Si}. A set
S is k-computable (from So) in t ime t if there is a k-computation from S O such that
S C St �9 For an appropriate investigation of the evaluation of polynomials we consider
computations of

p(x) = anX ~ + "'" + ao

from {x, a 0 , a~} U A, where x, a 0 ,..., as are algebraically independent reals and A
is the set of algebraic reals. This is what we shall mean when we talk about the
evaluation of a general n-th degree polynomial. Thus there can be no "short-cuts"
and the formal theory should correspond to our intuitive ideas about polynomial
evaluation.

Let Tk(n) be the least running time of all algorithms which evaluate a general n-th
degree polynomial. To(n) = mink Tk(n) and corresponds to an unlimited number
of processors.

I I I . PRELIMINARY RESULTS

LEMMA l. X ~ is 2-computable from {x) in time [log n] a.

Proof. One processor successively computes x 2, x 4, x8,..., x2",..., while the other
processor accumulates as a product the appropriate powers of x as they are generated.
There will be one term in the product corresponding to each 1 in the binary notation
of n.

LEMMA 2. {X, X z X n} is n-computable from {x} in time [log nl with only n - 1
operations being performed.

Proof. Trivial.
Estrin's method of polynomial evaluation takes t ime approximately 2 log n. This

t ime is achieved aIso by an algorithm which computes {x,..., x ~} in log n steps, then
{%, alx,..., anx n} in one more step and finally combines these by pairwise additions
in a further log n steps. A simple improvement of Estrin's algorithm to a binary
splitting in the golden (Fibonacci) ratio instead of in halves can be shown to compute
in t ime t any polynomial of degree less than Ft+a where F i is t h e / - t h number in the
Fibonacci sequence.

l, 1, 2, 3, 5, 8, 13, 21,.. . .

Hence,

To~(n) ~ ~" log n + o(log n),

1 All logarithms are taken to base 2.

192 MUNRO AND PATERSON

where

= 1/log(l(x/5 + 1)) "~ 1.44.

This algorithm was discovered independently by Muraoka [3] and has the merit of
simplicity, but an asymptotically faster method is described in the next section.

IV. MAIN RESULTS

Tm~O~M 1. Suppose the computation of a single quantity Q requires q >~ 1 binary
arithmetic operations. Then the shortest k-computation of Q is at least

if

and

[((q + 1) - - 21a~ + [log kl steps

q ~ 2 Fl~

[1og(q + 1)] otherwise.

Proof. Let t be the computation time for some algorithm which computes Q.
At time t at most 1 processor is usefully employed. At time t - - 1 at most 2 processors
are usefully employed. Indeed, for all r / > 0, at time t - r, at most min(k, 2 r)
processors can compute values to be used in the computation of Q.

If

Flogkl
q ~ 2 Fl~ - - 1 = ~ 2 ~-I

i=1

(i.e., the boundedness of the parallelism affects the computation), then

t > [log k],

and so the total number of useful operations which the algorithm can perform is

1 + 2 + 4 + "'" + 2 Ll~ -~- k --~ "" -~ k
t terms �9

= k(t -- [log k]) + 2 rl~ - - 1.

Hence

which implies

q ~ k(t -- [log k]) -]- 2 n~ -- 1

t >~ [(q + 1 - - 2Fl~ + [log k].

PARALLEL POLYNOMIAL EVALUATION 193

On the other hand, if the boundedness of the parallelism does not interfere with the
computation, that is t ~< [log k], or q ~ 2rlogkl _ 1, the maximum number of useful
operations which can be performed in t steps is

Thus

or

t--1
E 2i = 2t -- 1.
i=0

q ~ < 2 t - - 1

t ~ [log(q + 1)].

COROLLARY 1. Zf n >~ hi2, Tk(n) >~ [(2n + 2 -- 2nogkl)/k] q- [log k].

Proof. Winograd [5] and others have shown that at least 2n arithmetic operations
are required to evaluate a general n-th degree polynomial. Borodin [6] has shown that
Homer's rule is the only way in which to perform the computation in as few
arithmetics. It is obvious that Homer's rule cannot be used for parallel schemes, and
so at least 1 more arithmetic operation must be performed. From this and the
theorem, the corollary follows. This bound, although precise, is very awkward. At the
risk of saying the obvious we note that the bound is roughly

[(2n + 2)/k] + [log k] -- 1.

In the same manner the result is obtained for the case of unbounded (which in this
case basically means k > n) parallelism.

COROLLARY 2. T~(n) ~ [log(n + 1)] + 1.

We now return to algorithms for polynomial evaluation and show that the coefficient
of o~ obtained in Section III can be improved to 1.

THEOREM 2. To~(n) <~ log n + O((log n)X/2).

Proof. We describe informally an algorithm to achieve this bound.

Algorithm A

Let Dr = �89 -k 1) -k 1. We define a recursive evaluation procedure for poly-
nomials of degree n. Let p = [log(n + 1)] and suppose Dr-1 < p ~< Dr . The
polynomial may be expressed in the form

p(x) = qo(x) + ql(x)x 2"-~ 4- q~(x)x ~x2"-r + " " -4- q2~_a(x)x (2~-1)2"-r,

where the q,(x) are polynomials of degree <2v-L

194 MUNRO AND PATERSON

So to compute p(x), we compute the q's, multiply by the appropriate power of x at
the next step and then use r further steps to combine the 2" terms by binary addition.

To prove inductively that the algorithm takes at most p q- r -q- 1 steps, suppose
the result is true for all degrees less than n, then the q's can be computed in time

(p - - r) + (r - - 1) + 1 = p ,

since p - - r ~< D, - - r = D,_ 1 . The powers of x required are also available in this
time. So the algorithm indeed runs in time p + r + 1.

For the basis of the induction (n =- 1), we observe that r = O, p = 1, and that a
polynomial of degree 1 can be computed in two time steps. Since

r (r - 1)/2 < p,

we have show that

T~(n) <~ log n + (2 log n) 1/~ -Jr- O(1).

This algorithm may be improved somewhat at the cost of complication, for example,
Table I I illustrates the evaluation of polynomials of degree 21. Indeed, for polynomials
of low degree, the Fibonacci splitting method is in some cases better. Table I shows
the degree of polynomials which may be computed at time t.

TABLE I

t = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fibonacci

Algorithm A

Best known
(Modification of
Algorithm A, see
also Table II)

1 2 4 7 12 20 33 54 88 143 232 376 609 986 1590

1 1 3 3 7 15 15 31 63 127 127 255 511 1023 2047

1 2 4 7 12 21 37 63 107 187 327 578 1010 1764 3124

Greatest degree of general polynomial computable in time T~o(n) = t

Algorithm A has also been discovered independently and essentially simultaneously
by Maruyama [7].

I t can be seen easily that this algorithm does not need more than n processors for
the evaluation of polynomials of degree n. We now show how the algorithm may be
modified for k < n.

THEOREM 3. Tk(n) <~ 2n/k + log k + O((log k)a/~) if k >/O(log n).

PARALLEL POLYNOMIAL EVALUATION

TABLE II

Illustrating T~(21) < 7

195

t = O x (1, 0)

I
1 x ~ (1,1) (1 , 0) (1 , 0)

\ - /
2 x 4 (2,0) (2,0) (2,0) (1,2) (2,0)

3 x 8 (2, 4) (2, 2) (2, 3) (3,0)

\+/
4 x 16 (4, 2)' (5, O)

I
5 x m (4, 18) (5, 13)

6 x ~4

7 X 128

(2, 3) (3,0)

(2, 11) (3, 8)

(5, 8)

(3, O)

(3,5) (5,0)

<8, O>

(9, 13)

(22, O)

(m, n) denotes an arbitrary polynomial of the form

gm i xm+n "{- "'" -L CoXn,

[n denotes a multiplication by x n,
i means it has been done similarly elsewhere in the diagram.
Remember that (m, O) denotes a polynomial of degree m -- 1.

\+f
(13, o)

Algorithm A'

If we have only k processors, k < n, for an n-th degree polynomial p(x), we express

p(x) E n0(x) + i x (x) X + . . . ~ - Ak_l(X) X/c-l,

where X ~ xn/k and the A i are polynomials of degree n/k. We start the evaluation

by computing all the Ai(x)'s and also X. The computation of X takes at most

2[(log n - - log k)] operations and indeed [(log n - - log k)] steps. By using processor i

196 MUNRO AND PATERSON

compute A~ by Horner's rule but pre-empting at most 2 processors (spreading the
load) in each of the first [(log n -- log h)] steps to compute X, all processors may be
gainfully employed till the final step. Since, at most 2n q- 2[log n -- log hi operations
are performed this initial stage is completed in time

2n/k + 2(log n)/h + O(1).

Next, Algorithm A is employed starting from {X, A 0 ,..., Ak_l}. The total running
time is thus

2n/k + 2(log n)/k + log k + O((log k)l/2)

from which the theorem follows.
One would expect that as the number of processors k decreases compared with n,

it would be possible to use them more and more "efficiently," though of course the
computation time must increase. We now turn our attention to polynomial evaluation
for the cases in which k = o(log n), that is, when computing powers such as x '~ would
seem wasteful. This approach yields an algorithm which is within one step of being
optimal even if k is as large as n/log n.

Algorithm B

(1) Compute p~ = a2i q- a2i+xx for i = 0,..., In/2] and x 2, xa,..., x ~k-2, x 2k.

(2) Using processor j (j = 1 , k), compute

L,r,./2kj
PJ* = ~ P~+j-1 (x~)'

by Homer's rule.

(3) Finally, evaluate
k

p(X) = E PJ* X2(J--1)
J=l

by forming the pj*x2~-l~'s and then adding them in obvious fan-in way. Note that
unless 2k exactly divides n -k 1 some of the terms mentioned above vanish, with a
consequent saving in arithmetic operations.

To determine the number of steps required by this algorithm, first observe that all
processors may be fully utilized until the final fan-in, provided the computing of
powers of x can be interlaced with the p,'s (i.e., n > /k log k). Hence the number of
steps used in this case is basically that obtained as the optimum in Theorem 1. A quick
inspection of the algorithm shows that n additions and n q- k multiplications, or a
total of 2n q- k operations are performed. Therefore

[((2n + h + 1) -- 2rlogkl)/kl + [log k]

steps are used provided n >7 k[log k].

PARALLEL POLYNOMIAL EVALUATION 197

From this algorithm and Corollary 1 we have now shown the following:

THEOREM 4.

[((2n + 2) -- 2rl~ + [log k] ~ T~(n)

~< [((2n + k + 1) -- 2rl~ + [log kl provided n / > h[log k].

This means, of course, that Algorithm B is within 1 step of being optimal under
the given condition. It is conjectured that it is actually optimal for k > 1 when the
given condition holds.

V. "PREPROCESSING"

If a polynomial is to be evaluated iteratively at a large number of points, it may be
appropriate to compute certain functions of the coefficients first. These may be used
in evaluations, thus reducing the number of operations needed for the computation.
Such techniques are referred to as preconditioning or preprocessing of coefficients.

We can use the results of Motzkin [8] and Belaga [9] to establish a lower bound on
the evaluation time. They show that at least [3n/2] operations are required to evaluate
a polynomial of degree n, even if preconditioning is not counted. Hence by Theorem 1,
the running time with k processors is at least

[3n/2k] + [log k] -- 2.

There is a very simple algorithm which is within a constant number of steps of being
optimal for this case.

Algorithm C

The preprocessed form that we choose for a polynomial of degree n is as a product
of k polynomials each of degree at most In/hi + 1

p(x) = r l (x) X r2(x) X "'" X rk(x).

Since p(x) can be expressed as a product of quadratic and linear factors with real
coefficients, we can choose the r i to be real. Each ri(x) can be computed separately
with distinct processors and then they can be combined by binary multiplication in
time [log k]. Where we have an unbounded number of processors available we
use just n.

Hence if T* corresponds to T with preprocessing:

THEOREM 5.

Tk*(n) = 3n/2k + log k + O(1)

T~*(n) = log n + O(1).

i f n ~ k

57117/2-6

198 MUNRO AND PATERSON

VI. CONCLUSION

We have investigated a model of arithmetic computation permitting parallelism,

and presented several algorithms for the evaluation of polynomials. In addition,

we have proved that the computation times of these algorithms are, in many cases,

within a constant of optimality for this model.

ACKNOWLEDGMENT

We should like to thank Ray Miller and Allan Borodin for helpful discussions and encourage-
ment during the preparation of this paper.

This work was supported in part by the Advanced Research Projects Agency under ONR
contract Number N00014-70-A-0362-002, International Business Machines Corporation and
the National Research Council of Canada.

REFERENCES

1. G. ESTRIN, "Organization of Computer System--The Fixed Plus Variable Structure
Computer," Proceedings Western Joint Computer Conference, May, 1960, AFIPS Press,
Montvale, N J, pp. 33-40.

2. W. S. DORN, "Generalizations of Homer's Rule for Polynomial Evaluation," Vol. 6, IBM
J. Res. Dev. (1962), 239-245.

3. Y. MVRAOKA, "Parallelism Exposure and Exploitation in Programs," Report No. 424,
Department of Computer Science, University of Illinois, Urbana-Champaign, IL, 1971.

4. D. E. KNUTH, "The Art of Computer Programming: II. Seminumerical Algorithms,"
pp. 422-444, Addison-Wesley, Reading, MA, 1969.

5. S. WINOGRAD, "On the Number of Multiplications Required to Compute Certain Functions,"
Proc. Nat. Acad. Sci. U.S.A. 58 (1967), 1840-1842.

6. A. BORODIN, "Homer's Rule is Uniquely Optimal," Proceedings International Symposium
on the Theory of Machines and Computation, Haifa, August, 1971, (Z. Kohavi and A. Paz,
eds.), Academic Press, NY, pp. 45-48.

7. K. MARUYAMA, "Parallel Methods and Bounds of Evaluating Polynomials," Report No. 427,
Department of Computer Science, University of Illinois, Urbana-Champaign, IL, 1971.

8. T. S. MOTZKIN, "Evaluation of Polynomials and Evaluation of Rational Functions," Bull.
Amer. Math. Soc. 61 (1955), 163.

9. E. G. BELAGA, "On Computing Polynomials in One Variable with Initial Conditioning of
the Coefficients," Problemy Kibernet. 5 (1961), 7-15.

