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Clinton R. Bartholomew,3 Nicolas H. Thomä,2 Christopher F.J. Hardy,3 and David Shore1,*
1Department of Molecular Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, 30 quai Ernest-Ansermet,

1211 Geneva, Switzerland
2Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
3Department of Cell and Developmental Biology, Vanderbilt University Medical Center, T-2212 Medical Center North, Nashville,
TN 37232-2175, USA
4Present address: Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
5These authors contributed equally to this work
*Correspondence: david.shore@unige.ch

http://dx.doi.org/10.1016/j.celrep.2014.03.010

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
SUMMARY

The Rif1 protein, originally identified as a telomere-
binding factor in yeast, has recently been implicated
in DNA replication control from yeast to metazoans.
Here, we show that budding yeast Rif1 protein in-
hibits activation of prereplication complexes (pre-
RCs). This inhibitory function requires two N-terminal
motifs, RVxF and SILK, associated with recruitment
of PP1 phosphatase (Glc7). In G1 phase, we show
both that Glc7 interacts with Rif1 in an RVxF/SILK-
dependent manner and that two proteins impli-
cated in pre-RC activation, Mcm4 and Sld3, display
increased Dbf4-dependent kinase (DDK) phosphory-
lation in rif1 mutants. Rif1 also interacts with Dbf4 in
yeast two-hybrid assays, further implicating this pro-
tein in directmodulation of pre-RC activation through
the DDK. Finally, we demonstrate Rif1 RVxF/SILK
motif-dependent recruitment of Glc7 to telomeres
and earlier replication of these regions in cells where
the motifs are mutated. Our data thus link Rif1 to
negative regulation of replication origin firing through
recruitment of the Glc7 phosphatase.

INTRODUCTION

DNA replication in eukaryotes is initiated from specific chromo-

somal sites (origins), which fire in a temporal pattern during S

phase that depends on cell type and developmental stage. The

unfolding of this replication program is controlled through mech-

anisms that remain poorly understood to date. Recent studies

show that premature firing of normally late or dormant origins

in yeast can lead to activation of a DNA-damage response,

most likely as a consequence of deoxynucleotide triphosphate

depletion (Mantiero et al., 2011). This finding suggests that con-

trol of origin usage may be connected in some way to replication

fork progression.
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The control of DNA replication initiation is best understood in

the budding yeast Saccharomyces cerevisiae, where, unlike in

all other eukaryotes studied to date, potential replication origins,

or autonomously replicating sequences (ARS), are well defined

by a conserved sequence bound constitutively by the origin

recognition complex (ORC) (Siddiqui et al., 2013). Origins are first

prepared for replication through the loading of the replicative

helicase (MCM2–MCM7 hexamer) to form the prereplication

complex (pre-RC). Activation of the pre-RC requires the com-

bined action of two kinase complexes, the cyclin-dependent

kinase (CDK) and the Dbf4-dependent kinase (DDK), the latter

consisting of the Cdc7 kinase and its activator Dbf4 (Labib,

2010), and is associated with the recruitment of additional pro-

teins, including Cdc45, implicated in MCM2–MCM7 release dur-

ing initiation; a set of adaptor proteins, Sld2/Sld3 and Dpb11; the

GINS complex, containing four proteins implicated in polymer-

ase assembly at the origin; and the leading strand DNA polymer-

ase itself, Polε (Araki, 2011).

The temporal pattern of DNA replication during S phase in

yeast has been extensively studied (Aparicio, 2013). In this or-

ganism, only a small fraction of potential origins actually fire early

during S phase. Other origins fire duringmiddle or late S phase or

not at all and are thus passively replicated. Significantly, over-

expression of several factors, particularly Sld2/Sld3, Dbf4, and

Dpb11, accelerates initiation of normally late-firing origins, sug-

gesting that the temporal pattern of initiation is entrained by a

competition for limiting factors (Mantiero et al., 2011). Telomeres

tend to replicate late in S phase (Donaldson, 2005), despite their

proximity to nearby ARS elements, due to the action of two pro-

teins involved in gene silencing at telomeres, Sir3 and the Ku het-

erodimer (Yku70/Yku80) (Cosgrove et al., 2002; Stevenson and

Gottschling, 1999). More recent studies have shown that a third

telomere-binding protein, Rif1, also determines late telomere

replication (Lian et al., 2011). Mutation of RIF1, in addition to

causing earlier telomere replication, also leads to elongation

of TG(1–3) tract length at telomeres, yet paradoxically, in other-

wise wild-type cells, short telomeric TG-repeat tracts entrain

the linked telomere to replicate earlier (Bianchi and Shore,

2007). Taken together, these data implicate the telomere length
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Figure 1. RIF1 Deletion Suppresses Mutations Affecting DNA

Replication Initiation

Temperature-sensitive (ts) replication mutants, together with either RIF1 or

rif1D, were grown overnight in rich medium (YPAD) at 25�C. Serial 10-fold
dilutions were spotted onto YPAD plates and incubated at the indicated

temperatures for 48 hr. In each panel, isogenic wild-type controls for the

different ts mutants are shown. See also Figure S1.
regulatory mechanism and telomeric gene silencing in control of

telomere-proximal origin firing, though the mechanisms involved

remain obscure.
Here, we explore in molecular detail the role of Rif1 in telo-

mere-replication timing and more generally in the regulation of

genome-wide origin activation. Our findings suggest a model

in which Rif1 affects replication initiation through recruitment of

the PP1 phosphatase (Glc7), most likely at replication origins

themselves, where it counteracts the effect of the DDK.

RESULTS

Rif1 Has a Global Effect on pre-RC Activation in Budding
Yeast
The previous finding that deletion or knockdown of RIF1 in yeast

or mammalian cells leads to earlier DNA replication at some

chromosomal sites suggests a role for Rif1 in directly regulating

replication origin activation (Cornacchia et al., 2012; Hayano

et al., 2012; Lian et al., 2011; Yamazaki et al., 2012). In support

of this notion, studies in the fission yeast Schizosaccharomyces

pombe showed that deletion of RIF1 can rescue the lethality of

an hsk1+ deletion, which removes the essential DDK required

for replication initiation (Hayano et al., 2012). We found a similar

effect of RIF1 deletion in a Saccharomyces cerevisiae strain car-

rying a cdc7-4 temperature-sensitive (ts) mutation (CDC7 is the

budding yeast ortholog of hsk1+) but noted that rif1D does not

completely bypass the requirement for Cdc7, because rif1D

cdc7-4 cells still do not grow at 37�C (Figure 1A), and rif1D

does not permit growth of cells deleted for CDC7 (data not

shown).

To ask whether the action of RIF1 is specific to CDC7, we

examined the effect of rif1D on other factors required for pre-

RC activation, again using temperature-sensitive alleles of the

corresponding (essential) genes. Notably, we found that rif1D

strongly suppressed dbf4-1, sld3-4, and dpb11-24 mutations,

whereas it displays amoremodest effect on cdc45-27, encoding

a third activation factor (Figure 1A). In contrast, the influence of

rif1D on alleles affecting the helicase or its loading onto origins

(cdc46-1, orc5-1, and cdc6-1) was either minimal or undetect-

able (Figure 1B). This analysis suggests that Rif1 has an inhibitory

effect related to the DDK and three pre-RC activator proteins

(Cdc45, Sld3, and Dpb11), whereas relatively little or no effect

on pre-RC assembly (e.g., Cdc6 and Cdc46/Mcm5).

The fact that late-firing origins are controlled by limiting

amounts of some pre-RC activation factors (Mantiero et al.,

2011; Tanaka et al., 2011) raises the possibility that the suppres-

sion effect we observe for rif1D might result from an increase in

the amount of one or more of these proteins. However, we found

no evidence for this (Figure S1). Although we cannot rule out a

small abundance change that could have phenotypic conse-

quences, we present data below showing that at least two initi-

ation factors, including Sld3, display increased phosphorylation

in rif1D cells.

ConservedRVxF- andSILK-likeMotifs in Rif1Mediate Its
Effect on Pre-RC Activation
To address the mechanism of Rif1 inhibition of pre-RC activity,

we initiated a structure-function analysis. Rif1 is a large protein

with a long, centrally located array of helical repeats and a C-ter-

minal domain required for telomere binding through interactions

with Rap1 (Shi et al., 2013). Deletion of the C-terminal domain
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Figure 2. Glc7 Interaction Motifs in Rif1 and GLC7 Dosage Modulate

DNA Replication Initiation

(A and B) Cells with the indicated genotypes (rif1-RVxF and rif1-SILK cells carry

point mutations in, respectively, RVxF and SILK motifs) were assayed as

described in Figure 1.

(C) Cells with the indicated genotypes carrying either an empty plasmid or a

plasmid containing the GLC7 gene (pGLC7) were grown overnight in liquid

medium lacking uracil (SC-Ura) at 25�C. Serial 10-fold dilutions were spotted

onto SC-Ura plates and incubated at indicated temperatures for 48 hr.

See also Figure S2.
(from residue 1323 to the end at 1916) had no effect on growth of

a cdc7-4 mutant (Figure 2A). In contrast, an N-terminal deletion

(residues 2–176; rif1-DN) resulted in strong suppression of
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cdc7-4, similar to that observed for rif1D (Figures 2A and 2B).

The yeast Rif1 N terminus was shown recently to contain two

short peptide motifs (commonly abbreviated as RVxF/SILK

and referred to as such here, but actually KSVAF/SILR in

S. cerevisiae; Sreesankar et al., 2012) that have been associated

with recruitment of the PP1 phosphatase (Hendrickx et al., 2009),

encoded by GLC7 in yeast. PP1 (Glc7) is an abundant, highly

conserved serine/threonine phosphatase that controls many

different processes in all eukaryotic cells (Cannon, 2010). Inter-

estingly, these motifs are conserved in fly and mammalian Rif1

homologs, though their position within the protein and their

orientation are not. We generated point mutations in these two

motifs and introduced them individually or in combination at

the endogenous RIF1 locus.

Strikingly, the combined RVxF/SILK domain mutations sup-

pressed the cdc7-4, dbf4-1, sld3-4, and dpb11-24 growth

defects as well (or nearly, in the case of cdc7-4) as rif1D (Fig-

ure 2B). Where we examined either RVxF or SILK mutations

alone (in cdc7-4 and sld3-4 strains), suppression was evident

but weaker, indicating that the twomotifs have an additive effect.

We observed a similar effect of RVxF/SILKmutation on growth of

cdc45-27 (Figure S2A) and showed that the DN, RVxF, and SILK

mutations do not act by reducing Rif1 protein levels (Figure S2B).

Despite the fact that rif1-DN cells show a clear increase in Rif1

protein level compared to wild-type (Figure S2B), this mutation,

lacking the two Glc7 interaction motifs, suppresses the cdc7-4

growth defect as well as rif1D (Figure 2B).

If the RVxF/SILK mutations improved growth of cdc7-4 by

decreasing Glc7 recruitment at origins, overexpression of Glc7

might be expected to have the opposite effect. Indeed, we found

that modest overexpression of Glc7 is sufficient to reduce the

permissive temperature of a cdc7-4 mutant (Figure 2C) but

that this effect is abolished by rif1D. Taken together, these

data strongly suggest that Glc7 acts downstream of Rif1 in the

inhibition of origin firing.

Rif1 Interacts with Both Glc7 and Dbf4 and Regulates
the Phosphorylation of Mcm4 and Sld3
The results described above suggest that Rif1 affects pre-RC

activation through recruitment of the Glc7 phosphatase, which

in turn directly counteracts the effect of DDK (and perhaps

CDK) at replication origins. To test this idea, we first asked

whether Rif1 and Glc7 physically interact in cells. We immuno-

precipitated FLAG epitope-tagged Glc7 protein (expressed

from the native GLC7 locus) and probed the precipitate for

Rif1-Myc (also expressed from the endogenous locus). As

shown in Figure 3A, Rif1-Myc is enriched in precipitates from

Glc7-FLAG-expressing G1-arrested cells, and this binding is

strongly decreased in cells expressing the rif1-RVxF/SILK-Myc

mutant protein (see also Figure S3A for two independent exper-

iments and a coimmunoprecipitation [co-IP] in which the epitope

tags were reversed).

We next asked whether Rif1 has an effect on the phosphoryla-

tion state of the pre-RC or its activators by focusing on a well-

established DDK target, the MCM helicase component Mcm4

(Sheu and Stillman, 2006). We first examinedMcm4-Myc protein

mobility by SDS-PAGE in extracts from RIF1, rif1D, and rif1-

RVxF/SILK cells arrested either in G1 (following treatment with



Figure 3. Rif1 Interacts with Both Glc7 and

Dbf4 and Regulates the DDK-Dependent

Phosphorylation of the Replicative Helicase

Protein Mcm4 and the Pre-RC Activator

Sld3

(A) Western blot using a Myc monoclonal antibody

(mAb) following immunoprecipitation with anti-

FLAG M2 beads from cells expressing Glc7-FLAG

and either Rif1-Myc (WT) or rif1-RVxF/SILK-Myc

(mut) or from control cells expressing only Rif1-

Myc or rif1-RVxF/SILK-Myc. Extracts were pre-

pared from G1-arrested cells. The same samples

were analyzed by western blot using FLAG

antibody.

(B)RIF1, rif1–RVxF/SILK, and rif1Dcells, all ofwhich

express a Mcm4-Myc protein from the endoge-

nousMCM4 locus, were arrested either in G1 or G2

phase by a factor or nocodazole (10 mg/ml) treat-

ments, respectively. Protein extracts were pre-

paredandanalyzedbywesternblotwithaMycmAb

and with actin antibody as a loading control. As,

asynchronous culture (top panel). CDC7 or cdc7-4

cells expressing Mcm4-Myc were grown at 25�C
and thenshifted to the indicated temperatures in the

presence of a factor for 2 hr. Western blots were

carried out as above (bottom panel).

(C) The strains described in (B, top panel) were

arrested in G1 phase and then released into a

synchronous S phase at 18�C. Protein extracts

were prepared at the indicated times following

release from the G1 block and analyzed by

western blot using Myc and actin antibodies.

(D) Phos-tag SDS-PAGE western blots of extracts

from either RIF1 or rif1D cells probed for Sld3-Myc

(expressed from the endogenous SLD3 locus).

Cells were G1-arrested and released into a syn-

chronous S phase at 18�C. Aliquots were taken at

the indicated time points. The same samples were

analyzed by standard SDS-PAGE western blot as

a measure of total Sld3 protein (top panel). Cells of

the indicated genotypes, all expressing Sld3-Myc,

were grown at 25�C and then shifted to the indi-

cated temperatures in the presence of a factor for

2 hr. Western blots were carried out as above

(bottom panel).

(E) Phos-tag and normal SDS-PAGE western blot using FLAG mAb of extracts from either RIF1 or rif1D cells expressing Sld2-FLAG from the endogenous SLD2

locus. Cells were G1-arrested and released as in (D, top panel; top panel; *, nonspecific band). Cells with the indicated genotypes were grown and spotted in

YPAD plates as indicated in Figure 1 (bottom panel).

(F) Two-hybrid assays in a rif1D derivative of the PJ69-4a reporter strain were performed using GBD-Dbf4 or GBD-Rap1 fusions as ‘‘bait’’ with indicated GAD-

Rif1 fragments ‘‘prey.’’ The b-galactosidase activity levels reported are averages (with SD) of at least two independent biological replicates.

See also Figure S3.
mating pheromone) or G2/M (by nocodazole treatment). This

preliminary analysis revealed a prominent slower-mobility spe-

cies specific to both G1-arrested rif1D and rif1-RVxF/SILK

mutant cells (Figure 3B, top panel) that is abolished by phospha-

tase treatment (data not shown) and absent when cdc7-4 protein

is inactivated (Figure 3B, bottom panel; 37�C). To examine

Mcm4 phosphorylation in more detail, we monitored cells

released from G1 arrest into a synchronous S phase. As shown

in Figure 3C, and consistent with the previous experiment, we

detected a modified form of Mcm4 only in G1-arrested rif1D

and rif1-RVxF/SILK mutant cells, which increased in intensity

and reached a maximum at the 60 min time point but was unde-
tectable at 90 min, when S phase was completed (as shown by

fluorescence-activated cell sorting [FACS] analysis and Clb2

accumulation; see Figure S3B, left panels). Interestingly, wild-

type (RIF1) cells showed no evidence for Mcm4 phosphorylation

at early times (0–30 min following release from G1) but displayed

a slower-mobility species starting at 45min (when early ARSs are

fired, as measured by RPA recruitment; see Figure S3B, right

panel) and increasing at 60 and 75 min, similar to that observed

in the rif1D cells (Figure 3C; for a separate experiment in which

samples were loaded on one gel, see Figure S3C).

We also examined the phosphorylation state of two well-

known CDK targets, Sld2 and Sld3 (Tanaka et al., 2007;
Cell Reports 7, 62–69, April 10, 2014 ª2014 The Authors 65



Zegerman and Diffley, 2007), using a Phos-tag gel to enhance

the mobility shift of phosphorylated protein (see Experimental

Procedures). We observed a prominent mobility shift in Sld3-

Myc from G1 phase cells, and until 30 min following G1 release,

that was specific for the rif1D mutant (Figure 3D, top panel; Fig-

ure S3D, left panel). As both RIF1 and rif1D cells enter S phase

at 45 min, Sld3 becomes highly phosphorylated (Figure 3D,

top panel; Figure S3D, left panel), which previous studies have

shown to result from S phase CDK action (Tanaka et al., 2007;

Zegerman and Diffley, 2007). Total Sld3 levels are similar in these

strains, indicating that the early-stage appearance of the shifted

Sld3 band is not due to increased Sld3 expression in the rif1D

mutant. Because the S phase CDK is not active in G1 cells, we

askedwhether Sld3 phosphorylationmight require Cdc7 activity.

We also examined the Mec1 kinase, which had previously been

implicated in Sld3 phosphorylation (Lopez-Mosqueda et al.,

2010; Zegerman and Diffley, 2010). Interestingly, we found that

theG1-specific phosphorylation of Sld3 in rif1D cells is abolished

when cdc7-4 protein is inactivated (37�C sample) but unaffected

by the absence of Mec1 (Figure 3D, bottom panel; Figure S3D,

right panel). These data suggest that, as for the case of Mcm4,

Sld3 is targeted by the DDK in G1 but that this phosphorylation

is strongly counteracted by Rif1-Glc7. Interestingly, identical

experiments in cells expressing Sld2-FLAG show no difference

between RIF1 and rif1D cells in the mobility of this protein either

in G1 or as cells enter and proceed through S phase, where the

protein becomes highly modified (Figure 3E, top panel). Consis-

tent with this absence of Rif1-dependent phosphorylation of

Sld2, we found that an sld2-6 mutant is not suppressed by

rif1D (Figure 3E, bottom panel). Another target of CDK, Orc6

(Chen and Bell, 2011), shows no change in its phosphorylation

status between RIF1 and rif1D cells (Figure S3E). Taken

together, these data suggest that the action of Rif1-Glc7 might

be limited to G1 phase and to DDK targets (Mcm4 and Sld3,

though perhaps others).

In the course of investigating the role of Dbf4 in DNA replica-

tion initiation, we performed a yeast two-hybrid screen using

full-length Dbf4 as bait and identified a C-terminal portion of

Rif1 (amino acids 1647–1916) as an interacting polypeptide

(Figure 3F). Interestingly, a nearly identical clone of RIF1 was

originally identified through its two-hybrid interaction with a

C-terminal domain of Rap1 (Hardy et al., 1992). More recently,

we demonstrated a direct interaction between a short a-helical

region within the Rif1 C terminus (Rif1RBM, amino acids 1752–

1772) and a conserved groove in the Rap1 C terminus (Shi

et al., 2013). Mutation of a critical residue within this peptide

abolishes the interaction with Rap1, as shown before (Shi

et al., 2013), but has no effect on the interaction with Dbf4 (Fig-

ure 3F). The experiments shown in Figure 3F were all performed

in a rif1D reporter strain to eliminate the possibility of bridging

effects with endogenous Rif1, which we showed can form tetra-

mers through a C-terminal domain (Shi et al., 2013). The Dbf4

interaction we detect is thus not mediated through other parts

of Rif1. We next asked if Rif1-Glc7 affects phosphorylation of

Dbf4 by monitoring cells released from G1 arrest into a syn-

chronous S phase. We observed a prominent mobility shift of

Dbf4-FLAG throughout S phase but no effect of Rif1 on this

modification (Figure S3F).
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Rif1 RVxF and SILK Mutations Affect Glc7 Recruitment
and Replication Timing at Telomeres
Because Rif1 is concentrated at telomeres in yeast (Mishra and

Shore, 1999) and known to play a role in determining their late

replication (Lian et al., 2011), we next askedwhether Rif1 recruits

Glc7 to telomeres. Indeed, we detectedmodest but reproducible

association of Glc7-Myc to both the chromosome VI-R and XV-L

telomeres, at sequences very close to their linked ARS sites (Fig-

ure 4A). Significantly, this binding was reduced or eliminated by

mutations in the RVxF and SILK motifs, to an extent similar to

that observed in rif1-DN or rif1D mutants (Figure 4A). The effect

of the RVxF and SILK mutations is not due to decreased recruit-

ment of Rif1 to the telomeres (Figure S4). These data thus

indicate that Glc7 interacts specifically with two telomeres in a

manner that depends upon the Rif1 RVxF/SILK motifs.

We then asked whether reduced Glc7 binding caused by rif1

mutations is associated with altered replication profiles at chro-

mosome VI-R and XV-L telomeres. We measured replication

kinetics in synchronized cells by performing chromatin immuno-

precipitation (ChIP) on a Myc epitope-tagged Pol2 (DNA poly-

merase ε) protein (Bianchi and Shore, 2007). This analysis

showed that, although the firing of the early ARS607 occurs at

the same time in wild-type and all rif1 mutant cells, the appear-

ance of Pol2 immediately adjacent to the VI-R and XV-L telo-

meres occurs approximately 15 min earlier in the rif1 mutants,

consistent with the activation of the telomere-proximal ARS610

and ARS1503 origins (Figures 4B, right panels, and S4B). We

confirmed the earlier telomere replication in rif1 mutants

by measuring DNA amounts for the input samples of the Pol2

ChIP experiment (Figure 4B, left panels), normalized to the

ARS607 region, where replication timing is unaffected by Rif1

(Figure 4B, top right panel). The two telomeric regions that repli-

cate after ARS607 display a decrease in DNA copy number at

the time of ARS607 replication that is reversed when they them-

selves replicate (Figure 4B, left panels; compare 60 and 105 min

time points). Consistent with the Pol2-Myc ChIP results, we

observed an earlier copy-number increase at both telomeres in

all the rif1mutants compared to wild-type (Figure 4B, left panels;

see 75 and 90 min time points). Our results thus suggest that

the Rif1-Glc7 interaction controls origin firing adjacent to two

different telomeres.

DISCUSSION

The genetic analysis described here provides several insights

into the role of Rif1 protein in the control of DNA replication in

budding yeast by both genetically and physically linking its ac-

tion to the PP1 phosphatase, Glc7, and by pinpointing its effect

to specific events involved in pre-RC activation.

In considering how Rif1 might exert a negative effect on

replication initiation, we focused on two short motifs (similar to

RVxF/SILK) that were recently observed in fungal Rif1 N termini

(Sreesankar et al., 2012) and that have previously been shown to

be docking elements allowing regulatory proteins to bind to the

conserved PP1 phosphatase (Cannon, 2010; Hendrickx et al.,

2009). Our genetic data strongly suggest that these two motifs

are together absolutely required for the ability of Rif1 to nega-

tively regulate origin firing, because their mutation suppresses



Figure 4. Telomeric Recruitment of Glc7

and Replication Timing Are Dependent

upon Rif1 RVxF/SILK Motifs

(A) ChIP analysis of Glc7-Myc protein at the native

chromosome VI-R and XV-L telomeres in RIF1,

rif1D, and the indicated rif1 deletion and point

mutants cells. Results are reported as average fold

enrichment and SD relative to the ACT1 gene.

Reduced recruitment of Glc7 is statistically sig-

nificant in all of the rif1mutants tested (for TEL VI-R

and TEL XV-L, respectively: rif1-RVxF, p = 0.049

and p = 0.048; rif1-RVxF/SILK, p = 0.007 and

p = 0.038; rif1-DN, p = 0.004 and p = 0.037; rif1D

p = 0.0013 and p = 0.019).

(B) RIF1, rif1-RVxF, and rif1-RVxF/SILK cells were

blocked in G1 phase and then released at 18�C.
Pol2-Myc protein recruitment was assayed by

quantitative PCR-ChIP analysis on aliquots taken

at the indicated times following release, using

probe pairs near ARS610 (adjacent to the chro-

mosome VI-R telomere; position 270 kb), near

ARS607 (position 200 kb), and near ARS1503

(adjacent to the chromosome XV-L telomere; left

panels). DNA amounts in the input samples for

Pol2-Myc ChIP, normalized toARS607 levels at t =

0, at the indicated time points following release

from the G1 block. Results are reported as

average and SD of three or four independent

experiments (TEL VI-R: rif1-RVxF 75 min p =

0.03772; rif1-RVxF/SILK 75 min p = 0.01628,

90 min p = 0.01684; rif1D 75 min p = 0.00049,

90min p = 0.04867. TEL XV-L: rif1-RVxF 75min p =

0.00951; rif1-RVxF/SILK 75 min p = 0.01684,

90 min p = 0.04186; rif1D 75 min p = 0.02524,

90 min p = 0.04905; right panels).

See also Figure S4.
various ts-lethal mutations affecting pre-RC activation to nearly

the same extent as deletion of the whole Rif1 open reading frame

without having any obvious effect on Rif1 protein levels. Our

observation that Rif1 coimmunoprecipitated with Glc7 in an

RVxF/SILK-dependent manner further supports the idea that

Rif1 and Glc7 indeed interact in G1 phase to affect replication.

We note that a high-throughput proteomic screen of yeast

kinases and phosphatases has also revealed aRif1-Glc7 interac-

tion (Breitkreutz et al., 2010).

Our detailed suppressor analysis of several different mutants

involved in either pre-RC assembly or activation gives insights

into the mode of Rif1-Glc7 action. We found no evidence for

Rif1 action during pre-RC assembly but instead observed strong

suppression by rif1D or rif1-RVxF/SILK mutations of specific al-

leles affecting pre-RC activation. Examination of the phosphory-

lation state of four different proteins involved in pre-RC activation

provided further insights. Thus, we were able to show that Rif1

affects the phosphorylation state of both Mcm4 and Sld3 in a

Cdc7 (DDK)-dependent manner in G1 cells, but not that of either

Dbf4 or Sld2. Our phosphorylation data are thus strikingly

consistent with the genetic suppression data, both of which

point to the DDK axis of pre-RC activation and two DDK targets,

Mcm4 and Sld3. Significantly, the S phase CDK target Sld2 is un-

affected by Rif1 in either genetic or biochemical assays. Taking
all of the above into account, we propose that Rif1-Glc7 inhibits

replication initiation by counteracting the DDK in G1-phase cells.

Our data are consistent with recent findings that Cdc45 and Sld3

(but not Sld2) are recruited to the pre-RC in G1 in a Cdc7-depen-

dent manner and specifically at early-firing origins (Heller et al.,

2011; Tanaka et al., 2011).

Although the suppression effect we observe for the rif1-RVxF-

SILKmutation suggests that it might provoke a global increase in

the phosphorylation state of at least two pre-RC activators, thus

partially compensating for reduced DDK activity (cdc7-4 or dbf4-

1) or reduced activity of structural components (sld3-4 and

dpb11-24), it is still unclear if or howRif1-Glc7 activity is targeted

at a genome-wide level. Rif1 localizes to telomeres in budding

yeast through an interaction with the telomere-binding protein

Rap1 (Mishra and Shore, 1999; Shi et al., 2013) but has not

been shown to bind elsewhere in the genome. Consistent with

this, we do indeed find that telomeres are a direct site of Rif1-

Glc7 action. One possibility is that the relief of Rif1-Glc7 inhibition

at telomere-proximal origins in rif1-RVxF-SILK mutants is suffi-

cient to cause the ts mutant rescue that we observe. However,

we know that Rif1 mutants incapable of telomere localization,

such as rif1-DC and rif1-RBM (Shi et al., 2013; data not shown),

still strongly inhibit growth of cdc7-4, indicating that Rif1 does

not have to be telomere-bound to counteract DDK function
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globally. So, can Rif1-Glc7 exert their inhibitory effect at other

specific genomic sites? Although we suspect that this is the

case, we have so far failed to detect either Rif1 or Glc7 at nonte-

lomeric origins by ChIP, so have no evidence that their effect at

these sites is direct. Further work will be required to resolve this

issue.

Our identification of Rif1 as a Dbf4-interacting protein in a

yeast two-hybrid screen provides evidence for a physical link

between Rif1 and the DDK. Interestingly, the C-terminal domain

of Rif1 that suffices for this interaction is not required for Rif1 to

exert a negative effect on pre-RC activity, and we detect no

effect of Rif1 on Dbf4 phosphorylation. This argues that the

DDK itself is not a direct target of Rif1-Glc7, nor is it required

for Rif1-Glc7 to operate on its actual targets. Instead, the

Dbf4-Rif1 interaction may be best understood as part of a feed-

back mechanism by which the DDK limits the inhibitory action of

Rif1-Glc7 on the pre-RC during G1, up to the point at which early

origins fire. Indeed, we note the presence of five phospho-serine

residues flanking the RVxF/SILK motifs in Rif1 that have been

identified in proteomic studies (http://www.phosphopep.org/)

and which are potential DDK targets. We thus speculate that

the DDK targets the Rif1 N terminus in order to limit Glc7 recruit-

ment and action at origins to the G1 phase. This model is consis-

tent with the proposal that DDK activity increases as cells move

into and through S phase (Rhind et al., 2010) and is also sup-

ported by our biochemical data.

We note that the findings described here, and in two recent

related reports (Davé et al., 2014; Hiraga et al., 2014), are likely

to have important implications for Rif1 function in other eukary-

otes, including mammals. Recent reports show that fission yeast

(Hayano et al., 2012), mouse (Cornacchia et al., 2012), and hu-

man Rif1 (Yamazaki et al., 2012) homologs are also involved in

regulation of the temporal program of DNA replication. Further-

more, mammalian RIF1 has been shown to interact with PP1

(Moorhead et al., 2008). We thus predict that a RIF1-PP1 interac-

tion in mammalian cells (as well as in fission yeast) will play a

role in controlling the replication timing program in these sys-

tems, presumably through similar targets in the pre-RC activa-

tion pathway, many of which are also highly conserved between

yeast and human.

EXPERIMENTAL PROCEDURES

Strains and Plasmids

All yeast strains and plasmids used in this study are listed in Tables S1 and S2,

respectively. General yeast manipulations were done according to standard

methods (Rose et al., 1990).

Viability Assays

Yeast strains were grown in the appropriate media to a concentration of 1 3

107 cells/ml. Serial 10-fold dilutions were spotted on plates containing yeast

extract, peptone, adenine, and dextrose medium (YPAD) or selective medium

at the indicated temperature. Plates were photographed after 2 days of

incubation.

Western Blotting and CoIP Assays

Protein extracts (trichloroacetic acid-urea method) and SDS-PAGE western

blot analyseswere performed as described (Lempiäinen et al., 2009). See Sup-

plemental Experimental Procedures for further details. For coimmunoprecipi-

tation experiments, 500 ml of cells in exponential growth were treated with
68 Cell Reports 7, 62–69, April 10, 2014 ª2014 The Authors
50 ng/ml of a factor (Bachem) for 120 min in YPAD at 30�C. Cells were har-

vested and lysed by bead beating (0.5 mm zirconia-silica beads) in a buffer

containing 20 mM Tris (pH 8.0), 150 mM KCl, 1 mM EDTA, 1% NP-40, 20%

glycerol, 1 mM dithiothreitol, and 1 mM phenylmethanesulfonylfluoride, sup-

plemented with a protease and phosphatase inhibitor mix (Roche Molecular

Biochemicals). Lysates precleared by centrifugation were subjected to anti-

FLAG M2 or anti-Myc (9E10) immunoprecipitation by following the manufac-

turer’s instructions (Sigma Aldrich). The beads were washed three times

with the lysis buffer, and the immunoprecipitates were eluted in SDS sample

buffer.

Yeast Two-Hybrid Screens and Assays

Yeast two-hybrid screens and quantitative beta-galactosidase assays were

carried out as described previously (James et al., 1996).

ChIP and DNA Quantification Assays

ChIP assays were performed as described previously (Bianchi et al., 2004),

with minor modifications (see Supplemental Experimental Procedures for

details and for description of the DNA quantification assay).

Cell Synchrony Experiments

Overnight cultures of MATa bar1D strains were diluted 10-fold into 450 ml of

YPAD. After 3.5 hr growth at 30�C, cultures were blocked by treatment with

50 ng/ml of a factor (Bachem) for 130min in YPAD at 30�C. Cells were released

from the arrest by washing and by Pronase Nuclease-free treatment (Calbio-

chem; 50 mg total) and then placed in YPAD medium at 18�C. Samples

were taken at 15 min intervals for ChIP and FACS analysis. Cell-cycle syn-

chrony and release were checked by microscope and FACS analysis as

described previously (Bianchi and Shore, 2007).

Statistical Analysis

The differences in values obtained in either ChIP or DNA quantification assays

were assessed for significance with Student’s t test. Average values and SD

are reported.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and two tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2014.03.010.
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