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Darboux in 1878 provided a theory on the existence of first
integrals of polynomial systems based on the existence of sufficient
invariant algebraic hypersurfaces, called now the Darboux theory of
integrability. In 1979 Jouanolou successfully improved the Darboux
theory of integrability characterizing the existence of rational first
integrals, for this he used sophisticated tools of algebraic geometry.
The aim of this paper is to improve the classical result of Darboux
and the new one of Jouanolou taking into account the multiplicity
of the invariant algebraic hypersurfaces. Additionally our proof of
the improved result of Jouanolou is much simpler and elementary
than the original one. Some examples show that the improved
Darboux theory of integrability with multiplicity is much useful
than the classical one.
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1. Introduction

In many branches of applied mathematics, physics and, in general, in applied sciences appear
nonlinear ordinary differential equations. If a differential equation or vector field defined in R

n or C
n

has a first integral, then its study can be reduced in one dimension; of course working with real
or complex time, respectively. Therefore a natural question is: Given a vector field in R

n or C
n, how to

recognize if this vector field has a first integral? This question has no a good answer up to now.
In this paper we shall study the existence of Darboux first integrals of polynomial vector fields

in R
n or C

n , and in particular of rational first integrals. The best answer to this question using Dar-
boux first integral was given by Darboux [5,6] in 1878, and for the rational first integral the best
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answer was given by Jouanolou [9] in 1979. The Darboux theory of integrability provides a link
between the integrability of polynomial vector fields and the number of invariant algebraic hyper-
surfaces that they have.

The Darboux theory of integrability has been successfully applied to study some physical models
(see, for instance, [12,13,18,19]), centers, limit cycles and bifurcation problems of planar systems (see,
for instance, [8,11,16]). This theory needs a big number of invariant algebraic hypersurfaces for higher
dimensional systems, and this causes some difficulties for applying it. The goal of this paper is to
provide an improved version of the Darboux theory of integrability, which takes into account not
only the invariant algebraic hypersurfaces but also their multiplicity. Some examples show that our
improved version of Darboux theory of integrability is much useful than the classical ones.

The paper is organized as follows. In Section 2 we provide the notation and definitions, and we
state our main results. In Section 3 we work with the notion of functionally independence and first
integrals. Section 4 provides a proof of Theorem 1, which presents a characterization of the algebraic
multiplicity of an invariant algebraic hypersurface. The results of Section 3 and Theorem 1 will be
used in Section 5 for proving Theorem 3, which improves the Darboux theory of integrability in C

n

taking into account the multiplicities of the invariant algebraic hypersurfaces. Finally in Section 6 we
apply our theory to some examples.

2. Definitions and statement of the main result

Since any polynomial differential system in R
n can be thought as a polynomial differential system

inside C
n we shall work only in C

n . If our initial differential system is in R
n , once we get a complex

first integral of this system inside C
n taking the square of the modulus of this complex integral we

have a real first integral. Moreover if that complex first integral is rational, the square of its modulus
also is rational. In short in the rest of the paper we shall work in C

n .
As usual C[x] = C[x1, . . . , xn] denotes the ring of all complex polynomials in the variables

x1, . . . , xn . We consider the polynomial vector field in C
n

X =
n∑

i=1

Pi(x)
∂

∂xi
, x = (x1, . . . , xn) ∈ Cn, (1)

where Pi = Pi(x) ∈ C[x] have no common factor for i = 1, . . . ,n. The integer d = max{deg P1, . . . ,

deg Pn} is the degree of the vector field X . Usually for simplicity the vector field X will be represented
by (P1, . . . , Pn).

Let f = f (x) ∈ C[x]. We say that { f = 0} ⊂ C
n is an invariant algebraic hypersurface of the vector

field X if there exists a polynomial L f ∈ C[x] such that

X ( f ) =
n∑

i=1

Pi
∂ f

∂xi
= f L f .

The polynomial L f is called the cofactor of f = 0. Note that from this definition the degree of L f is at
most d − 1, and also that if an orbit x(t) of the vector field X has a point on f = 0, then the whole
orbit is contained in f = 0. This justifies the name of invariant algebraic hypersurface, because it is
invariant by the flow of the vector field X .

If f , g ∈ C[x] are coprime, we write ( f , g) = 1. Suppose that ( f , g) = 1, we say that exp(g/ f ) is
an exponential factor of the vector field X if there exists a polynomial Le ∈ C[x] of degree at most
d − 1 such that

X
(
exp(g/ f )

) = exp(g/ f )Le.

The polynomial Le is called the cofactor of the exponential factor. It is easy to prove that if exp(g/ f )
is an exponential factor, then f = 0 is an invariant algebraic hypersurface.
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Let Cm[x] be the C-vector space of polynomials in C[x] of degree at most m. Then it has dimension
R = ( n+m

n

)
. Let v1, . . . , v R be a base of Cm[x]. Denote by MR the R × R matrix

⎛
⎜⎜⎝

v1 v2 . . . v R

X (v1) X (v2) . . . X (v R)
.
.
.

.

.

.
. . .

.

.

.

X R−1(v1) X R−1(v2) . . . X R−1(v R)

⎞
⎟⎟⎠ , (2)

where X k+1(vi) = X (X k(vi)). The mth extactic hypersurface of X is given by the equation det MR = 0.
We also call det MR the mth extactic polynomial. From the properties of the determinant we note that
the extactic hypersurface is independent of the choice of the base of Cm[x]. Observe that if f = 0 is
an invariant algebraic hypersurface of degree m of X , then f divides det MR . This is due to the fact
that if f is a member of a base of Cm[x], then f divides the whole column in which f is located.

An algebraic hypersurface f = 0 is irreducible if f is an irreducible polynomial in C[x]. We say that
an irreducible invariant algebraic hypersurface f = 0 of degree m has defined algebraic multiplicity k or
simply algebraic multiplicity k if det MR �≡ 0 and k is the maximum positive integer such that f k divides
det MR ; and it has no defined algebraic multiplicity if det MR ≡ 0. If f = 0 is an invariant algebraic
hypersurface and f = f n1

1 · · · · · f ns
s with f i irreducible and ni ∈ N, then f i = 0 is an irreducible

invariant algebraic hypersurface (see for instance [10]).
We remark that the matrix (2) already appears in the work of Lagutinskii (see also Dobrovol’skii

et al. [7]). For a modern definition of the mth extactic hypersurface and a clear geometric explanation
of its meaning, the readers can look at Pereira [15]. Christopher et al. [4] used the extactic curve to
study the algebraic multiplicity of invariant algebraic curves of planar polynomial vector fields, and
prove the equivalence of the algebraic multiplicity with other three ones: the infinitesimal multiplic-
ity, the integrable multiplicity and the geometric multiplicity.

Let D be an open subset of C
n having full Lebesgue measure in C

n . A non-constant holomorphic
function H : D → C is a first integral of the polynomial vector field X on D if it is constant on all
orbits x(t) of X contained in D; i.e. H(x(t)) = constant for all values of t for which the solution x(t)
is defined and contained in D. Clearly H is a first integral of X on D if and only if X (H) = 0 on D.
Of course a rational first integral is a first integral given by a rational function, defined in the open
subset of C

n where its denominator does not vanish. A Darboux first integral is a first integral of the
form

(
r∏

i=1

f li
i

)
exp(g/h),

where f i , g and h are polynomials, and the li ’s are complex numbers.
Our first result presents a characterization under suitable assumptions of the algebraic multiplicity

of an invariant algebraic hypersurface using the number of exponential factors of X associated with
the invariant algebraic hypersurface. This characterization extends the algebraic multiplicity deduced
in [4] for invariant algebraic curves of C

2 to invariant algebraic hypersurfaces of C
n . The result will

play the key point for proving Theorem 3.

Theorem 1. For a given irreducible invariant algebraic hypersurface f = 0 of degree m of X , assume that X
restricted to f = 0 has no rational first integral. Then f has a defined algebraic multiplicity k if and only if the
vector field X has k − 1 exponential factors exp(gi/ f i), where gi is a polynomial of degree at most im and
(gi, f ) = 1, for i = 1, . . . ,k − 1.

We remark that if X is a planar vector field, then clearly Theorem 1 always holds without the
assumption on the non-existence of rational first integrals on f = 0. For higher dimensional systems
the assumption is necessary as the following example shows.
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The real polynomial differential system

ẋ = 1, ẏ = y(y − 2z), ż = −z(y − z)

has z = 0 as an invariant plane of multiplicity 2 and its restriction to z = 0 has the rational first
integral x + 1/y. But this system has no exponential factor associated with z = 0 as it is proved in
Appendix A.

This example shows that the additional assumption on the non-existence of the rational first inte-
gral on the invariant algebraic hypersurface for polynomial vector fields of dimension larger than 2 is
necessary. So if we are not in the assumptions of Theorem 1, it is possible that the number of expo-
nential factors does not depend on the algebraic multiplicity of the invariant algebraic hypersurface.

The classical Darboux theory of integrability in C
n with n � 2 is summarized in the next theorem.

Theorem 2. Assume that the polynomial vector field X in C
n of degree d > 0 has irreducible invariant alge-

braic hypersurfaces fi = 0 for i = 1, . . . , p. Then the following statements hold.

(a) If p � N + 1, then the vector field X has a Darboux first integral, where N = ( n+d−1
n

)
.

(b) If p � N + n, then the vector field X has a rational first integral.

Statement (a) of Theorem 2 is due to Darboux [5,6], and statement (b) of Theorem 2 was proved
by Jouanolou [9]. For a short proof of statement (b) see [2,3] for n = 2 and [14] for n � 2.

The following theorem improves the Darboux theory of integrability taking into account not only
the invariant algebraic hypersurfaces but also their algebraic multiplicities.

Theorem 3. Assume that the polynomial vector field X in C
n of degree d > 0 has irreducible invariant alge-

braic hypersurfaces.

(i) If some of these irreducible invariant algebraic hypersurfaces has no defined algebraic multiplicity, then
the vector field X has a rational first integral.

(ii) Suppose that all the irreducible invariant algebraic hypersurfaces fi = 0 have defined algebraic multiplic-
ity qi for i = 1, . . . , p. If X restricted to each hypersurface fi = 0 having multiplicity larger than 1 has no
rational first integral, then the following statements hold.
(a) If

∑p
i=1 qi � N +1, then the vector field X has a Darboux first integral, where N is the number defined

in Theorem 2.
(b) If

∑p
i=1 qi � N + n, then the vector field X has a rational first integral.

Statement (i) follows from the second part of Theorem 3 of Pereira [15] (see also Theorem 5.3
of [4] for dimension 2), we will not prove it. We state it here for completeness. Under the as-
sumption (b) of Theorem 3 any orbit of the vector field X is contained in an invariant algebraic
hypersurface. We remark that if the vector field X is 2-dimensional, then the assumption on the
non-existence of rational first integral of X restricted to the invariant algebraic curves is not neces-
sary.

3. Preliminary results on first integrals

Assume that H j(x) for j = 1, . . . ,m are holomorphic first integrals of system (1) defined in a
full Lebesgue measurable subset D1 of C

n . For each x ∈ D1 let r(x) be the rank of the m vectors
∇H1(x), . . . ,∇Hm(x) in C

n , where ∇Hk(x) denotes the gradient of the function Hk(x) with respect
to x. We say that H1, . . . , Hm are functionally independent in D1 if r(x) = m for all x ∈ D1 except
perhaps for a subset of Lebesgue measure zero.

We say that H1, . . . , Hm are k-functionally independent in D1 if there exist k of these H1, . . . , Hm

which are functionally independent in D1, and any k+1 elements of {H1, . . . , Hm} are not functionally
independent in any positive Lebesgue measurable subset of D1.
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It is easy to check that if m first integrals H1, . . . , Hm of a polynomial vector field in C
n are k-

functionally independent then k � n − 1.
The following theorem proved in [14] is the first key point for proving Theorem 3(b).

Theorem 4. For k < m we assume that H1, . . . , Hm are k-functionally independent first integrals of the poly-
nomial vector field X given by (1) and defined in a full Lebesgue measurable subset of C

n. Without loss of
generality we can assume that H1, . . . , Hk are functionally independent.

(a) For each s ∈ {k +1, . . . ,m} there exist holomorphic functions Cs1(x), . . . , Csk(x) defined in a full Lebesgue
measurable subset of C

n such that

∇Hs(x) = Cs1(x)∇H1(x) + · · · + Csk(x)∇Hk(x). (3)

(b) For every s ∈ {k + 1, . . . ,m} and j ∈ {1, . . . ,k} the function Csj(x) (if not a constant) is a first integral of
system (1).

4. Proof of Theorem 1

For proving Theorem 1 we need the following lemma. Denote by C[x][ε] the ring of polynomials
in ε with coefficients polynomials in x, and by C[x][ε]/〈εk〉 the set formed by elements of C[x][ε]
modulus the ideal generated by εk .

Lemma 5. Let f = 0 be an irreducible invariant algebraic hypersurface having degree m of the vector field X
of degree d. The following hold.

(a) If for any ε > 0 there exist

F = f0 + f1ε + · · · + fk−1ε
k−1 ∈ C[x][ε]/〈εk〉,

L F = L0 + L1ε + · · · + Lk−1ε
k−1 ∈ C[x][ε]/〈εk〉,

with f0 = f , f1, . . . , fk−1 ∈ Cm[x], f1 not a multiple of f , and L0, L1, . . . , Lk−1 ∈ Cd−1[x] such that

X (F ) = F L F in C[x][ε]/〈εk〉, (4)

then X has k − 1 exponential factors exp(gi/ f i) with gi coprime with f and of degree at most im for
i = 1, . . . ,k − 1.

(b) Assume that X restricted to f = 0 has no rational first integral. Then the inverse of statement (a) holds.

The results of Lemma 5 can be found in [4] for polynomial vector fields in the plane without the
assumption of statement (b). Here we show that these results extend to polynomial vector fields of
arbitrary dimension but with this additional assumption.

We must say that for higher dimensional systems the assumption in (b) is necessary. For instance,
the following system

ẇ = (y + z)w2, ẏ = (
1 + y2 + yz

)
w, ż = z + bw2 − cwz + (

yz + z2)w (5)

has the exponential factors E1 = exp(y/w) and E2 = exp((1/2 + y2/2 + wz)/w2) with respectively
the cofactors LE1 = 1 and LE2 = bw − cz. Choose F = f0 + f1ε and L F = L0 + L1ε with f0 = w ,
L0 = w(y + z), f1 = y and L1 = LE1 , we have X1(F ) = F L F in C[w, y, z][ε]/〈ε2〉, where X1 denotes
the vector field defined by (5). But easy calculations show that there are not f2 ∈ C[w, y, z] and
L2 ∈ C2[w, y, z] such that X1(F ) = F L F in C[w, y, z][ε]/〈ε3〉 with F = f0 + f1ε + f2ε

2 and L F =
L0 + L1ε + L2ε

2.
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Proof of Lemma 5. (a) As usual we denote by C(x) the field of rational functions in x. We use C(x){ε}
to denote the set of all series in ε with coefficients in C(x). Denote by F f the field formed by all
quotients of two elements from C[x]/〈 f 〉, where 〈 f 〉 is the ideal generated by f in C[x].

Taking the logarithm of F we have

log F = log f0 + ε
g1

f0
+ · · · + εk−1 gk−1

f k−1
0

in C(x){ε}/〈εk〉,
with

gi = (−1)i−1

i
f i
1 + f0Gi( f0, . . . , f i), (6)

where Gi is a homogeneous polynomial of degree i − 1 in f0, . . . , f i . Observe that deg gi � im and
(gi, f ) = 1 because ( f1, f ) = 1. Then it follows from Eq. (4) that exp(gi/ f i), i = 1, . . . ,k − 1, are k − 1
exponential factors of X .

(b) Let Fi := exp(gi/ f i), i = 1, . . . ,k − 1, be the k − 1 exponential factors of X with cofactors L Fi .
We will prove this part by induction.

For k = 2, taking f0 = f , f1 = g1, L0 = L f and L1 = L F1 , then F = f0 + f1ε and L F = L0 + L1ε are
suitable for the lemma.

Assume that for the number of exponential factors 2 � l − 1 < k − 1 there exist

F (l) = f0 + f1ε + · · · + fl−1ε
l−1 in C[x][ε]/〈εl〉,

L F (l) = L0 + L1ε + · · · + Ll−1ε
l−1 in C[x][ε]/〈εl〉,

such that Eq. (4) holds in C[x][ε]/〈εl〉, where f i ∈ Cm[x] and Li ∈ Cd−1[x] for i = 0,1, . . . , l − 1, and
( f1, f ) = 1.

Assume that we have l exponential factors. Taking

L∗
F (l) = L0 + L1ε + · · · + Ll−1ε

l−1 + L∗
l ε

l,

with L∗
l = − f −1

0

∑l−1
i=1 f i Ll−i , easy calculations show that

X
(

F (l)) = F (l)L∗
F (l) in C(x){ε}/〈εl+1〉.

Taking the logarithm of F (l) in C(x){ε}/〈εl+1〉 we get that

log F (l) = log f0 + g1

f0
ε + · · · + gl−1

f l−1
0

εl−1 + g∗
l

f l
0

εl,

where gi for i = 1, . . . , l −1 and g∗
l have the form as those given in (6). It follows that X (g∗

l / f l
0) = L∗

l ,

and consequently X (g∗
l ) = lL0 g∗

l − f l−1
0

∑l−1
i=1 f i Ll−i .

Using X ( f1) = f1L0 + f0L1 and the fact that exp(gl/ f l) is an exponential factor of X , we can
prove that X (gl/ f l

1) = 0 on f = 0. This implies that gl/ f l
1 is a first integral of X in F f . By the

assumption we get that gl/ f l
1 is a constant on f = 0, denoted by cl . Clearly cl �= 0. From (6) we

have g∗
l = (−1)l−1l−1 f l

1 on f = 0. It follows that gl − (−1)l−1lcl g∗
l = 0 on f = 0. By Hilbert’s Null-

stellensatz [1] and the fact that f0 = f is irreducible, there exists a polynomial g∗
l−1 such that
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gl = (−1)l−1lcl(g∗
l + f0 g∗

l−1). It is necessary that g∗
l−1 has degree at most (l − 1)m. Moreover we get

from X (gl) = lL0 gl + L Fl f l and the expression of X (g∗
l ) that

X
(

g∗
l−1

) = (l − 1)L0 g∗
l−1 + f l−2

0

(
l−1∑
i=1

f i Ll−i + (−1)l−1 f0L Fl /(lcl)

)
.

Recall that L Fl is the cofactor of the exponential factor Fl = exp(gl/ f l). Using this last equality we can
verify that X (g∗

l−1/ f l−1
1 ) = 0 on f = 0. This implies that there exists a constant cl−1 and a polynomial

g∗
l−2 of degree at most (l − 2)m such that g∗

l−1 = (−1)l−2(l − 1)cl−1 gl−1 + f0 g∗
l−2. Moreover we have

X
(

g∗
l−2

) = (l − 2)L0 g∗
l−2 + f l−3

0

(
l−1∑
i=1

f i Ll−i + (−1)l−1 f0L Fl /(lcl) − (−1)l−2(l − 1)cl−1 f0Ll−1

)
.

Repeating this last process for i = 3, . . . , l−1, we get g∗
l+1−i = (−1)l−i(l+1− i)cl+1−i gl+1−i + f0 g∗

l−i
with cl+1−i a constant and g∗

l−i a polynomial of degree at most (l − i)m. The polynomial g∗
l−i satisfies

X
(

g∗
l−i

) = (l − i)L0 g∗
l−i + f l−1−i

0

(
l−1∑
i=1

f i Ll−i + (−1)l−1 f0L Fl /(lcl)

− (−1)l−2(l − 1)cl−1 f0Ll−1 − · · · − (−1)l−i(l + 1 − i)cl+1−i f0Ll+1−i

)
.

Take fl = g∗
1 and

F l+1 = f0 + ε f1 + · · · + εl fl,

L F l+1 = L0 + εL1 + · · · + εl Ll,

with Ll = (−1)l−1 L Fl /(lcl) − (−1)l−2(l − 1)cl−1Ll−1 − · · · − (−1)2c2L2. Then we have

X
(

F l+1) = F l+1 L F l+1 in C[x][ε]/〈εl+1〉.
By induction we complete the proof of statement (b), and consequently this completes the proof of
the lemma. �
Proof of Theorem 1. Using Lemma 5 and taking into account the additional necessary assumption on
the non-existence of rational first integrals of the vector field X restricted to the irreducible invariant
algebraic hypersurface f = 0, we can prove the sufficient part of Theorem 1 in the same way as the
proof of Proposition 5.7 of [4], and the necessary part of Theorem 1 in the same way as the proof of
Proposition 5.8 and Theorem 5.10 of [4]. �
5. Proof of Theorem 3

As we have said statement (i) is essential the second part of Theorem 3 of Pereira [15], now we
only prove statement (ii).

Let f i(x) = 0 for i = 1, . . . , p be an irreducible invariant algebraic hypersurface having the algebraic
multiplicity qi . Theorem 1 shows that for each f i we have qi − 1 exponential factors exp(gij/ f j),
j = 1, . . . ,qi −1. Denote by kr , for r = 1, . . . , K := ∑p

i=1 qi , the K cofactors of the p invariant algebraic
hypersurfaces and of the K − p exponential factors. Recall that each cofactor is a polynomial of degree
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at most d − 1, where d is the degree of the vector field X . To simplify the notations we denote by Fr ,
with r ∈ {1, . . . , K }, the irreducible invariant algebraic hypersurface or the exponential factor of the
vector field X having cofactor kr . Then we have X (log Fr) = kr for r = 1, . . . , K .

Since every polynomial in C[x] is uniquely determined by its coefficients, and so it can be seen as a
vector. Under this notation Cd−1[x] forms a C-vector space of dimension N . Recall that N := ( n+d−1

n

)
.

(a) If K � N + 1, then the K cofactors are linearly dependent. So there exist constants σ1, . . . , σK ∈
C not all zero such that

∑K
r=1 σrkr = 0. This last equation can be written as X (log(F σ1

1 . . . F σK
K )) = 0.

So log(F σ1
1 . . . F σK

K ) is a first integral of X . This proves statement (a).
(b) Let ρ be the dimension of the vector subspace of V generated by {k1(x), . . . ,kN+n(x)}. Then

we have ρ � N . Now in order to simplify the proof and the notation we shall assume that ρ = N
and that k1(x), . . . ,kN (x) are linearly independent in V . If ρ < N the proof would follow exactly equal
using the same arguments.

For each s ∈ {1, . . . ,n} there exists a vector (σs1, . . . , σsN ,1) ∈ C
N+1 such that

σs1k1(x) + · · · + σsNkN (x) + kN+s(x) = 0. (7)

Eq. (7) can be written as

X
(
log

(
F σs1

1 . . . F σsN
N F N+s

)) = 0.

This implies that the functions Hs = log(F σs1
1 . . . F σsN

N F N+s) for s = 1, . . . ,n are holomorphic first inte-
grals of the vector field X , defined on a convenient full Lebesgue measurable subset Ω1 of C

n .
We claim that the n first integrals Hi ’s are functionally dependent on any positive Lebesgue mea-

surable subset of Ω1. Otherwise there exists a positive Lebesgue measurable subset Ω2 of Ω1 where
they are functionally independent, then from the definition of first integral we have

∂ Hi(x)

∂x1
P1(x) + · · · + ∂ Hi(x)

∂xn
Pn(x) = 0, for i = 1, . . . ,n and for all x ∈ Ω2,

and from the functionally independence this last homogeneous linear system of dimension n only has
the trivial solution Pi(x) = 0 for i = 1, . . . ,n on Ω2, and consequently the vector field X ≡ 0 in C

n , in
contradiction with the fact that X has degree d > 0. So the claim is proved.

We define r(x) = rank{∇H1(x), . . . ,∇Hn(x)} and m = max{r(x): x ∈ Ω1}. Then there exists an open
subset Θ of Ω1 such that m = r(x) for each x ∈ Θ and m < n. Without loss of generality we can
assume that {∇H1(x), . . . ,∇Hm(x)} has the rank m for all x ∈ Θ . Therefore, by Theorem 4(a) for each
x ∈ Θ there exist Ck1(x), . . . , Ckm(x) such that

∇Hk(x) = Ck1(x)∇H1(x) + · · · + Ckm(x)∇Hm(x), k = m + 1, . . . ,n. (8)

By Theorem 4(b) it follows that the function Ckj(x) (if not a constant) for j ∈ {m + 1, . . . ,n} is a first
integral of the vector field X defined on Θ .

From the construction of the Hi ’s we know that each ∇Hi is a vector of rational functions. Since
the vectors {∇H1(x), . . . ,∇Hm(x)} are linearly independent for each x ∈ Θ , solving system (8) we get
a unique solution (Ck1(x), . . . , Ckm(x)) on Θ for every k = m + 1, . . . ,n. Clearly each function Ckj(x)
for j ∈ {1, . . . ,m} is rational and by Theorem 4(b) it satisfies

∂Ckj

∂x1
P1 + · · · + ∂Ckj

∂xn
Pn = 0 on Θ.

Since Θ is an open subset of C
n and Ckj(x) is rational, it should satisfy the last equation in C

n except
possibly a subset of Lebesgue measure zero where Ckj is not defined. Hence if some of the functions
Ckj(x)’s is not a constant, it is a rational first integral of the vector field X .
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Now we shall prove that some function Ckj is not a constant. Eq. (8) implies that if all functions
Ck1, . . . , Ckm are constants, then Hk(x) = Ck1 H1(x)+· · ·+Ckm Hm(x)+ log Ck , where Ck is a constant. So
we have F σk1

1 . . . F σkN
N F N+k = Ck(F σ11

1 . . . F σ1N
N F N+1)

Ck1 . . . (F σm1
1 . . . F σmN

N F N+m)Ckm for k ∈ {m + 1, . . . ,n}.
This is in contradiction with the fact that F1, . . . , F N+n are irreducible and pairwise different Darboux
polynomials and pairwise different exponential factors. Hence we must have a non-constant function
Ck0 j0 (x) for some j0 ∈ {1, . . . ,m} and some k0 ∈ {m+1, . . . ,n}. This completes the proof of Theorem 3.

6. Examples

In this section we provide some examples showing the application of our improved Darboux the-
ory of integrability.

Example 1. The real planar quadratic polynomial differential system

ẋ = x2 − 1, ẏ = −3 + y − x2 + xy (9)

was studied in [17]. Choosing 1, x, y as a base of R1[x, y] we get the 1th extactic polynomial
−(x − 1)3(x + 1)(x + 3). This means that the invariant lines x = 1 and x = −1 have multiplicities 3
and 1, respectively. Since 3 + 1 = 4 = ( 2+2−1

2

) + 1, our improved Darboux theory of integrability (see
Theorem 3) shows that system (9) has a Darboux first integral.

Associated with x = 1 we have exponential factors e(y−2)/(x−1) with cofactor 1−x and e(y−2)2/(x−1)2

with cofactor 4−2y. Obviously, the invariant lines x = 1 and x = −1 have cofactors x+1 and x−1. So
using the proof of statement (a) of Theorem 3 we get a Darboux first integral H = (x + 1)e(y−2)/(x−1) .

Example 2. Consider the real 3-dimensional polynomial differential system

ẋ = −x2, ẏ = 1 − 2xy + 3xz, ż = z(1 − 2x). (10)

In the definition of extactic polynomial, choosing 1, x, y, z as a base of R1[x, y, z] we can prove easily
that the invariant plane z = 0 has multiplicity 1 and that the invariant plane x = 0 has multiplicity 4.
In addition, we can check that system (10) restricted to x = 0 has no rational first integral. Since
1 + 4 = 5 = ( 3+2−1

3

) + 1, it follows from Theorem 3 that system (10) has a Darboux first integral.
For obtaining the explicit expression of the Darboux first integral, we compute the exponen-

tial factors. In fact associated with the invariant plane x = 0 we have the three exponential fac-
tors E1 = exp(1/x) with cofactor LE1 = 1, E2 = exp((1 − 2xy)/x2) with cofactor LE2 = 2y − 6z and
E3 = exp((1 − 3y + 9x2z)/x3) with cofactor LE3 = −9z. On the other hand corresponding to the in-
variant planes x = 0 and z = 0 the cofactors are Lx = −x and Lz = 1 − 2x, respectively. So again using
the proof of statement (a) of Theorem 3 we obtain the Darboux first integral H = x2e1/xz−1.

Example 3. The real 3-dimensional polynomial differential system

ẋ = −x2, ẏ = y(1 − 2x − y + 2z), ż = z(1 − 2x + 3y + 2z) (11)

has three invariant planes x = 0 with multiplicity 2, y = 0 with multiplicity 2, and z = 0 with multi-
plicity 1. The number of these invariant planes taking into account their multiplicity is 5. Hence, we
get from Theorem 3 that system (11) has a Darboux first integral.

Some computations show that associated with the multiple invariant planes x = 0 and y = 0
system (11) has respectively the exponential factors e1/x with cofactor L1 = 1, and ez/y with co-
factor L2 = 4z. Combining the three invariant planes we obtain the Darboux first integral H =
y3zx−8e−4/xe−2z/y .

The above examples show that our improved Darboux theory of integrability is much more useful
than the classical one.
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Appendix A

Proposition A.1. The real polynomial differential system

ẋ = 1, ẏ = y(y − 2z), ż = −z(y − z) (A.1)

has no exponential factors associated to the invariant plane z = 0 of multiplicity 2.

Proof. Assume that system (A.1) has an exponential factor associated with z = 0. Let E = exp(g/zs)

be the exponential factor with cofactor L, where g is a polynomial of degree at most s � 1, and L is
a polynomial of degree at most 1.

By the definition of exponential factor we get that g should satisfy the equation

∂ g

∂x
+ y(y − 2z)

∂ g

∂ y
− z(y − z)

∂ g

∂z
= −s(y − z)g + Lzs. (A.2)

Set L = L0 + L1, where L0 is a constant and L1 is a homogeneous polynomial of degree 1. In what
follows we also denote by gi the homogeneous polynomial of degree i of g .

If deg g = s, equating the homogeneous part of degree s + 1 of (A.2) we get

y(y − 2z)
∂ gs

∂ y
− z(y − z)

∂ gs

∂z
= −s(y − z)gs + L1zs.

Using the Euler’s formula for homogeneous functions this last equation is equivalent to

x(y − z)
∂ gs

∂x
+ y(2y − 3z)

∂ gs

∂ y
= L1zs. (A.3)

This implies that x divides y(2y − 3z)∂ gs/∂ y − L1zs . Hence we must have ∂ gs/∂ y = 0 because y2

does not divide L1zs . It follows that Eq. (A.3) holds only if L1 = 0 and ∂ gs/∂x = 0. This proves that
gs = azs with a a constant. But in this case the exponential factor E is essentially the same with g of
degree less than s.

If deg g = s − 1, equating the homogeneous part of degree s of Eq. (A.2) we get that L = L0 and
gs−1 satisfies the following equation

y(y − 2z)
∂ gs−1

∂ y
− z(y − z)

∂ gs−1

∂z
= −s(y − z)gs−1 + L0zs. (A.4)

If s = 1, it is easy to show that gs−1 = 0. So system (A.1) has no exponential factor. For s > 1, set
gs−1 = zps−2(x, y, z) + qs−1(x, y) with ps−2 and qs−1 homogeneous polynomials of degrees s − 2 and
s − 1, respectively. Then we obtain from (A.4) with z = 0 that y∂qs−1/∂ y = −sqs−1. This last equation
has only the solution qs−1(x, y) = 0. So we have gs−1 = zps−2(x, y, z).
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From Eq. (A.4) we get that

y(y − 2z)
∂ ps−2

∂ y
− (y − z)

(
ps−2 + z

∂ ps−2

∂z

)
= −s(y − z)ps−2 + L0zs−1. (A.5)

If s = 2, we get from (A.5) that ps−2 = 0, and so system (A.1) has no exponential factor. For s > 2, set
ps−2 = zps−3(x, y, z) + qs−2(x, y) with ps−3 and qs−2 homogeneous polynomials of degrees s − 3 and
s−2, respectively. Then we obtain from (A.5) with z = 0 that y∂qs−2/∂ y = −(s−1)qs−2. This equation
has only the solution qs−2(x, y) = 0. So we have ps−2 = zps−3(x, y, z). Moreover ps−3 satisfies the
following equation

y(y − 2z)
∂ ps−3

∂ y
− (y − z)

(
2ps−3 + z

∂ ps−3

∂z

)
= −s(y − z)ps−3 + L0zs−2.

This equation has a similar form than (A.5).
By induction we can prove that gs−1 = bzs−1 with b a constant. Substituting gs−1 into Eq. (A.4)

yields b = 0. So g has degree at most s − 2.
If deg g = k � s − 2, then Eq. (A.2) implies that L = 0. Moreover, we have

y(y − 2z)
∂ gk

∂ y
− z(y − z)

∂ gk

∂z
= −s(y − z)gk. (A.6)

Working in a similar way to the proof of (A.4) we can prove that (A.6) has only the solution gk = 0.
The above proof shows that system (A.1) has no exponential factor associated with the invariant

plane z = 0. This completes the proof of the proposition. �
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