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Abstract

A high-pressure low-temperature plane strain testing apparatus was developed for visualizing the deformation of methane hydrate-bearing sand
due to methane hydrate production. Using this testing apparatus, plane strain compression tests were performed on pure Toyoura sand and
methane hydrate-bearing sand with localized deformation measurements. From the results, it was observed that the methane hydrate-free
specimens, despite their relatively high density, showed changes in compressive volume. Marked increases in the initial stiffness and strength of
the methane hydrate-bearing sand were observed (methane hydrate saturation of SMH¼60%). Moreover, the volumetric strain changed from
compressive to dilative. For the specimens with methane hydrate, a dilative behavior above SMH¼0% was observed. An image analysis showed
that the shear bands of the methane hydrate-bearing sand were thinner and steeper than those of the host sand. In addition, the dilative volumetric
strain in the shear band increased markedly when methane hydrate existed in the pore spaces.
& 2013 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

Recent investigations have shown that methane hydrate
(hereafter referred to as MH) is a potential future energy
resource. Both thermal recovery methods and depressurization
methods have been suggested and developed for extracting
methane gas from MH-bearing sediment reservoirs in deep
ocean floors, for example, the Nankai Trough (Yamamoto,
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2009; Fujii et al., 2008; Nagakubo, 2009). Using both methods,
MH in the ground is dissociated to release methane gas.
Hydrates in the pore spaces of sand can be classified into three
types: pore-filling, load-bearing and cementing (Waite et al.,
2009). These three types of hydrate-bearing sediment can be
prepared in the laboratory by three different methods, namely,
using hydrate grains and ice seeding (Hyodo et al., 2005;
Ebinuma et al., 2005), applying partial water saturation
(Kneafsey et al., 2005; Waite et al., 2004), and employing
dissolved gas (Katsuki et al., 2006; Tohidi et al., 2001). In the
case of pore-filling, the hydrate exists in the pore spaces with no
bridging between soil particles and affects the pore fluid bulk
stiffness and fluid conduction properties (Helgerud et al., 1999).
In the case of load-bearing, the hydrate bridges the soil particles
and confers the mechanical stability to the granular skeleton by
becoming part of the load-bearing framework. Pore-filling
Elsevier B.V. All rights reserved.
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hydrate naturally becomes of the load-bearing type when the
pore space hydrate saturation exceeds Sh¼25–40% (Yun et al.,
2005, 2007). In this case, shear stiffness and peak strength
increase with increasing hydrate saturation and significant dilative
behavior is observed when hydrate saturation Sh exceeds 40%
(Yun et al., 2005, 2007; Masui et al., 2005). In the third case,
cementing, the hydrate cements the intergranular contacts. If the
host sand is dense, even a small amount of hydrate can markedly
increase sediment shear and bulk stiffness by bonding the
adjacent grains together. For this type of MH-bearing sediment,
experiments under various conditions have shown that its
mechanical properties are dependent on hydrate saturation,
confining pressure, soil density, particle distribution, temperature,
and water pressure (Berge et al., 1999; Yun et al., 2005, 2007;
Hyodo et al., 2007, 2008a, 2008b; Yoneda et al., 2010; Miyazaki
et al., 2010, 2011). Researchers have discussed the obtained
relationships of dilatancy with mobilized shear strength and
stiffness; in particular, Yun et al. (2005) and Waite et al. (2009)
proposed a possible micro-mechanical model for hydrate-bearing
sediment. Then, several constitutive models (e.g., Hyodo et al.,
2008a, 2008b; Uchida et al., 2012) have been proposed on the
basis of their idea, and seabed deformation due to MH exploitation
was predicted (Kimoto et al., 2007; Klar et al., 2010; Yoneda
et al., 2011).

For any soil sediments consisting of discrete particles and
associated voids, a mechanical examination of the localized shear
band deformation is significant for evaluating and modeling the
mechanical properties of these sediments from a micro-mechanical
viewpoint (e.g., Newland and Allely, 1957; Rowe, 1962). Different
types of elemental tests, for example, plane strain and box shear
tests, have been performed to investigate the angle (Tatsuoka et al.,
1986; Khalid and Stein, 2000), the width and the mechanism of the
generation of shear bands (Tatsuoka et al., 1990; Ueno et al., 2000;
Ikeda et al., 2003) under low and medium confining pressures. In
addition, model tests such as bearing capacity tests (White et al.,
2003), have been carried out to clarify the micro-mechanical
deformation properties of foundations. Recently, research studies
using X-ray CT have been widely used, and the behavior of soil
particles on shearing is becoming clear (Otani et al., 2000; Hall
et al., 2010; Ando et al., 2011; Higo et al., 2011, 2013). Thus far,
tests must be performed at high pore water pressures and low
temperatures with high confining pressures to examine the MH
Confining plate 

Specimen

Fig. 1. (a) Exterior view of refrigeration room; (b) setting of specimen;
reservoirs. Hence, failure patterns of MH-bearing sand have not yet
been observed. The realization of deformation is significant from
the gas production point of view, because there are concerns about
gas leakage and/or channel formation in alignment with localized
deformation like shear bands. In the present study, a plane strain
testing apparatus that can simulate the predicted high pore water
pressure, low temperature, and confining pressure corresponding to
those existing in situ, and that can be applied in compression shear
tests. is developed to investigate the effect of hydrate bearing under
high confining pressure on the constitutive behavior of sand
materials. In addition, the localized deformation of MH-bearing
sand was observed visually.

2. Plane strain testing apparatus

A high-pressure low-temperature plane strain testing appa-
ratus has been developed to examine and visualize the
deformation of MH-bearing sand. Fig. 1(a) shows an overview
of the temperature-controlled room where the equipment,
shown in Fig. 1(b) and (c), was installed to generate MH at
a given temperature.
The experiments were controlled using a PC set up outside

the room. Fig. 2 shows a schematic diagram of the apparatus.
A detailed description of each part shown in this figure is
presented below.
(a)
(c) e
Test specimen
The sample was 80 mm (length) � 60 mm (width) �

160 mm (height).

(b)
 Pressure cell

The pressure cell had thick acrylic observation windows
(c) installed in the front and the back of the specimen
through which pictures could be taken.
(c)
 Observation window
The thickness of the observation window was 70 mm.

The window is capable of tightening a confining plate. The
observing direction is the same as that of applied inter-
mediate stress s2 in the plane strain.
(d)
 Confining plate
A confining plate was used to maintain plane strain

conditions during the testing with an acryl block 70 mm in
thickness. LEDs on the left, the right, the top, the center,
Observation 
window

xterior view of homeothermic high-pressure plane strain device.



Fig. 2. Schematic diagram of testing apparatus. (a) Specimen; (b) pressure cell; (c) observation window; (d) confining plate; (e) lower syringe pump for water;
(f) lower syringe pump for gas; (g) upper syringe pump for gas; (h) upper syringe pump for water; (i) mass flow meter; (j) separation tank; (k) methane gas bottle;
(l) cell liquid tank; (m) heat control tank; (n) confining pressure amplifier; (o) heating tank; (p) heating tank; (q) cell liquid pump; (r) displacement transducer; (s)
load cell; (t) loading equipment; (u) pressure gage; (v) camera; and (w) thermocouple.
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and the bottom of the confining plate facilitated taking
photos of the specimen using a remote-control camera with
a timer.
(e), (f), (g) and (h) Syringe pumps for water and gas
Two syringe pumps were connected to the top and the

bottom of the specimen, which not only controlled the pressure
of the water and the methane gas, but also measured the
changes in specimen volume.
(i)
 Gas mass flow meter
A gas mass flow meter was used to measure the amount

of methane gas after the tests. To calculate the MH
saturation ratio, a mass flow meter for the gas was
installed in the pipe. The gas that passed through the
device was measured as mass flow (in g/min) independent
of temperature and pressure and shown as flow volume (in
mL/min) standardized at 20 1C and –1 atm. In addition,
the amount of gas could be measured by calculation.
(j)
 Separation tank
This device separated the gas from the water in order to

measure the methane gas.

(k)
 Methane gas bottle

Methane gas flowed to the pipe from this bottle and was
used to fill the inside of the syringe pumps to generate MH.
(l)
 Cell liquid tank
This device consisted of a system for adjusting the

temperature from 0 1C to þ30 1C within the pressure cell
by circulating the cell fluid in the plane strain testing
device from an external temperature-controlled water tank.
The temperature in the tank could be controlled within a
range of 70.1 1C.
(m)
 Heat control tank
This device consisted of a system for adjusting the

temperature from 0 1C to þ50 1C within the cell liquid tank.
The temperature in the tank could be controlled within the
range of 70.1 1C.
(n)
 Confining pressure amplifier
Cell pressures of up to 20 MPa, controllable within the

range of 70.1 MPa, were supplied by oil pressure.
(o), (p) Heating tank
This device consisted of a system for adjusting the

temperature from 0 oC to þ50 oC within the syringe pump.
The temperature of the tank could be controlled within the
range of 70.1 1C.
(q)
 Cell liquid pump
The cell liquid pump circulates water into the pressure cell.
(r)
 Displacement transducer
This device is for measuring the vertical displacement

of the specimen.

(s)
 Load cell

To eliminate the effect of piston friction, a cylindrical
loading cell, which is not affected by temperature or
pressure, was set up in the cell. The maximum permissible
load was 200 kN, and it was possible to measure it with an
accuracy of 1/1000 for the full-scale load.
(t)
 Loading equipment
To apply high compression stress, a piston designed to

resist up to 200 kN was installed; loading was per-
formed via a pulse-controlled method using a stepping
motor.
(u)
 Pressure gage
The pressure gage measures the pore pressure and the

cell pressure up to 20 MPa.

(v)
 Camera & lens

A 25-million-pixel digital single-lens reflex camera was
used. A fisheye lens (15 mm F2.8) was used for observing
the whole specimen from the window.
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(w)
Fig.
Thermocouple
A thermometer was installed inside the specimen, and

the temperature in the triaxial room was measured. The
temperature of the cell was controlled on the basis of the
value indicated by the thermometer.
3. Generation of MH and experimental procedure

MH-bearing sand was artificially produced on the basis of
the observation that MH existed within the pores of the
sediment bridging the particles of the undisturbed core samples
taken from the Nankai Trough (Suzuki et al., 2006). Toyoura
sand was chosen as the host sand with a mean particle size of
0.162 mm. A given amount of water, calculated from the MH
saturation target, was mixed with sand whose volume was
determined to correspond to the target density. Moist soil was
arranged in 12 layers in a silicon membrane and each layer was
molded by compaction using a tamper 40 times.

After forming the specimen, it was subjected to a series of
processes under specified temperatures and pressures, as
depicted in Fig. 3. Firstly, the specimen was set up inside
the pressure cell (a) and subjected to 0.2 MPa of confining
pressure for self-withstanding. Then, the pore pressure and the
confining pressure were gradually increased to 5 MPa and
5.2 MPa, respectively, while methane was being injected into
the specimen and the specimen was kept at the temperature and
pressure where stable MH could exist (b). At this stage, the gas
pressure was increased gradually with time so that the
specimen's moisture content would not become non-uniform
as a result of the pressurized injection. By keeping the gas
pressure constant in the connection between the specimen and
the syringe pump, and by observing the amount of gas flowing
at various times, the transformation of water within the pores
into the hydrate was judged to be complete when there were no
marked changes in the amount of gas. After the hydrate was
generated for 3 days, the gas in the pipe was then substituted
with water under constant pressure, and water was allowed to
infiltrate the specimen for 2 days. Then, pore-water pressure
was applied (c) and the temperature was adjusted to follow the
3. Paths of pressure and temperature followed in producing MH-bearing sand.
prescribed test conditions (d). While keeping the pressure
constant, consolidation was carried out until the specified mean
effective stress was reached. After a compression shear test,
pore pressure was released, the temperature of the specimen
increased, and MH dissociated. The amount of gas was
measured using the gas flow meter shown in Fig. 1(b). The
amount of gas measured allowed the estimation of the MH
saturation, assuming the density of MH to be 0.913 g/cm3

(Sloan, 1998).

4. Plane strain compression tests for MH-bearing sand

Specimens were prepared without MH (pure Toyoura sand/
MH saturation of SMH¼0%) and with MH (MH saturation of
SMH¼60%) with an effective confining pressure of 3.5 MPa
and a porosity of 40%. In previous results (Masui et al., 2005;
Hyodo et al., 2007, 2013; Miyazaki et al., 2011) of triaxial
tests on Toyoura sand containing a synthetic gas hydrate, it has
been confirmed that an increase in hydrate saturation tends to
stimulate strain softening. Therefore, specimens were prepared
to generate high MH saturation in this research. Shearing was
conducted at a strain rate of 0.1%/min. Fig. 4 shows the
deviator stress, axial strain, and volumetric strain relations.
From the figure, it is observed that both cases, with and
without MH specimens, show an initially compressive volume
change and strain softening after hardening. Volumetric strain
without MH specimens increased all along, notwithstanding
the high relative density. This behavior might be due to the
effect of grain crushing because of the high confining pressure
(Miura et al., 1977). Marked increases in the initial stiffness
and strength are observed in the case with MH. Changes in
volumetric strain from compressive to dilative are seen for the
specimen with SMH¼60% instead of compressive behavior
only for the specimen with SMH¼0%. This is believed to be
due to the hardening action induced by MH on the sand
particles.
Fig. 4. Stress strain curves for host sand and MH-bearing sand.
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5. Localized deformation

Several analytical methods have already been proposed for
evaluating localized deformation. For example, (1) tracking
Fig. 5. Photographs during compression te

Fig. 6. Cumulative maximum shear strains during com
intersections on the sealing sleeve (Tatsuoka et al., 1990), (2)
gamma-rays (Desrues et al., 1985), (3) stereophotogrametry
(Desrues and Viggiani, 2004), (4) X-ray computed tomography
(Desrues et al., 1996; Hall et al., 2010), and (5) Particle image
sts: (a) SMH¼0% and (b) SMH¼60%.

pression tests: (a) SMH¼0% and (b) SMH¼60%.



Fig. 7. Volumetric strains during compression tests: (a) SMH¼0% and (b) SMH¼60%.

Fig. 8. Incremental maximum shear strains during compression tests: (a) SMH¼0% and (b) SMH¼60%.
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Fig. 10. Assumed shear band. (a) Center of shear band and (b) assumed
shear band.
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velocimetry (White et al., 2003). Here, the simplest method, (1),
is used. Digital photos were taken at each axial strain level.
Geometric correction was performed on the photographs to
cancel the distortion of the lens by polynomial reduction
methods. Localized shear strain and volumetric strain were
monitored during the compression tests. Figs. 6–8 show the
contours of the maximum shear strain and the volumetric strain
at each strain level, seen on the sigma-2 plane of each specimen,
defined for the initial dimensions of each specimen. These were
constructed from the strain increments defined for the elements
on the lateral plane, as shown in Fig. 5. The strain increments
were obtained from the incremental displacements measured at
four nodes of each element, assuming linear changes in the
strain increments for each element. Strain was calculated from
the deformation gradient tensor and the Lagrange strain tensor
defined by the shape function matrix and the deformation
matrix of the four nodes as with finite element method analyses.
The contours were depicted on the basis of this strain. The
incremental displacement was determined by measuring the
coordinates of every node of the grid, which was provided by
the distinct center of the intersection point.

Fig. 5 shows the (a) SMH¼0% (pure sand) and (b) SMH¼60%
specimens during compression testing at various strains. At (a)
SMH¼0%, two shear bands were observed. These shear bands
appeared when strain softening occurred, as indicated in Fig. 4.
Thus, it seems that the stresses are concentrated inside the shear
band. Next, at (b) SMH¼60%, two shear bands were also observed.
These shear bands appeared during strain softening in Fig. 4 in the
same manner as those observed in pure sand. The distribution of
the cumulative maximum shear strain γmax for SMH¼0% and 60%
at various axial strains is shown in Fig. 6. The shear band of
SMH¼60% appeared earlier than that of SMH¼0%. The cumula-
tive maximum shear strain γmax of SMH¼0% is 160% and that of
SMH¼60% is 280%. In addition, the strain field of SMH¼0%
spread along the shear band wider than that of SMH¼60%. The
distribution of cumulative volumetric strain εv for each strain is
shown in Fig. 7. Here, compression is defined as both positive
and expansion-negative. At both (a) SMH¼0% (pure sand) and
(b) SMH¼60%, the shear bands observed in Fig. 5 dilated with
increasing axial strain. At a given strain level, the volumetric strain
of (b) SMH¼60% is greater than that of (a) SMH¼0%. The
distribution of the incremental maximum shear strain γmax, for each
section from a/A to e/E in Fig. 4, is shown in Fig. 8. In both cases
1.8 mm

56.4o

Fig. 9. Thicknesses and failure angles of shear
with and without the MH specimen, shear bands were
not observed in 0 to a/A sections. The first shear band initiated
in the sections form the a/A to b/B overall axial strains followed by
softening in the nominal stress response. Shear strain increased in
b/B to c/C. The second shear band was initiated in d/D to e/E after
additional shearing along the first shear band. Shearing then
continued along the two bands until the completion of the test.
The thicknesses of the shear bands, i.e., (a)¼1.8 mm and

(b)¼1.0 mm, were measured from Fig. 9. The shear band
thickness was measured from the parallel lines drawn where
the curvature of the grid lines was at a maximum. The
thickness of the shear band at low confining pressures was
measured by Tatsuoka et al., 1986 to be about 20 times the
mean particle size. This is about 3.2 mm for Toyoura sand with
a mean particle size. However, the thickness of the shear band
1.0 mm 

66.1o

bands. (a) SMH¼0% and (b) SMH¼60%.



Fig. 11. Volumetric strain of each element in shear band with global volumetric strain. (a) SMH¼0% and (b) SMH¼60%.
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in this study was about 10 times the mean particle size. This is
due to the high confining pressure. A decrease in the thickness
of the shear band with an increase in the confining pressure
was observed in the plane strain compression tests under low
confining pressures (Yoshida et al., 1994; Pradhan, 1997).
Moreover, Tejchman et al. (2012) reported that the thickness
of the shear band decreases with grain crushing because of an
increase in confining pressure, as determined by the FE
analysis. Toyoura sand might be crushed under high confining
pressures in this study. In addition, the thickness of the shear
band of (b) SMH¼60% is thinner than that of (a) SMH¼0% due
to the MH cementation. Next, to evaluate the volumetric strain
quantitatively, the shear band was extracted at each axial strain
level. The shear band that appears in the specimen is not
completely or necessarily a straight line. Therefore, a process
for extracting the element of a shear band is proposed
(Kikkawa et al., 2007). Fig. 10 shows the process for
establishing elements containing a shear band. In Fig. 10(a),
the centers of the shear band are extracted by connecting the
points where the displacement increment vector diverged right
and left from the perpendicular direction. Next, the shear band
was described in Fig. 10(b) by the elements through which the
line passed. Fig. 11(a) and (b) shows the volumetric strain for
each element at each axial strain level during the compression
tests. In the case of a hydrate saturation of SMH¼0%, each
shear band element shows dilative behavior, although the
global volumetric strain was kept compressive. It was observed
that the average volumetric strain of the shear band elements
decreased from an axial strain of 8%. Next, for a hydrate
saturation of SMH¼60%, most of the shear band elements
dilated markedly, although some elements showed compres-
sive behavior. The average volumetric strain of the shear band
elements was dilative from an axial strain of 6%.

6. Conclusions

Plane strain compression shear tests, with the measurement
of localized deformation, were performed using a high-
pressure low-temperature plane strain testing apparatus. From
the results, it was observed that the specimens showed a
change in the compressive volume at a confining pressure of
3.5 MPa. Moreover, for MH-bearing sand, marked increases in
the initial stiffness and strength were observed. The volumetric
strain changed from compressive to dilative, and for specimens
with SMH¼60%, a significant dilative behavior was observed.
Using an image analysis, the shear band of the MH-bearing
sand was found to be thinner than that of the host sand.
In addition, the dilative volumetric strain in the shear band
increased markedly when MH existed in the pore spaces.
There are still many characteristics that remain unclear, such

as the dependence of the degree of MH saturation and
variations in the effective confining pressure, shear strain rate,
and stress-anisotropy. This high-pressure low-temperature
plane strain testing equipment will contribute to investigations
of the shearing mechanism of MH-bearing sand. Such sys-
tematic experiments are expected to further the understanding
of the general and local mechanical properties of MH-
bearing sand.
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