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Structural Modeling Extends QSAR Analysis of Antibody-Lysozyme
Interactions to 3D-QSAR
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*The Linnaeus Centre for Bioinformatics, Uppsala University and the Swedish University of Agricultural Sciences, Sweden;
yBiacore AB, Uppsala, Sweden; and zSignals and Systems, Uppsala University, Sweden

ABSTRACT This work shows that quantitative multivariate modeling is an emerging possibility for unraveling protein-protein
interactions using a combination of designed mutations with sequence and structure information. Using this approach, it is
possible to stereochemically determine which residue properties contribute most to the interaction. This is illustrated by results
from modeling of the interaction of the wild-type and 17 single and double mutants of a camel antibody specific for lysozyme.
Linear multivariate models describing association and dissociation rates as well as affinity were developed. Sequence
information in the form of amino acid property scales was combined with 3D structure information (obtained using molecular
mechanics calculations) in the form of coordinates of the a-carbons and the center of the side chains. The results show that in
addition to the amino acid properties of the mutated residues 101 and 105, the dissociation rate is controlled by the side-chain
coordinate of residue 105, whereas the association is determined by the coordinates of residues 99, 100, 105 (side chain), 111,
and 112. The great difference between the models for association and dissociation rates illustrates that the event of molecular
recognition and the property of binding stability rely on different physical processes.

INTRODUCTION

Three-dimensional quantitative structure-activity relation-

ship (3D-QSAR) modeling has become a common technique

for elucidating the stereochemical features important for

function of small ligands. Several successful experiments

have been reported (Ortiz et al., 1995; Stanton, 2000; Xing

et al., 1999). Extending the 3D-QSAR approach to protein-

protein interactions would be attractive, but is nontrivial.

One problem is the relatively expensive production of

mutated proteins, a second is the need for a reliable

characterization of the interaction, a third is the limited

lifetime of thawed proteins, and a fourth is to obtain relevant

descriptors of a protein structure in silico, which includes

finding the binding configuration and taking into account the

spatial constraints. The QSAR analysis performed by De

Genst et al. (2002) proved that the first three problems can be

resolved. In this work the specific problem with three-

dimensional descriptors is addressed and, when combined

with experiences from De Genst et al. (2002), is compiled

into a methodology for applying three-dimensional QSAR

methods to a protein-protein interaction.

Several authors have performed successful QSAR studies

on proteins and peptides. Eriksson et al. (1990) used peptide

amino acid sequence, to predict function for substance P

analogs, enkephalins, and bradykinins. Andersson et al.

(2001) and Choulier et al. (2002) characterized the inter-

action of designed multimutated peptides with an antibody

and developed predictive models for both the association

and the dissociation rate of the interaction. Wikberg and

co-workers are studying several different ligand-receptor

interactions (Lapinsh et al., 2001; Lapinsh et al., 2002; Prusis

et al., 2001; Prusis et al., 2002). Another of the most recent

reports (De Genst et al., 2002) is an investigation of the

interaction between the camel antibody cAb-lys3 and its

natural antigen lysozyme. The antibody has a protruding

loop, consisting of residues 99–108, that inserts into the

active site of lysozyme (Fig. 1) and inhibits its enzymatic

function (Transue et al., 1998). Two residues (positions 101

and 105) in this loop were mutated (ten single mutations,

seven double mutations) essentially according to a multivar-

iate experimental design (Haaland, 1989). The binding of the

wild-type and the 17 mutants of cAb-lys3 to lysozyme was

characterized using a surface plasmon resonance (SPR) sen-

sor system (Biacore 3000, Biacore AB, Uppsala, Sweden)

giving affinity, association rate and dissociation rate con-

stants in duplicate. In De Genst et al., (2002) the measured

binding characteristics were related to a description of the

sequences only.

Descriptions of three-dimensional protein structures can

be obtained both experimentally and in silico. Skerra et al.

(Schiweck and Skerra, 1997; Skerra, 2000) is one group that

has worked extensively with both experimental determina-

tion and in silico prediction of protein structures. The goal

has often been to design artificial binders in silico by use of

a known protein template e.g., lipocalin. Such research is

clearly related to 3D-QSAR for proteins; it tries to predict

protein structure and properties (such as binding), but has

one important difference: Design of binders is based on

hypotheses relating to how individual amino acid residues

will affect the desired function, whereas in this QSAR study,

collected data is used to interpret function.

In this work, the data presented in De Genst et al. (2002)

mentioned above were reanalyzed using a new set of
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descriptors. In addition to sequence information, in the form

of amino acid property scales as in De Genst et al. (2002)

compact 3D structure descriptors based on molecular

mechanics calculations were introduced. This represents an

example of a general methodology in which designed

mutations are combined with sequence and structural

information to build quantitative models of protein-protein

interactions. Results presented show that the models ob-

tained can give information of the contribution to the in-

teraction of positions of amino acids which have not been

mutated. Moreover, the results show that both side-chain and

backbone coordinates influence binding characteristics and

support the earlier findings (De Genst et al., 2002) that the

event of molecular recognition and the property of binding

stability rely on different physical processes (Roos et al.,

1998).

METHODS

Experimental data

Table 1 shows the experimental values of the association rate (ka),

dissociation rate (kd), and affinity (Kd ¼ kd /ka) constants for the 17 mutants

and the wild-type (from De Genst et al., 2002). The mutants are referred to

by a two letter code, corresponding to the amino acids at the mutation sites

(position 101 and 105, respectively) e.g., the wild-type, with threonine at

position 101 and serine at position 105, is referred to as TS. For every

molecule, duplicate values are presented.

Geometry optimizations

The wild-type antibody, as well as the mutated camel antibodies, in complex

with lysozyme were energy minimized. The starting structure for all

minimizations was the x-ray crystal structure of the wild-type antibody

(Desmyter et al., 1996), PDB-code 1mel. There are two slightly different

antibody-lysozyme complexes in the asymmetric unit, one of them was

selected at random as the template complex. The optimization was performed

with respect to the entire molecular system and the water molecules present

in the crystal structure were retained during the optimization.

In the design of the experiment (De Genst et al., 2002) the mutations were

chosen so as to avoid large sterical clashes with the antigen (De Genst et al.,

2002). Therefore, here it is assumed that the mutations do not cause any

large movements of the entire protein and thus that the above described

template structure for all the mutants is reasonable. This of course also

means that the statistical multivariate quantitative models built should not be

applicable to the subset of all the 400 possible mutations in which sterical

clashes may occur.

The geometry optimizations were performed in HyperChem (Hyper-

Chem, 2000) on a personal computer (Pentium-4 1400 MHz). The standard

molecular mechanics method used was based on the amber94 force field

(HyperChem, 2000; Cornell et al., 1995) and used a conjugate gradient

method with a termination value of the RMS gradient of 0.1 kcal/mol/Å, in

general according to the HyperChem manual.

Molecular descriptors

The descriptors used in this work may be regarded as extensions to the ZZ-

scales (Sandberg et al., 1998) used in De Genst et al. (2002). The ZZ-scales

FIGURE 1 The interaction between the antigen cAb-lys3 (shown in

violet) and its antigen lysozyme (shown in green). Residues 99–112 are

marked yellow and the mutated residues 101 and 105 are marked blue. The

structure shown is the wild-type structure. In A the entire molecules are

shown, in B only the backbone structures are shown.

TABLE 1 Association (ka), dissociation (kd), and affinity (Kd) constants of all mutants and the wild-type camel antibodies

Mutant ka (M
�1 s�1) kd (s

�1) Kd (M)

HD 2.20 3 103, 2.16 3 103 3.77 3 10�3, 3.47 3 10�3 1.71 3 10�6, 1.61 3 10�6

LS 3.63 3 104, 3.68 3 104 5.28 3 10�4, 5.68 3 10�4 1.45 3 10�8, 1.54 3 10�8

MV 7.59 3 103, 7.74 3 103 2.77 3 10�2, 3.05 3 10�2 3.65 3 10�6, 3.94 3 10�6

PG 4.79 3 103, 4.06 3 103 2.17 3 10�2, 2.10 3 10�2 4.53 3 10�6, 5.17 3 10�6

PS 4.21 3 103, 3.06 3 103 4.80 3 10�3, 4.76 3 10�3 1.14 3 10�6, 1.56 3 10�6

QP 1.13 3 103, 9.76 3 102 4.13 3 10�4, 3.06 3 10�4 3.65 3 10�7, 3.14 3 10�7

RT 1.31 3 104, 1.25 3 104 2.59 3 10�2, 2.42 3 10�2 1.98 3 10�6, 1.94 3 10�6

SQ 1.44 3 104, 1.46 3 104 2.64 3 10�1, 3.08 3 10�1 1.83 3 10�5, 2.11 3 10�5

SS 5.47 3 104, 4.34 3 104 9.98 3 10�3, 9.75 3 10�3 1.82 3 10�7, 2.25 3 10�7

TA 4.32 3 104, 4.68 3 104 3.74 3 10�3, 3.77 3 10�3 8.66 3 10�8, 8.06 3 10�8

TG 1.12 3 105, 1.26 3 105 1.57 3 10�3, 1.53 3 10�3 1.40 3 10�8, 1.21 3 10�8

TH 6.97 3 104, 6.46 3 104 6.40 3 10�4, 7.17 3 10�4 9.18 3 10�9, 1.11 3 10�8

TM 2.32 3 104, 2.46 3 104 1.04 3 10�2, 1.07 3 10�2 4.48 3 10�7, 4.35 3 10�7

TN 3.26 3 104, 3.48 3 104 4.14 3 10�3, 4.24 3 10�3 1.27 3 10�7, 1.22 3 10�7

TP 3.75 3 103, 3.67 3 103 1.95 3 10�4, 2.40 3 10�4 5.20 3 10�8, 6.54 3 10�8

TQ 4.09 3 104, 3.71 3 104 3.70 3 10�2, 3.92 3 10�2 9.05 3 10�7, 1.06 3 10�6

TS 9.10 3 104, 7.00 3 104 8.14 3 10�4, 8.89 3 10�4 8.95 3 10�9, 1.27 3 10�8

VN 3.47 3 104, 2.99 3 104 2.04 3 10�3, 2.04 3 10�3 5.88 3 10�8, 6.82 3 10�8
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describe, respectively, hydrophobicity (ZZ1), size and polarizability (ZZ2),

and polarity and electrophilicity (ZZ3). The previously used descriptors,

three ZZ-scales for the two mutated residues (position 101 and 105) each,

were extended with structural information of 14 amino acids (residue 99–

112) in the antigen binding loop. The amino acid sequence 99–112 is

DS�IYA�YYECGHG, where � indicates one of the two mutation sites

101 and 105.

Coordinates of the backbone and the side chains described the loop

structure. The backbone was represented by the coordinates of the 14

a-carbons (Ca). The side chains were represented by the coordinates of the

center of each side chain, where the center was defined as the average of

the coordinates of all atoms in the side chain. A similar representation

(Kleywegt, 1999) has previously been adopted in relation to recognition of

spatial motives in protein structures. More detailed descriptors, like CoMFA,

were avoided in order to keep the number of parameters to fit relatively

small.

A potential problem with the coordinate descriptors used here is the fact

that they are dependent on a geometry optimization step. This is a well

known potential problem also in classical 3D-QSAR where a slightly

different geometry optimization may yield different coordinates which in

turn may create a quite different multivariate prediction model than the

original. For the particular antibody-lysozyme interaction considered in this

work, the robustness of the coordinates was validated qualitatively by

recalculating new multivariate models after randomly perturbing all the

energy optimized coordinates by 60.5 Å in a random direction and then

comparing the resulting models with the original models. The coordinates

which were identified as most important in the original model also turned out

to be the most significant in the perturbation based models (data not shown).

Regression

Before the regression, both the descriptors, x, and the activities, y, were

transformed to have average values of zero.

The partial least squares (PLS) regression algorithm (Geladi and

Kowalski, 1986; Höskuldsson, 1988; Gustafsson, 2001) was used to deter-

mine linear regression models, describing the relation between the activities,

y (ln ka, ln kd, and ln Kd), and the molecular descriptors, x, of the form

y ¼ wTx1 ey; (1)

where ey is the error in y and w are the weights computed with the PLS

algorithm. The PLS algorithm used was implemented in the PLS toolbox in

MATLAB 5.3 (MathWorks Inc., www.mathworks.com).

Validation

The predictivity of each model was measured by the cross-validated

regression coefficient (Q2) defined as Q2 ¼ 1�+n

i¼1
ðyi � ŷyi;CVÞ2=

+n

i¼1
ðyi � ŷyÞ2; where n is the number of predictions, yi is the experimental

activity value, ŷyi;CV is the activity value as predicted by cross-validation and

�yy is the average of the activities, and the fitted regression coefficient ðR2 ¼
1�+n

i¼1
ðyi � ŷyiÞ2=+n

i¼1
ðyi � �yyÞ2; where ŷyi is the fitted activity value).

The cross-validation was performed according to the leave-one-out princi-

ple (Golbraikh and Tropsha, 2002). Since the activity was measured twice

for eachmolecule, the examples were left out in pairs. (Each training example

is defined as a descriptor vector and a corresponding activity value. How-

ever, due to duplicate measurements, each molecule is represented by two

examples with equal descriptor vectors, but slightly different activity values.)

In De Genst et al. (2002), the examples were left out one at a time during

cross-validation, as compared to one molecule at a time in this study. This

means that the Q2 values presented in De Genst et al. (2002) are not com-

parable to the Q2 values presented here.

During model optimization (variable subset selection or optimization

with respect to the number of latent variables used in PLS), theQ2 value was

optimized. This made the Q2 value likely to be a too optimistic measure

of the true predictivity and therefore the blind cross-validated regression

coefficient, P2, (Ortiz et al., 1995) was introduced. Recent results show that

Q2 in general is not a sufficient measure of the model predictivity (Golbraikh

and Tropsha, 2002; Kubinyi et al., 1998), but that an independent test data

set is required to confirm the predictivity of the model.

In blind cross-validation the data set is divided into a large training data

set and a small test data set. The model optimization is performed on the

molecules in the training data set only using cross validation and the

achieved optimal model (highest Q2 value) is used to predict the activity of

the molecules in the test data set. The blind cross-validated regression

coefficient, P2, is computed similarly to the cross-validated regression

coefficient, Q2; P2 ¼ 1�+n

i¼1
ðyi � ŷyi;BCVÞ2=+n

i¼1
ðyi � �yyÞ2: The only

difference is the predicted activity value, ŷyi;BCV; that here is the predicted

value of an example in the test set.

In the work presented here the test set consisted of two molecules (four

training examples) and, thus, the training set consisted of 16 molecules. To

achieve predicted activity values ðŷyi;BCVÞ for all 18 molecules, nine such test

sets were selected. The test sets were randomly selected as: (TG, SS), (TA,

SQ), (QP, LS), (VN, TQ), (RT, PS), (TM, HD), (PG, TN), (TP, TS), and

(TH, MV).

To validate the statistical significance of the models obtained, 1000

randomization tests were performed in which the target values were

permuted (y-shuffling). Histograms of the P2 values of the resulting models

were then analyzed to obtain a confidence level for each of the models

obtained using the true target values.

Model weight analysis

The model weights, w (see Eq. 1), were used as a measurement of the

relative importance of the descriptor variables. The coordinates were all

measured in Å, but the ZZ-scales were measured in different scales and their

weights could therefore not be compared without rescaling.

The variance of the activity, y ¼ wTx, can be expressed as

s2
y ¼ +

k

i¼1

w2
i s

2
i 1 2+

k

i¼1

+
k

j¼i11

wiwjE½xixj�; (2)

where E denotes the expectation operator, s2
i is the variance of descriptor

xi and k is the total number of descriptors. Both the activity y and the

descriptors xi are assumed to have an average value of zero. If the descriptors

are uncorrelated the last term in Eq. 2 is zero and the relative importance of

the descriptors xi can be measured by siwi. However, the descriptors are

correlated and a study of the relative sizes of the wiwjE[xixj] terms was used

only to validate the conclusions from the following weight analysis.

Position i (either the position of an a-carbon or a side chain) is described

by its x-, y-, and z-coordinates, and the total importance of position i is

estimated by ðw2
i;x1w2

i;y1w2
i;zÞ1=2: The direction of the vector ðwi;x;wi;y;

wi;zÞ shows how the position should be changed to give a higher activity

value. The length of the vector is a measurement of how much the activity

value would change if the position was changed by a unit distance (1 Å in the

x-, y-, and z-directions).

Variable selection

Variable selection was used only to verify the conclusions from the model

weight analysis and not to improve the model, as is the common usage of

variable selection methods (Tropsha, 2001; Baroni et al., 1993; Hoffman

et al., 1999; Tropsha and Zheng, 2001).

The variable selection was performed once for each of the nine training

sets, defined above. The resulting nine variable selections together gave the

consensus variable selection, defined by the most frequently selected

variables.

For each of the nine training sets, the output from the GA-PLS (genetic

algorithm-partial least squares) algorithm (Tropsha, 2001; Hoffman et al.,

1999) (see description below) was 100 suggested different variable

2266 Freyhult et al.

Biophysical Journal 84(4) 2264–2272



selections, which all had approximately the same fitness value. A natural

assumption is that the variables that really are important to the model would

be included in a large fraction of the suggested variable selections.

Therefore, instead of selecting the variables included in the very best

variable selection, the variables that were included in 80% (or more) of the

100 variable selections were included in the final variable selection.

The GA-PLS method (Tropsha, 2001; Hoffman et al., 1999) applies

a genetic algorithm to search the subset of descriptor variables that gives

the PLS regression model with the highest fitness (predictivity). In the

application of GA-PLS considered here a population of 100 individuals

(binary vectors, of the same size as the descriptor vectors, describing

inclusion or exclusion of each descriptor variable) was evolved, by over-

crossing and mutations, toward higher fitness values.

The fitness function included the cross-validated regression coefficient

(Q2) and was defined as; Fitness ¼ 1 � (1 � Q2)(n � 1)/(n � c), where n is

the number of molecules and c is the optimal number of latent variables in

the PLS with respect to Q2. The GA-PLS algorithm terminated when the

difference between the fitness score for the least fit and the most fit

individual was smaller than 0.05.

RESULTS

Geometry optimization

The molecular mechanics computations resulted in 18

slightly different structures. A closer look at residues 99–

112 in the antibody structures showed how the positions of

the residues were affected by the mutations (Fig. 2). The

a-carbon of the mutated residue 105 was almost unchanged,

as were both the main chain and the side chain in a close

proximity of this mutation site. The other mutation site at

position 101 seems to affect its neighbors, the positions of

residues 99–102 do all vary markedly between the different

mutants. Residues 111 and 112 are also affected by the

mutations.

The loop structure of one of the mutants differ sig-

nificantly from the other structures at position 99–102 and

107–112. This mutant, RT, has an arginine at position 101

and a threonine at position 105.

Regression

PLS regression models were built using up to the predefined

maximum of three latent variables. The final ka, kd, and Kd

models (see Eq. 1),

ln ka ¼ wT
ka
x (3)

ln kd ¼ wT
kd
x (4)

lnKd ¼ wT
Kd
x; (5)

with maximized Q2 values, used two, three, and three latent

variables, respectively. Their corresponding Q2 values were

0.72, 0.68, and 0.68 (Table 2). The predictivities of the

models are shown by the P2 values in Table 3 to be at

the same level as the Q2 values: 0.62, 0.64, and 0.70,

respectively. The mean and standard deviation of the Q2

values of the nine different ka, kd, and Kd models (based on

the nine different training sets) are also shown in Table 3.

The predictivities of the models are illustrated in Fig. 3.

As already mentioned, the significance of the models

was validated using permutations of the target values

(y-shuffling). A histogram of the P2 values for 1000 different

ka-models built with randomly permuted target vectors are

shown in Fig. 4, the histograms for kd and Kd models were

similar, also having a slightly asymmetric i.e., non-Gaussian

form (not shown). Based on the histograms, the one-sided

99.9% confidence intervals for the distributions of P2 values

were computed. For the ka, kd, and Kd models, these

intervals were found to be [�‘, 0.6], [�‘, 0.5], and [�‘,
0.6], respectively. Hence all the three models are statistically

significant at the 99.9% confidence level.

Model weight analysis

The relative importance of the ZZ-scales to the three models

(ka, kd, Kd) is shown in Fig. 5. In Fig. 6 the relative im-

portance, ðw2
i;x1w2

i;y1w2
i;zÞ1=2; of the coordinates of the 14

a-carbons and 14 side chains are shown for the same three

models. The most important residues to the ka model are

found to be (in order of importance, the most important first)

FIGURE 2 A superposition of the loop structure (residues 99–112) for

each of the mutants (and the wild-type). One structure is strongly deviating

from the others, this structure has an arginine at position 101 and a threonine

at position 105. The large side chain of arginine is likely to be the reason for

this strong deviation. The coordinates in this figure are the same as in Fig. 7.

TABLE 2 The R2 and Q 2 values of the PLS regression models

and the models based on the GA-PLS selected variables

PLS GA-PLS

Activity lv* R2 Q2 lv* R2 Q2

ln ka 2 0.87 0.72 3 0.92 0.85

ln kd 3 0.86 0.68 3 0.86 0.82

ln Kd 3 0.86 0.68 3 0.80 0.71

*Number of latent variables.
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number 100, 101, 112, 111, 105, and 99. Both the position of

the a-carbon and the side chain of these residues are found to
be important, except for residue 105, where only the side-

chain position affects the model. How the positions should

be changed to improve the binding is illustrated in Fig. 7,

where the vectors ðwi;x;wi;y;wi;zÞ are shown for the ka model

and the vectors ð�wi;x;�wi;y;�wi;zÞ are shown for the kd
and Kd models.

In the kd model the importance of the side-chain position

of the mutated residue 105 is dominating. The side-chain

position of the other mutated residue (101) is also important.

For the Kd model the side-chain position of residue 105 is

again the most important, but it is not as dominating as in the

kd model. Here also residues 100, 101, 99, 112, and 111 are

important.

Variable selection

The variable selection with the GA-PLS method selected in

general the ZZ-scales most frequently, but other descriptors

were selected as well. The most frequently selected de-

scriptors were (in order of importance, the most important

first)

ka ZZ2 105, ZZ1 105, ZZ2 101, ZZ3 105, S.C. 101y,
ZZ3 101, Ca 100z, S.C. 102y, S.C. 101x

kd ZZ3 105, ZZ3 101, ZZ1 101, Ca 106z, S.C. 107x, Ca
111x, S.C. 101z

Kd ZZ3 105, ZZ3 101, ZZ2 101, S.C. 105x, ZZ1 101

S.C. indicates the position of a side chain and Ca the

position of an a-carbon. The selections that confirmed

the conclusions from the weight analysis are bolded. The pre-

dictivity of the GA-PLS models was not very high (P2 �
0.5, see Table 3), but leave-one-out cross validation per-

formed with the consensus selection gave Q2 values of

0.73, 0.69, and 0.60 (not shown in table), for ka, kd, and
Kd, respectively.

DISCUSSION

In this paper we have performed a 3D-QSAR analysis of

a protein-protein interaction by combining experimental data

and sequence description for 18 similar proteins from De

Genst et al. (2002) with 3D descriptors for all proteins

derived from a single crystal structure (Desmyter et al.,

FIGURE 3 Predicted versus experimental activities. The fitted values are

shown as triangles, the cross-validated as circles and the blind cross

validated as squares. (A) Predicted versus experimental ka. The model was

derived using two latent variables.R2¼ 0.87,Q2¼ 0.72, and P2¼ 0.62. (B)

Predicted versus experimental kd. The model was derived using three latent

variables. R2 ¼ 0.86, Q2 ¼ 0.68, and P2 ¼ 0.64. (C) Predicted versus

experimental Kd. The model was derived using three latent variables. R2 ¼
0.86, Q2 ¼ 0.68, and P2 ¼ 0.70.

TABLE 3 The mean and standard deviation of Q2
max of nine

models based on nine different training sets and P2 values

calculated using the nine training set models

PLS GA-PLS

Activity Mean ðQ2
maxÞ SD ðQ2

maxÞ P2 Mean ðQ2
maxÞ SD ðQ2

maxÞ P2

ln ka 0.69 0.065 0.62 0.76 0.058 0.53

ln kd 0.62 0.12 0.64 0.79 0.040 0.58

lnKd 0.64 0.070 0.70 0.71 0.070 0.52
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1996). The 3D-QSAR models have statistically significant

(at the 99.9% level) predictivities and can resolve how

different amino acid residues contribute to the interaction.

The models describing association rate and dissociation rate

are clearly different.

Geometry optimization

The mutant and wild-type structures used in this study were

achieved by energy minimization in silico using the wild-

type crystal structure as starting structure. The optimization

was performed in vacuo with the water molecules included in

the crystal structure present. Since the actual binding takes

place in the center of the complex and since the energy

minimized structures of all proteins were close to the starting

FIGURE 5 The scaled weights, siwi, of the six ZZ-scales in the three

disjoint models describing ln ka, ln kd, and lnKd, respectively.

FIGURE 6 The importance of the coordinate descriptors. Ca denotes the

position of the a-carbon and S.C. denotes the position of the center of the

side chain, the number that follows is the residue number. For residue i, the

importance is computed as; ðw2
i;x1w2

i;y1w2
i;zÞ1=2:

FIGURE 4 Histogram of P2 values for models of ka designed using

permuted target values. The one-sided 99.9% confidence interval is [�‘,
0.6].
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structure, one expects the minimized structures to constitute

proper estimates of the true structures.

Structural differences

The structural differences of the mutants for position 99–112

are shown in Fig. 2. The structural changes in the proximity

of the mutation site at position 105 are small. In the wild-type

antibody, the backbone of residues 103, 104, and 106 are

involved in hydrogen bonds to residues in the lysozyme

(Transue et al., 1998) and alanine 104 is known to contribute

to the interaction by filling a small hydrophobic pocket in

the lysozyme (Transue et al., 1998). Therefore, these resi-

dues are likely to be fixed in their positions. Thus, regardless

of how residue 105 is mutated the backbone is spatially

restrained.

The larger structural deviations of residues 99–102

indicate that they were less restrained by the lysozyme than

the residues around 105. It has been suggested that residues

99 and 100 are not in contact with the lysozyme, but that

residues 101 and 102 are (Desmyter et al., 1996). However,

being in contact with the lysozyme does not mean being

restrained by the lysozyme.

The deviating structure of the mutant RT was probably

due to the large arginine pointing toward the center of the

loop. This affected not only position 99–102, but also

position 107–111 at the opposite side of the loop (see Fig. 2).

Regression

The descriptors used for QSAR analysis were based on

three ZZ-scales (Sandberg et al., 1998; De Genst et al.,

2002) describing each of the two mutated residues and

structural information of 14 residues (99–112) in the

antigen binding loop. Applied to the data set used in this

work the ZZ-scales alone gave predictive models (Q2 � 0.7

and P2 2 [0.6, 0.7] (data not shown)). The structural

information added here did not improve the predictivity of

the models significantly, but more information of the

interacting residues was gained. In particular, information

of nonmutated residues was obtained.

The GA-PLS models had relatively highQ2 values, higher

than the PLS models (except forKd). However, the P
2 values

achieved with GA-PLS were much lower than the P2 for the

PLS models. This shows that even though the Q2 values

were higher for the GA-PLS models, the predictivity was

lower (model overfitting).

Model weight analysis

A comparison of the weights of the ZZ-scales showed that

their relative importance in general agreed with the results

presented in De Genst et al. (2002). In Fig. 5 the scaled

weights, siwi, for the ZZ-scales are shown.

To increase the ka value, the ZZ2 and ZZ3 values for both
the mutated residues (101 and 105) should be lowered, and

the ZZ1 value of residue 105 should be increased. To slow

down the dissociation (lower kd) the ZZ1, ZZ2, and ZZ3

values should be decreased for residue 101, and ZZ2 and

ZZ3 should be increased for residue 105. The same changes

are desirable to lower the Kd value, except for the ZZ2 value

for residue 105 that should be lowered, and additionally the

ZZ1 value for residue 105 should be increased.

Analysis of the coordinate weights indicates that the

coordinates of mainly five amino acids influence the

interaction (see Fig. 7). The most prominent effect is seen

for the side chain of 105 which should move closer to

FIGURE 7 2D-projections of the 14 amino

acids included in the molecular description

(amino acid 99–112 in the antigen binding

loop). The loop is shown as it is represented

structurally in the molecular descriptors, i.e., it

is described by the coordinates of the a-carbons

and the center of the side chains, only. The

figures show the loop from three perpendicular

viewpoints. In each figure the third dimension

is shown as a blue-shading of the backbone.

Additionally, the directions of movement

suggested to give a faster association (higher

ka), a slower dissociation (lower kd), and

a higher affinity (lower Kd) are shown as red,

green, and yellow arrows, respectively. The

longer the arrow the more a small movement in

the indicated position affects the activity. The

structure shown is the wild-type structure.
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the backbone in a direction toward residue 103 in order to

achieve a slow dissociation and a low Kd value. Residue 100

should move away from the loop, i.e., make it wider, for

increasing binding strength, but residue 101 should move

toward the center of the loop to increase the association rate.

The side chain should move away from the backbone slightly

to increase the affinity and slow down the dissociation. The

coordinates of position 111 and 112 influence mainly ka and
a movement toward the center of the loop would increase the

association rate. The model weight analysis shows that the

model describing the association rate is different from model

describing the dissociation rate.

Residue 102 in the flexible part could not be correlated

to changes in interaction characteristics. In the study of the

crystal structure of cAb-lys3 in complex with lysozyme

(Desmyter et al., 1996) residue 102 is not found to be in

contact with the lysozyme. This might explain why residue

102 can move rather freely without affecting the interaction.

Residues 107 to 110 are too restrained to influence the

binding characteristics. This could be due to the tight binding

of residue 106 to the lysozyme and the S-S binding between

cystein 109 and cystein 32. This, however, does not mean

that they are not important to the interaction, it merely means

that their positions are not changed by the mutations.

Variable selection

As a complement to the weight analysis, a variable selection

method was applied to separate the informative descriptors

from the uninformative. The blind cross validation showed

low predictivity (see Table 3), but theQ2 values achieved for

models based on the consensus selections were higher than

achieved with PLS based on all variables or the ZZ-scales

only. GA-PLS could be improved by using a larger popula-

tion size and a more strict termination criterion, but it would

also slow the speed of the analysis down considerably.

The variable selections clearly show that the ZZ-scales in

general are more important than the coordinate descriptors.

For all three models (ka, kd, Kd) the three most frequently

selected variables (selected eight or nine times out of nine)

were ZZ-scales.

Although the majority of the coordinates correlated to

binding strength were side-chain coordinates, several back-

bone coordinates were included in the model. This indicates

that it might be erroneous to consider only side-chain pro-

perties when analyzing interactions on a mutational level.

SUMMARY

In this paper, molecular mechanics methods, measured

kinetics parameters, and 3D-QSAR analysis were combined.

This resulted in models that can predict the kinetic properties

of mutants and explain what structural properties are

important to the model and how these properties should be

changed to improve the binding. The investigation shows

that the residues that are important to the association rate

model are different from those important to the dissociation

rate model.

The results from both the ZZ-scale and the coordinate

weight analysis are now summarized. Together these results

give more information of the interaction than either of them

do alone, and illustrate the kind of quantitative information

that one may extract using the methodology presented in this

paper.

To increase the association rate the mutated residue 101

should move closer to the center of the loop, as should

residues 111 and 112. When the residue moves closer to

the center of the loop, residue 100 has to move aside. A

movement of residue 100 further away from the loop center

is suggested to increase the association rate. The association

rate is also favored by a small residue at position 101 that

preferably is nonelectrophilic and nonpolar.

The dissociation rate and the affinity are both affected

mostly by the properties of the mutated residues 101 and 105

and the position of the side chain of residue 105. A small,

hydrophobic, nonelectrophilic and nonpolar residue at po-

sition 101 and a polar and electrophilic residue at position

105 are preferred, if a fast and stable interaction is desired.

A movement of side-chain 105 closer to the backbone

in a direction toward residue 103 also gives a slower

dissociation.
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Sjöström, and S. Wold. 1990. Peptide QSAR on substance P analogues,
enkephalins and bradykinins containing L- and D-amino acids. Acta
Chem. Scand. 44:50–55.

3D-QSAR of Antibody-Antigen Interactions 2271

Biophysical Journal 84(4) 2264–2272



Geladi, P., and B. Kowalski. 1986. Partial least-squares regression: A
tutorial. Anal. Chim. Acta. 185:1–17.

Golbraikh, A., and A. Tropsha. 2002. Beware of q2! J. Mol. Graph.
Model. 20:269–276.

Gustafsson, M. G. 2001. A probabilistic derivation of the partial least-
squares algorithm. J. Chem. Inf. Comput. Sci. 41:288–294.

Haaland, P. D. 1989. Experimental design in biotechnology. Marcel
Dekker, New York.

Hoffman, B., S. J. Cho, W. Zheng, S. Wyrick, D. E. Nichols, R. B.
Mailman, and A. Tropsha. 1999. Quantitative structure-activity relation-
ship modeling of dopamine D1 antagonists using comparative molecular
field analysis, genetic algorithms-partial least squares, and k nearest
neighbor methods. J. Med. Chem. 42:3217–3226.
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