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Abstract

We show that the vacuum expectation value of the inflaton at the Peccei—Quinn axion scale can generate the supersymmetric
Higgs massu term. This provides an inflationary simultaneous solution to the strong CP problem andptioblem of the
minimal supersymmetric Standard Model, and gives a testable prediction fprpbﬂametemz ~ (0.25—05)mg, wheremg

is the soft Higgs scalar mass. Our model involves a very small Yukawa coupling of ord¥t ¥ehich could originate from an

extra-dimensional scenario or type | string theory.
0 2005 Elsevier B.V. Open access under CC BY license

1. Introduction

The w problem of the minimal supersymmetric
Standard Model (MSSM), the origin of the supersym-
metric Higgs mass parametgiH, H; where H,, H;
are the two Higgs doublets andis of the same or-
der of magnitude as the soft supersymmetric (SUSY)
breaking parameters, has long been a pugleAn-
other puzzle is the physical nature of the scalar field
which drives cosmological inflation, known as the in-
flaton field. It is well known that the inflaton cannot
be identified with the Higgs fields of either the Stan-
dard Model or one of its SUSY extensions, and there
are few physical candidates for the inflaton field in the
literature[2].
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The possible connection between the strong CP
problem and the: problem in supersymmetry was ex-
plored some time agf8], and a non-renormalisable
operator responsible for generating theterm was
proposed irf4]. The first simultaneous solution to the
strong CP problem ang problem based omenor-
malisable operators was proposed [B]. In [5] the
u term is generated by the VEV of a singlet field
N, in a similar way to the next-to-minimal supersym-
metric Standard Model (NMSSM®,7]: ANH, H; —
wH,H;, whereu = A(N). However, whereas in the
NMSSM the vacuum expectation value (VEV) of the
singlet field NV takes a value of order the electroweak
breaking scale, ifi5] its VEV is of order the Peccei—
Quinn symmetry breaking sca[8], allowing an in-
visible axion solution to the strong CP probldg@

10]. Since theu parameter must be of order the TeV
scale, this implies that the dimensionless Yukawa cou-
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pling » must be extremely small, possibly of order We shall first outline the particle content and inter-

1010 5]. actions of our model. Then, in Secti@we discuss
The scenario proposed 8] also provides a model  the potential and the minimum reached at the end of
of inflation since the NMSSM operatarN? is re- inflation. To stabilise this minimum and end inflation

placed by the operatarp N2, whereg is identified as ~ we must require that the ratio of the soft mass and
the inflaton field andv as the waterfall field of hybrid  the trilinear falls within a certain range which leads
inflation[5]. Whereas the NMSSM operatoN 2 is re- to the above prediction for the parameter. Then, in
sponsible for &3 symmetry, leading to problems with ~ Section4, we review some basic inflationary require-
cosmological domain walls when it breaks, the term ments. Sectio® concludes the Letter.

k¢ N2 permits a globaly (1)pq symmetry, leading to
a solution to the strong CP probl€Bi. It also allows
hybrid inflation providing the dimensionless Yukawa

couplings satisfy. ~ « ~ 1020, Such small Yukawa 2. Themodel

couplings could arise from an extra-dimensional sce-

nario due to volume suppressi¢hl]. Note that the To begin we define the model in terms of a super-
presence of the termgN? is crucial not only to al- potential and the soft potential:

low hybrid inflation to proceed but also to stabilise the
potential in a natural waj.
In this Letter we discuss a model in which the W =i¢H,Hy + kN2, Q)
wu term is provided by the same inflaton field which 2
drives the superluminal expansion of the early uni- Vsoft =V (0) +AA:¢HyHy +k AcpN” +h.c.
verse. To be precise, we suggest a simultaneous solu- +m3(IN?+ |Hy|? + | Hal?) —m3101%.  (2)
tion to the strong CP and problems in the framework
of hybrid inflation in which the. term is generated by Hereg andN are, respectively, the inflaton and water-
an operatoi¢ H, Hy Wwhereg is the inflaton field. The  fall fields and are singlets of the MSSM gauge group
w term is then generated by the VEV of the inflaton  responsible for inflation. The Higgs fields,,, H,
field ¢ at the end of inflationi¢ H, Hy — wH, Hy have standard MSSM quantum numbers. The dimen-
wherep = A(¢). We shall also require a termp N2 sionless couplings., « are ©(10-19), and we have
which is crucial to maintain the stability of the po- assumed a common scalar soft mass squared for the
tential, whereN still plays the part of the waterfall  Higgs andn fields, but allowed a different (lighter)
field in hybrid inflation. The above variation is inter-  negative, soft mass squared for the inflaton figlh
esting since, unlike the original version of the model, order to satisfy the slow roll conditions and yield an
it leads to a testable prediction of the parameter: acceptable inflationary trajectory.
12~ (0.25-Q5)m3, wheremy is the soft Higgs scalar The generation of the term is similar to that of the
mass® The generation of th@ term by the inflaton ~ NMSSM, but the NMSSM is plagued by domain walls
field also implies deeper connections between SUSY [14-17] (associated with breaking a discrete symme-
Higgs phenomenology, inflation, and the strong CP try) created in the early universe. Our model does not
problem, and from a theoretical point of view admits a face this problem since it does not have &A term
type | string theory embeddir{d 3]. and therefore replaces the discrétesymmetry with
the continuous PQ symmetry mentioned above. The
PQ domain wall problem is discussed in Sectin
The charges op, N and the Higgs under the PQ sym-

1 Models with only the term.N H, H; have also subsequently metry must satisfy the following requirements:
been considerefll2], but without the additional tereg¢N? the
vacuum is not necessarily stable. S.K. is grateful to R. Nevzorov
for pointing this out. _ _
2 This soft mass is assumed to be universal for bidith H,; and Q¢ + Qn, + Qn, =0, Q¢ +20n =0 (3)
the N field. This universality is a feature of the model’s type | string
construction, derived iftL3]. and the quark fields have the usual axial PQ charges.
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3. The potential

In this section we construct and minimise the po-
tential and calculate the VEVs relevant to our model.
We initially search the potential in the region of zero
Higgs VEV post inflation. For our model to map on
to the MSSM at low energies the Higgs must be min-

imised at zero at high scales. Subsequently radiative y, =

electroweak symmetry breaking (EWSB) then occurs
in the usual way, resulting in non-zero Higgs VEVs at
low energy. We shall not discuss this radiative EWSB
mechanism further in this paper, since itis well known,
but instead shall confine our attention to showing that
the Higgs VEVs are indeed zero at high energy. Thus
the VEV of the inflaton generates an effective TeV
scaleu term, leading to an effective MSSM theory
valid below the PQ scale with standard EWSB.

For the first step in the derivation we write down the
relevant parts of the supersymmetric scalar potential
(derived from the superpotential E(.)) and the soft
scalar potential:

Veusy= |AHy Ha + 1€ N2|? + 2219 H, |2 + 22| Hy |2
+4c?|pN 2,

Vsoft= V(0) + A A3 ¢ Hy Hy + k AcdN? + h.c.
+m(|Ha > + | Ha > + IN[?) —m3|¢[%.  (5)

The full scalar potential is given by = Vsusy+ Vsoft.
Henceforth, for this section, we skt=«, A; = A,.
This is done for simplicity here, but can be justified in
terms of an explicit high scale type | string model.

Since the Higgs fields will eventually achieve TeV
scale VEVs, whereas th&¥ and ¢ fields achieve PQ
scale VEVs, their contribution to the energy density
will be quite negligible’ Of course one must check
that the higgses do not also receive PQ scale VEVS,
and that their zero tree-level VEVs represent a stable
vacuum, which we will subsequently do. Minimising
the tree level potential gives

(4)

— A)L
(@) T (6)
A)\ 4m(2)
N)==+ 1-—, 7
W) v\ A2 @
(H,) = (Hq) =0, 8

3 Note that this approximation is not valid for the model§lia].
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where we have assumed thaj ~ 0. We will refer to
this as the “good” minimum as it is phenomenologi-
cally preferred.

Looking back at Eq(1) we see that whepr moves
to its VEV we obtain a supersymmetric mass term for
the higgses, @& term:

Ay Ay

4. 4 ©)
Since is the only dimensionless coupling in Ed.)

u automatically appears at the electroweak scale.

The soft mass parameters are constrained by in-
flationary requirements, and this will lead to the pre-
diction of theu parameter in our approach. The re-
quirement that inflation ends implie§} > 4m3 as a
necessary condition. lA2 < 4m3 then N only has a
minimum at zero and never destabilises to end infla-
tion. In our model we have this bound and an addi-
tional upper bound on the trilinears which we will now
derive.

Now we need to show that the “good” solution is a
minimum of the potential (in the absence of radiative
corrections). It is important to check tha#,, ;) =0
since we do not want electroweak symmetry to be
broken at the high scale. In order to check this we
first need to locate the turning points to ensure that
H, = H; =0 is a valid solution. Then we must exam-
ine this point to see if it is a minimum.

Solving aBTVu = 0 for H, gives us turning points for
H, and, since the potential is symmetric under inter-
change ofH, and H,, the solutions toa‘r’TVd =0 and

Z,% = 0 must be related by exchangirff), and H;.
As a result we can solvey- = 0 by settingH, =
H; = H. We find two non-trivial solutions namely
the “good” solution in Eqs(6)—(8), and another with
(H) # 0 which we will refer to as the “bad” solution

on account of its unphysically large Higgs VEV:

Ay
Hy=+— [1-
(H) %

2
4mgy

Az (20)
The discussion of the “bad” solution will be deferred
until Appendix A We also note that there exists a triv-
ial solution (a maximum) with all fields at zero.

Now that we have shown th&t = 0, and by exten-
sion the “good” solution, is valid we want to determine
the conditions under which this solution is a local min-
imum of the potential.
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To prove this we need to show that the Hessian is
positive definite. If

Vo, Ve,H, VH9e VHN
Vi, Ve VHie VHIN (11)
Vo,  Von, Voo Von
Ve, Vyu, Vne Viwn

is a positive definite matrix, then the “good” solution is
a minimum. To demonstrate this is true it is sufficient
to show that all the eigenvalues of Egj1) are positive.

This requirement can be expressed in terms of the ratio

between|A;| and mg which we parametrise by =
%. We find that bothx? > 4 andx? < 8 must be
satisfied for the point to be a minimum. Expressed as
a function of the soft terms we have

8mZ > |A;)? > 4m}. (12)

For |A;]? > 8m3 Eq. (11) has both positive and nega-
tive eigenvalues and we would have a saddle point.

Since theu parameter is given by E@9) the con-
straint in Eq.(12) leads to a prediction of the para-
meter in the rangé:

n? = (0.25— 0.5)m3. (13)

4. Inflation

Any model purporting to describe inflation must
satisfy some basic requirements: it must have a field
that is slowly rolling for a sufficient amount of ex-
pansion, it must predict curvature perturbations in line
with CMB observations and its prediction for the spec-
tral index must be consistent with current measure-
ments. In particular it must satisfy the slow roll con-
ditions, ¢ « 1 andn « 1, and have a spectral index
compatible withng; = 0.99 + 0.04 [18,19] The two
slow roll conditions are usually expressed as

l 2 V/ 2
ey = EmP<7> <1, (14)
"
Inn|= ‘m%v <1, (15)

4 It should be pointed out at this stage that the “good” solution
is not the global minimum of the potential. The ramifications of this
fact and potential solutions are discussedppendix A
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where N specifies when, in terms of number of e-
folds before the end of inflatiorx, andn were eval-
uated. They are evaluated at the time when the scales,
that are currently just re-entering, left the horizon. For
our model, with its relatively small vacuum energy
during inflation, N ~ 45. Here we are usingip =
MPIanck/\/g-

In hybrid inflation[20—24] during the inflationary
epoch the inflaton fieldp slowly rolls along some
almost flat direction. A second “waterfall” field/
whose mass squared is positive during inflation, and
hence whose field value is held at zero during inflation,
is subsequently destabilised when the inflaton reaches
a critical value. After this its mass squared becomes
tachyonic and it rolls out to a non-zero value, effec-
tively ending inflation. In fact, as is the case in our
model, inverted hybrid inflatiof25] occurs if the soft
mass squared for the inflaton is negative, and normal
hybrid if the soft mass squared was positive. In both
cases there is a critical point that marks the transition
from positive to negative effective mass squared¥or

In the previous section we saw that there are two
non-trivial minima that we labelled “good” and “bad”.
Which minimum is reached depends on the inflation-
ary trajectory. If a critical point is reached at whigh
destabilises first then the fields will fall into the “good”
minimum. On the other hand if the corresponding crit-
ical point for the Higgs is reached first then we roll out
to the “bad” minimum. It is therefore important to ex-
amine the critical points for thél,, H; andN fields.

The critical values for the Higgs andl fields can
be derived from Eq(11) by considering the stability of
the Higgs andV along a trajectory that hasnon-zero
and all other fields set to zero. The critical valuegof
are roots of the eigenvalue equations in the Higgs and
N sectors and can be expressed in terms of the soft pa-
rameters. Clearly the sector is already unstable due
to the negative soft mass squaredgoin fact it has a
positive gradient at this point: this is the origin of the
slow roll.

The critical points at whichVv becomes unstable
are

A / 4m?
‘Pcrit(N) = 4—’: (—1 +,/1- A—20>
K

and the Higgs fields destabilise at

(16)
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_ Ay 4m§
Perit. () = 2A< 1i\/1—?) (17)
X
and
4m0
Porit () = > <1:|: /1—?) (18)
x

Within the ranges ofp bounded by these critical

values the associated field is unstable. As a result our

model requires an inverted hybrid inflationary trajec-
tory that starts from a point with small, negatieand

all other fields held at zero by their positive effective
masses.

As ¢ rolls away from the origin it will reach
derit.(N) beforeqbgrit.(H), assuming thatg is non-zero,
A=k andA, = A,. Therefore it the “good” minimum
with N # 0 andH, = H; = 0 that is reached on this
trajectory. We shall now discuss the slow roll period
that occurs ag moves away from the origin.

For our trajectory, with all fields except the inflaton
at zero, the potential simplifies to

1
V=V - Emgqﬁz. (19)
In this case the slow roll conditions become
2 4.2
1 um¢¢N
= — " k1, 20
EN > V(O)2 < (20)
|
— 1. 21
Inn|=m%—2 v<o> < (21)
Since
on = deritvye” " (22)

andn « 1 it follows thatgy ~ ¢crit.. Of course we

must check that the slow roll conditions are satisfied.

From Eq.(21) we see that we have an upper limit on
mg of 10 MeV. However, from Eqg20) and (22)we
require that,yy < 0.25, approximately. If this were
not enforced thei would pushey above one. This
slightly lowers our upper limit omg to 5 MeV. In our
model vV (0)¥/4 ~ 108 GeV is fixed when we enforce

zero vacuum energy at the minimum of the potential.

This leads to a low Hubble constant during inflation
of H ~ V(0)Y/2/3mp ~ 1 MeV and a low reheat tem-
perature after inflation.
The reheat temperature is given by
4
VIgmep,

TRH >~ 0.55g*_1/ (23)
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where[27] the decay rate is given by
My
Iy~ . 24
¢ 6 f2 (24)

My is the mass obtained after inflation ayfig is the
axion decay constant. This simplifies to

2

N 47
which leads to a reheat temperature Gfy ~
(1-10 GeV. The low reheat temperature slightly re-
laxes the upper bound on the axion decay constant,
allowing f, ~ 103 GeV[5].

It turns out that the most stringent requirement on
the masses comes from the density perturbation data.
From[26] we see that

32V(0) 1
75 mP Nz

»~108eV (25)

Sy = =1.92x 107°. (26)
Satisfying this requirement with the inflaton would
drive its mass down to below the eV scale. This would
require a high degree of fine-tuning. If the mass of the
inflaton ¢ during inflation is in the MeV range this
satisfies the slow roll constraints, but precludes the
possibility that the density fluctuations are provided
by the inflaton itself. Thus extreme fine-tuning is alle-
viated[28] if we use a different field, a curvatd@9—
31], to generate the curvature perturbations. There are
numerous examples of this mechanism in the litera-
ture. One possibility that might be compatible with our
model is the axion as curvaton. This case is explored
in [32] though, at this stage, it is not clear whether
this analysis is applicable to this model. Another pos-
sibility is to use the coupled curvaton mechanig3]
in which the perturbations are provided by a second
light scalar field which takes a non-zero value dur-
ing inflation, and whose fluctuations are subsequently
converted to curvature perturbations with the help of
preheating effects. Alternatively we may appeal to a
type of late-decaying curvaton mechanism which is
consistent with low inflation scales with a symmetry
breaking phase during inflatid@4].

Tied into inflation is the issue of domain walls.
Since this model does not possess #hesymmetry
of the NMSSM it sidesteps the domain wall prob-
lem encountered wheHs breaks. However, domain
walls are also created when the PQ symmetry breaks
[35,36] During inflation the inflaton has a non-zero
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value hence breaks PQ symmetry spontaneously. AsAppendix A. Global minima
a result the domain walls are created during infla-
tion. As such the exponential expansion of the universe  In Sectior3we discovered thatg) = — 42, (N) =

will dilute them so that, by the end of inflation, their | _4, /1—4m(2)/A2, (H,) = (Hg) = 0) is a mini-

fraction of the total energy density will be negligi mum of our potential. It was noted that this is not the

ble. global minimum. In fact this is to be found at
A)L 4m(2)
i H=+—[/1—-— Al
5. Conclusions (H) o A2 (A1)
In this Letter we have suggested that the field re- — _AA’ (A.2)
sponsible for cosmological inflation and the field re- 2\
sponsible for generating the term of the MSSM are (V) =0. (A-3)

one and the same. We have shown that the vacuum ex-  \while the existence of this “bad” solution is clearly

peCtation value of the inflaton at the Peccei—QUinn ax- g drawback of the model it remains physma”y viable
ion scale can generate the supersymmetric Higgs mass the transition probability from the local minimum
p term of the MSSM. This provides an inflationary si-  to the global minimum is longer than the age of the
multaneous solution to the strong CP problem and the ynjverse[1]. We also note that, in the case of inverted
wn problem of the MSSM, and gives a testable predic- hybrid inflation, the trajectory is such that the “good”
tion for the . parameteru® ~ (0.25-Q5)m§, where  minimum is reached first, as discussed in Section

mg is the soft Higgs scalar mass. This implies deep |t is worth mentioning that the model could be al-
connections between supersymmetric Higgs phenom-tered such that the global minimum arises 0 0
enology, inflation and the strong CP problem. and H, = H; = 0. Specifically we could relax the as-

Our model involves very small Yukawa couplings  sumptions that; = A, andx = A. If we examine the
of order 101 which could originate from an extra- potentials at both minima we see that

dimensional scenarifl1]. In [13] we will show how A 94 2

such small Yukawa couplings can arise from embed- Vyzo=V(0) — Ay (1 _ Aﬂ) (A.4)
ding the model into type | string theory. The string 642 AZ

embedding will also post-justify the assumptions that g,

we have made here concerning smallness and equal- A4 A2\ 2

ity of the Yukawa couplings in Eqgl) and (2) and Vo=V (0) — _A( _ ﬂ) ) (A.5)
also the equality of the soft masses of the higgégs, 1612 Af

and H;, which we have assumed to have the same soft
mass as the/ field.

Finally we note that Yukawa couplings as small as
1019 allow the possibility of having Dirac neutrino
masses, which is testable in neutrino experiments and
would open up the possibility of relating the physics
of the neutrino mass scale to the physics of inflation,
the strong CP problem and the problem discussed
here.

From these equations we see that if we mA%¢K >
Af/x then Viyo will be promoted to the global min-
imum. However doing so increases the complexity of
the model and loses touch with the string construction
presented if13].
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