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ABSTRACT 

We give criteria for the rationality of  Cantor series ~ =  t ~ and series ) -~= 1 ~ where al, a2,. .  • 
and bl ,b2, . . ,  are integers such that an > 0 and the series converge. We precisely say when 

~ 1 ~ is rational (i) if {an }~= l is a monotonic sequence of  integers and b, + l - bn -- o(an + t) or 
l imsup,  oo( b ' - ~ -  ~) < 0, and (ii) if b~ -~ -  < ~ for all large n. We give similar criteria for the 

a n + l  an - -  a n + I - - 1  - -  a n - - I  

rationality of  Ahmes series ) -~= 1 ¼ and more generally series x---o~ ~ For example, if b, > 0 and Z . ~ n = l  an" 

hm sup. ~ ~ A.:_ 1 ( ~  - ~.) _< 0, where A. = lcm(ah a2 , . . . ,  a.), then ~ =  l ~ is rational if and 
only if an+ 1 = o '~a . ( a "  - 1) + 1 for large n. 

On the other hand, we show that such results are impossible without growth restrictions. For 
b ~ example, we show that for any integers d > e > 1 there is a sequence { .} .=  1 such that every num- 

ber x from some interval can be represented as x = ~ =  1 ~ with a. E {e, d} for all n. 

1. I N T R O D U C T I O N  

a o<) Let { n}n= 1 and {b,},°~_l be two integer sequences with an > 0 for all n. Put  
S = ~ =  1 ~ and Ru = x--,oo ~ for N = 1 ,2 , . .  Most  proofs are based ... Z.., n = N aN.. "an "" 
on the following fact. I f  S is a rational number,  S = r/q with r E 7/, q E • say, 
then qRN E Z for every N. 

In Section 2 we present some basic results. In Theorem 2.1 we generalize a 
~b~oo has result of  Oppenheim as follows: if a ,  > 1 for all n, b, = O(an) and ta .J ,=  l 

an irrational limit point, then S ~ •. Oppenheim required additionally that 
0 < bn < an for all n. 

Let {an}n°~=l be a nondecreasing sequence with an > 1 for all n. In  [5] Hart61 
and Ti jdeman showed that  S is rational if  and only if ~ is eventually constant  
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provided that (i) b, = n and an ~ ~ ,  or (ii) an = n, b n + l -  bn = o(n) or (iii) 
bn =o(a~) ,bn > O, b n + l - b n  < ~an for n > hi(e). In Section 3 we present a 
common generalization of  (i) and (ii) and we show that the condition bn = o (a, z) 
in (iii) is superfluous. 

b Let {an}n=l and { n}n=l be arbitrary sequences of  positive integers. In Sec- 
tion 4 a rationality criterion for S is given (i) if {a,}~= 1 is a nondecreasing se- 

• /b.+l b. quence and hm s u p n ~ % , +  ~ - a,) -< 0, and (ii) if anbn+ I - an+ jbn <_ bn+ 1 - bn 
for all n. Fur thermore we generalize and refine rationality criteria of  Sylvester 
[7], Badea [1], [2] and Erd6s and Straus [4] for Ahmes series )--]~ 1 ± and more 
generally series )--]~=,~. For example, if l i m s u p n _ ~ A n _ , ( ~ - ~ ) _ <  0, 
where An = lcm(a l  a2 , . . ,  an), then ~n~=l b" is rational if and only if 

) ~ an 

an+l = ~ a , ( a n  - 1) + 1 for large n. 
In Section 5 some variants of  a construction of  Han61 and Tijdeman [5] are 

presented. We show that if k > 1 is an integer and {bn}n~_ 1 a monotonically 
nondecreasing sequence, then every number x from some interval can be re- 
presented as x = ~ : l ~ b "  with an E { k , k  + 1, . . .  ,k2}. Furthermore,  we 
show that there exists a sequence {bn}n~=z such that every number x from some 

~-"~ ~ with an E {n,n + 1} for every n, interval can be represented as x = Z-~n=2 az".an 

Finally, for any integers d > c > 1, we construct a sequence {bn}n% 1 such that 
S-,~ b. with every number x from some interval can be represented as x = ,--,n = 1 al--.a, 

an ~ {C, d}. These construtions show that the results in Sections 3 and 4 do not 
hold without growth restrictions. 

2. A C R I T E R I O N  A N D  SOME BASIC P R O P E R T I E S  

In this section we study necessary and sufficient conditions under which the 
Cantor  series 

bn 
(1) S =  

n : l  a l . . . a n  

is rational, where {an}n~=l and {bn},~l are two sequences of  integers with an 
positive for all n.'We do so by studying the N-th partial sum SN and the N-th 
remainder RN defined by 

N- I bn ~,  bn 
(2) S N =  ~ , R N =  z.., • 

n = l  al ° ' ' a n  n=N a N " • a n  

btl Throughout  the paper we assume without further mention that E~=lal...an 
converges when we discuss its rationality. Hence it suffices to consider the value 
of  limk ~ o~ Snk (= S) for some subsequence {nk}k~= 1 of  the positive integers. The 
following results are crucial. 

L e m m a  2.1. ([5])• (i) l f  there is a constant c such that b, = c(a, - 1 ) for  n > no, 

then S E Q. 
(ii) l f  S = r /q  for  some r E 7/, q E •, then qRn E Z f o r  all n. 
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For a subsequence {nk}k~_ 1 of the positive integers, put  no = 1, 

(3) ak = ank - l ank - 2 " " " a n k _  l , 

(4) b~ = bnk-l +bnk-2ank-1 + "'" +bnk_~ank-lank-2" "'ank_~+l. 

Then, for k = 1 , 2 , . . . ,  

( 5 )  S = b*k , Snk = E _ . ,  : 
k=l a~ . . . a~  j= l  a ~ . . . u j  j=k+l  a ~ + l ' " a )  

The next lemma presents a sufficient condition for the rationality of  S. 

Lemma 2.2. I f  there exists a subsequence {nk}k°~=l o f  the positive integers such 
that Rnk = Rnk+lfor k = 1,2, . . . ,  then S i s  rational. 

Proof. Put R = Rn~. Using the notat ion (3)-(4) we have 

b* _b* L 
R Rn~ l - - k +  R n ~ - - - - +  

- ak a* k a* k " 

Hence R = o ~ - i  E Q, or b E = 0 , a ~  = 1 for k =  1,2, . . - .  Since the series for S 
converges, we have a~ . . .  a~ ~ co as k ~ oo unless b~, = 0 for k > k0. In the 
latter case S E Q. In the former case we obtain 

~r oo (a; 1)___R 
S = lim Snk = -~ + lim 

k--.oo a~ /~--ooj= 2 a*l . . .a  ~ 
~r ~r 

= b~ + R - lim R bl + R E Q. [] 
a7 k--.ooa~...a~ a 1 

The case nk = k for all k of  the following result was repeatedly used by Han~l 
and Tijdeman in [5]. 

Proposition 2.1. I f  { Rn}n°°__ 1 is bounded f rom below and there exists a subsequence 
{nk}k°°=l o f  the positive integers with Rnk+l -- Rnk < e for  k > ko (~), then S is ra- 
tional i f  and only i f  Rnk = Rnk + ~ for  all large k. 

Proof.  Assume S = r /q  for some r E Z , q  E ~.  Then qR,  E ~_ for all n by 
Lemma 2.1. Therefore for K > ko(1/q) we have Rnx >_ Rnr+~ > Rnx+2 > " " .  
Since {qRnk}k~r is an integer sequence bounded from below, we have 
Rnk = Rn~+l for k sufficiently large. 

The sufficiency of  the condition follows from Lemma 2.2. []  

Remark 2.1. In a similar way we can prove that the conclusion of Proposit ion 
2.1 holds if there exists an integer sequence {nk}k°°=l with Rnk+~ --Rnk ~ 0 as 
k ~ co. This idea is used in the proof  of  the following theorem. 

Oppenheim [6] proved: let {an}n°°__ l and {bn}n°°_l be two sequences of  integers 
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such tha t  an > 1 and  0 < bn < an for  all n and  tha t  , r h ~  has an i r ra t iona l  - -  t a n  J e t  : l 

l imit  point.  Then  S = x-"~ ~ is i r ra t ional .  We show here tha t  the condi t ion  
. l . ~ n  = 1 a I . . .an 

0 < bn < an can be re laxed to bn = O(an). 

"¢~t°~ has T h e o r e m  2.1. Suppose that an > 1 for  all n, that b,  = O(a,)  and  that ta, Jn= 
an irrational limit point  a. Then S is irrational 

Proofi  Suppose  S = r /q  for  some  r E 7~,q E ~.  Then,  by L e m m a  2.1, qRn E 77 
n o o  for  every n. Suppose  [a~[ < M for  every n. Cons ider  a subsequence  { k}k= 1 o f  

the posi t ive integers such tha t  b~ ~ a as k ~ ~ .  Since a ¢ Q, we have 
ank 

limk--. ~ ank = oo. Obse rve  that  

Rnk ---- bn---Lk + 1 ~ Rn~ + 2" 

ank ank 

Since 

bnk + l 
I < + + . - .  < M 1 + + + . . . .  2 M ,  

- lank + 1 1 ank + ! ank -- -2 -4 

we obta in  

l im qRnk = q l i m b n k + q  l im Rn~+1 _ qa. 
k ---, oo k~oo an~ k ~ ~ ank 

Recal l  tha t  qRnk E 7/. Thus  a is ra t ional .  [ ]  

Coro l la ry  2.1. Suppose limn ~ ~ ~ exists and is irrational Then S is irrational. 

3. THE CASE bn+l - b n  = O(an+~) 

a oo be a nondecreas ing  sequence o f  integers with an > 1 for  all n. Let  { n},=l  
Han61 and  T i jdeman  [5] showed tha t  S = ~ =  i ~ is ra t iona l  if  and  only if 

al  "" "an 

b, is cons t an t  for  n grea ter  than  some  no p rov ided  tha t  (i) bn = n and  an ~ oo 
a n - - I  

( T h e o r e m  6.2), or  (ii) a n = n ,  b n + l - b n = o ( n )  (Coro l l a ry  4.2) or  (iii) 
bn = o(a~),bn > O, bn+l - bn < can for  n > nl(e). In  this sect ion we present  a 
c o m m o n  genera l iza t ion  o f  (i) and  (ii) in T h e o r e m  3.1 and  we show tha t  the 
condi t ion  bn = o(a~) in (iii) can be d r o p p e d  in T h e o r e m  3.2. 

T h e o r e m  3.1. Let  {an}n°°= l be a monotonic integer sequence with an > 1 f o r  all n 

and { bn }n~= l an integer sequence such that bn + l - bn = o( an + 1). Then the sum 

S = ~ =  1 ~ is rational i f  and only ifab-~_l is constant f r o m  some no on. 
al  " ' a n  

Proof .  In  view o f  L e m m a  2.1 (i) one direct ion is obvious.  There fore  it suffices to 
p rove  the o ther  direct ion.  Suppose  S = r /q  for  some  r E 77, q E [~. Then,  by 
L e m m a  2.1 (ii), qRn E 7/ for every n. By the definit ion o f  Rn we have 

(6) R , + I  = a n R n -  bn (n = 1 , 2 , . . . )  
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and, by the convergence assumption S - Sn = ~ ~ 0 as n ~ c~, 
al ""an - 1 

(7) Rn = o(ala2..  "an-l) .  

It  follows f rom (6) that  

(8) Rn+2 - R n + l  = (Rn+l -Rn)an+l  + Rn(a,+l  - a , )  - (bn+l - b n ) .  

Since a.+ 1 > an, q(R,+ l - R , )  E Z and b,+ l - b, < ~ for n _> nl, we see that  
Rm+ l > Rm >_ 0 for some m _> nl implies Rm+ 2 > Rm+ l. Moreover,  

a m +  1 

R m + 2 -  Rm+l > (Rm+l - Rm)am+l 4q 

Hence by (6) with n = m + 1, 

Rm+3 - Rm+2 > am+2(Rrn+2 - Rm+ 1 )  - -  - -  
a m + 2  

4q 

> am+2am+l(Rm+ 1 __ R m  ) ara+2am+l am+2 
4q 4q 

By induction we get. using that  a .  > 1 for all n, 

R m + r + l  - R m + r  

1 
(Rm+ 1 - -  Rm)am+ 1"" "am+r - -~q (am+ 1""  am+r + am+2"'" am+r + " "  + am+r) > 

1 1 1 1 1 
-am+l ""am+r- ~qqam+l ...am+,(l +~+~+ .-) = ~qqam+1 "''am+r. q 

Therefore 

Rn+ 1 1 Rm+r+ 1 
lira - -  - - -  lira ¢ 0, 

n - - * o o a l  • • " a n  a l  • • " a m r - * o o a m + l  • • " a r a + r  

which contradicts  (7). Thus Rm + 1 < Rm if Rm >_ O, m > nl. By replacing bn with 
-bn  for all n, we see that  also Rm+l >_ Rm i fRm <_ O,m >_ nl. I f R ,  is constant  
f rom some no on, then S is rational by Lemma  2.2. Thus we may  assume 
that  {R,}n~l has infinitely many  sign changes. Let m _>hi be such that  
Rm < 0, Rm+l > 0 .  By (6) we have bm < 0 .  Hence, bm+l < b m + ~ q '  < a"+l 

- -  - -  4 q  " 

From (6) and a,  > 1 with n = m + 1 and L e m m a  2.1 we get 

Rm+ 2 - Rm+ l = ( a m + l - - 1 ) R m + l - - b m + l  > am+~ am+_____21>0" 
2q 4q 

On applying (8) for n = m + 1, m + 2 , . . .  we obtain by induction that 

R m + i + l  - R m + i  > ( R m + i -  R m + i - l ) a m + i  a m + i  
4q 

and reasoning as before we again arrive at a contradict ion with (7). []  

Theorem 3.2. Let {a.}n°°__ 1 be a monotonic integer sequence with a. > 1 for all n. 
Let { bn}n°~=l be a sequence o f  positive integers such that lim SUPn ~ b.+,-b. < 0. o~ an - -  

Then S = ~'~= 1 a lbn...an is rational i f  and only i f  ~b-~_ l is constant from some no on. 
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Proof. Since Rn > 0 for all n, it suffices to follow the first par t  of  the p roof  of  
Theorem 3.1. []  

~ Q. Apply Theorem 3.1 with b n : n + 1 and Example  3.1. En°~ 1 (2.n)! 
an : 4n + 2. 

4. T H E  C A S E  O F  P O S I T I V E  bn 

In this section we assume bn > 0 for all n, but  in most  results we drop the re- 
quirement that  {an}n~l is monotonic.  This will enable us to derive rationality 

results on series ~ =  1 ~ too. an 
Theorem 4.1 also deals with such series. Its p roof  is based on the proofs of  

Erd6s and Straus [4], but it is much simpler and more general. 

Z o~3 oo 
Theorem 4.1. et { an}n = l and { b n } n =  1 be two sequences of  positive integers such 
that the series S := ~ =  l ~ converges. Let An denote the lowest common multiple 

, (bn+ lan -- bp_~n ) • O. Then S is o f  the numbers al , . ."  an. Suppose l i m s u p n ~ A n _ l  , a,+l 
rational i f  and only i f  an+ l = ~ l  an(an - 1) + l for large n. 

Proof. Suppose S = r/q with r,q E ~. Put R n = ~ n + l  bk Then qA,R~ = a k" 
A n r -  Y~k=l a, q n a_~ E N for all n. By the assumptions of  the theorem, for every 

> 0, there is an nl (e) such that  

bn+lan b n < ~  and --bn<e, 
an+ l an -- A n -  1 an 

which implies an < can+ 1, for n > nl (e). We have, assuming that e < ½, 

=(_bn+lan bn) (bn+2___._an bn+l~+(bn+3an bn+2~ 
anR*~- R*~_, 2 an+, -~n + \ an+2 an+l/  \ an+3 an+~2/ 

+ . . . < ( b n + l a _ n  bn)  an (bn+2an+l bn+l~ 

- \  an+l ~ + - -  an+l \ an+2 an+l,/  

-~ an an+l (bn+3an+2 . . . .  bn+2~ q_ 

an+lan+2 \ an+3 an+2~ 
£2 ~3 2e 

< A-LS_  +Z+Z-n+I  + <  A°_--5 

Choose e = ~. I t  follows that the integer qAn-lanR~ - q A n - I R  n_ 1 is less than 
1, hence <_ 0, for N > nl. Therefore al . . .anR* <_ a l . . . an- lR* ,_  1 for n > nl. 

"" "anR,}n- 1 is non-increasing for Since qal . . .  anR*~ E ~ and the sequence {al * ~_ 
n > nl, we obtain that  the sequence is ultimately constant,  whence 

anR*~ = R* n_l 

, , , b. and for n > n2. Observe that anR n = R n_ 1 ~- bna, "q- Rn" So R~, = an(an--i) a,+l--1 = 

• * b = ~-~an(an 1)+ an+lRn+ 1 = R n = ~ for n > n2. This implies that  an+l 
1 for n > n2. 

On the other hand, suppose an+l = h ~ - ~ a n ( a n - 1 ) +  1 and an > 1 for 
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n > no. Then, by induction, x-'n b~ = bn 9 
- -  Z - ~ k = n o  a k  ano (ano-- 1) 

b 
- f o r  n _> n o  Hence 

Theorem 4.1 implies several old results on Ahmes series. Case (i) of  Corollary 
4.1 is due to Badea [1], [2]. The special case with bn = 1 for all n already occurs 
in a paper of  Sylvester [7]. Case (iv) with bn = 1 for all n is Theorem 1 of Erd6s 
and Straus [4] and case (v) with the same restriction is an improvement of 
Theorem 3 of  that paper. We show that the condition (i) of  their Theorem 3 can 
be dropped. 

Corollary 4.1. Let {an}n% 1 and {bn}~= 1 be two sequences o f  positive integers such 
that the series S := )-'~=i ~converges. Then an+i = ~/-~ an(an - 1) + l for large 
n i f  and only i fS  is rationalprovided that at least one of  the following conditions is 
satisfied: 

b~--~A a + 1 ,  
(i) an+l > bb~: ~ + O~(bn:l an), 

(iii)(ii) an+la"+l >> b b~ ~ a~(1 -- en) where ELI Icnl < ~ ,  
bb~.l a2(1 + o(1)) and { ~ }  is bounded, 

(iv) an+l >_bb~_ tan2( 1 + 0  t a" h~-I 
(V) a n + l  ~ bn X A n - l b n ] ]  " 

Proof. Condition (v) is just  a rewriting of  the limsup condition. If  i a ,b~ l ,  is 
L a n + l  

bounded, then condition (iv) implies condition (v). 
Suppose condition (iii) holds. Then 

an+, >_ ~ - L a 2 n ( 1 -  en) >_ ~ - l a n a n - , ( 1 - e n ) ( 1 - e n - a )  >_'">_ 

n 

b.+l  . a2~  1-I (1 ek). b--'-Z a n a n  - 1 " " 
k = l  

Since C := I-[~= l(1 - ek) converges and is positive, we obtain 

Anbn + 1 al "" anbn + 1 bf - - <  < _ _  
a n + l  - -  a n + l  - -  a l  C "  

Of course en ~ 0 as n ~ c~. Thus case (iii) follows from (iv). 
Cases (i) and (ii) follow immediately from (iii) since ~ n = l ~ < ~  1 _ z_~n=lV'~ ~a. 

converges. []  

By varying the proof  of  Theorem 4.1 we derive a result on Cantor series. The- 
orem 4.2 shows that in Corollary 4.1 of  [5] the conditions bn = O(a2n) and 
b, +1 - bn = o(an) can be replaced with the single condition b~+* I < ~ + o(1). 

a ~ and {bn}n~__ be sequences of  positive integers such Theorem 4.2. Let { n}n=l l 
that {an}n= 1 is ultimately monotonic and limsupn__,ooka,+l -a , )  <- O. Then S = 
~ = 1  ~at...a, E Q i f  and only ifa b-~_l is constant for n larger than some no. 

Proof. For every e > 0 there is an nl(e) such that b.+l _ ~  < c for n > nl(e). 
an  + I an  

Suppose S = r/q with r, q E I% Choose e = ~. We have 
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R n + , - R n  ~ ( bn+l bn) ( bn+2 bn+l "~ 
\an+-----1 ~ + an+lan+2 anan+l/ 

( b n + 3  bn+2 ~ + . . .  

+ \a,+la,+E-----an+3 a,a,--+la----,+2/ 
< (bn+, b n ) +  l_._~(bn+2 . . . . .  b n + , ~ +  1 (b,+3 b , + 2 ~ +  

\an+l "~n an+l \an+2 an+i /  an+lan+2 \an+3 an+2/  (11 ) ,  
< 

The fact that q(Rn+l - Rn) is an integer implies R,+~ < R~ for all n _> nl(~).  
Since R~ > 0 for all n, we obtain R, + 1 = Rn for n larger than some no. Hence, by 
(6) and bn > 0, we find that - ~  is constant for n > no. 

The assertion in the other direction follows from Lemma 2.1. []  

In the following variant of Theorem 4.2 the monotonici ty of  {an}n°°__l is no 
longer required. Note that the proof  has a different structure. 

Theorem 4.3. Let {an}~= 1 and {b,},% 1 be two sequences o f  positive integers such 
that anbn+ l - an+ lbn < bn+ l - bn for all large n. Then )--]~= l ~ is rational i f  

- -  a I ...a n 

and only i f  a"{21 is constant for  n > no. 

Proof. One direction follows from Lemma 2.1. Suppose S = r / q  with 
r G 7/, q E N. IfRn+ l _< Rn for all but finitely many n, then the assertion follows 
as in the last few lines of  the proof  of  Theorem 4.2. So let m be an integer with 

(Rm+l -- amRm Rm+~ >Rm. From (6) we obtain R m + 2 - a m + l R m + l =  bm 
which we rewrite as 

Rm+2 - Rm+ 1 

( b m + l _  bm+------~l- l ) - + - ( R m + l - R m ) a m  bm+l 
(9) =Rm+l  am+l+ "bm am bm bm 

+ 1 - am + 1 bm <_ bm+ 1 - b m  is equivalent to am + 1 + b~_, The inequality ambm I 
I 

a ~ - l > 0 .  Hence m b,. 

. bm+l 
Rm+2 - Rm+l ~ (Rm+l - R m)am- '~ -  m > O. 

On applying induction we obtain 

bm+r ( r = 1 , 2 , . . . ) .  Rm+r+l - R m + r  > (Rm+l - R m ) a m ' " a m + ~ - l "  bm 

By the convergence condiction we obtain, 

lim --bn = lim bm+r < al " "am-Ibm lim Rm+~+l - 0. 
n~OOan r~OOam+r -- Rm+l - Rra r~c~ala2 • • "am+r 

Let 0 < e < ½. Then b, < e and an > 2 for n > nl(e). Hence, for n > nl(e), 
- -  a n . . . .  
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R ,  = ~ + ~ + . . .  _< e(1 + Z +  1 + . . a n  anan+l ") - < 2e. Since qRn E 7 / b y  Lemma 
2.1, we obtain Rn = 0 for n _> nl (~q), which is impossible. [] 

Remark. The following argument shows that Theorem 4.3 implies Badea's re- 
sult (i) of  Corollary 4.1. On applying Theorem 4.3 with B, := a l a 2 . . ,  a, in place 

,t--'~ oo b n • o fb , ,  we find that 2.,,= l a, Is rational if and only i f ~ ,  x is constant for n > no. 
Hence ( a n -  1)B,+l = ( a , + l -  1)B, for n > no and the equality can be re- 

b,+la 2 6"--~a + 1. written as an + 1 = --if- n - -  bn n 
In a similar way we obtain the following refinement of  Badea's result. 

Corollary 4.2. Let  {an}n~=l and {bn}n°~=l be two sequences o f  positive integers 
such that the series ) -~= 1 ~, converges and has a rational sum. Let  An denote the 
lowest common multiple o f  the numbers al , . . . , an. I f  

bn+l f An "~ 
an+l >_ --anbn \ tAn-  1 -  - 1) + gcd(An, an+ 1) 

for  all large n. Then 

bn+l f An "~ 
an+l = - - a n  - - - -  ) an+ \ |A._I 1 + gcd(A,, l) 

bn 

for  n >_ no. 

Proof. Put A0 = 1, B~n = ~ for n = 1,2, . . . .  Then 

- - -  A A ~ :  4 .  
n = l  an n = l  A 1  " A l  "An-I 

Note that 

(1o) An (An+l ) 
An+l - 1  = 1  

gcd(a, + 1, An) 

an+ 1 

On applying Theorem 4.3 with An~An _ 1 in place of  a, and B~n in place of  b, and 
using (10), we find that ~ = l  b. is rational if and only if  4./A~_,-1 = 4.,1/4.-1 for 

an B~n + 1 
n > no. By (10) the equality is equivalent with 

b,+ 1 f An  
an + l - - - - - - a n  - - - -  ) 1 \ t A n _  1 1 +gcd(An,a , ,+ ). [] b. 

The following proposit ion shows that under the conditions of  Corollary 4.2 in 
1 for all n and limsu ~p-~-7. < 1 it follows that the gcd equals 1 from case bn 

2 some nl on so that an+ l -- a, - an + 1 for all larger n. 

Proposition 4.1. Let  the notation be as in Corollary 4.2. I f  bn = 1 and 

an + 1 = an (AJ-~_ l - 1) + gcd(An, an + 1 ) for  all n and there are infinitely many  n such 
that gcd(An, a ,+l )  > 1, t h e n l i m s u p , ~ o  o d, > 1. 

an+l 
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Proof. Note that an ~ oo as n ~ oo. I f  an[An-l ,  then An = A n - l ,  hence 
an + l = gcd(An, an + 1) and so an + 1 JAn = An_ 1. This would imply that {an }n~__ 1 is 
bounded which is excluded. Therefore An > An-1 and gcd(An, an+l) _< ff~5 O- for 
all n > 1. I f  gcd(An,an+l)=-q~- ,  then an+l = a n + ~  j- whence ~__ ='a_~. If  

a ~ a 2 ~ a 2 - u n  + 1 

1 < gcd(An,an+l) < ~_i, then a ,+l  < :~ + ~-~ whence ~ > 4. So if there are 
n + l  - -  a 2 

infinitely many n such that gcd(An, an + l) > 1, then lim SUPn ~ oo ~, + ~ > 1. [] 

5.  C O N S T R U C T I O N S  

b oo of  positive integers For any monotonically non-decreasing sequence { .}n= 1 
such that T := y ~ =  1 b. 2-n converges and for any number S E (5, T), Han61 
and Tijdeman [5] constructed a sequence {a.}.~= 1 with an E {2, 3, 4} for every n 
such that S = ~ 1 b . .  Here we extend this result to any integer k > 1 where 

= a I . . . a  n 

an 6 {k, k + 1 , . . . ,  k2}. Moreover we show that there exist rapidly growing se- 
b oo quinces { n}n=l for which a restriction an E { k , k  + 1} suffices. We give some 

further examples in the same vein. 
b fX~ ~ OG For given sequence { n}n=l and positive integer k put TN )--~n=Nbnk N - "  

f o r N >  1. 

Theorem 5.1. Let  k > 1 be an integer. Let  {bn}n~=l be any sequence o f  positive 

integers such that T =- ~-~n~=l bnk -n converges and bn < (1 - 1/k)Tn+l  for  all n. 

Let  S E (k--~,T]. Then there exist an E { k , k  + 1 , . . . , k  2} such that 
s =  ~ ~b. 

n ~ 1 a l  . . . a n "  

b o ~  _ _  _ _  Remark 5.1. I f  { n}n=l is monotonically non-decreasing, then TN+1 > TN > 
E o o  I .  t . N - n  _ k n = N ONr~ -- ~-T bN SO that the condition is satisfied. So Theorem 5.1 ap- 
plies to all monotonic  sequences {bn}n~__ 1 for which the series T converges. 

Proofi Put $1 = S and for n = 1,2, 

k if r - f * - < S n < r "  
k + l  - -  k 

k + l  if J-L  < Sn < 1", 
k + 2  - -  k + l  

an = • • • 
k 2 - 1  if ~ < S n < k - ~ _ l  
k 2 if r___.b__ T, k(k+ 1) < Sn _< 

k and Sn+ 1 -~-anS, -  bn. Note that Tn = bn + ; -~ ,  that ~ Tn < anSn < Tn and 
k _ _  1 ~> 1 " " that ~Ti Tn - bn - ~ (T,+ 1 - b,) _ ~ Tn+ I. By reduction it follows that 

k'[~-1' < an < 1 Tn and ~ N  1 ~ = S -  ~ for all N. Since SN 1 ~" TN ~-1 
} - -  - -  1 " "  n 1 " "  N a l " ' a N  - -  k N + I  

)_~=N+lbnk  -~ ~ 0 a s N ~  c ~ , w e h a v e S = ~ = l  ~ .  [] 

The next theorem and the subsequent example show that for some sequences 
{bn}n~_ 1 the range for the an can be restricted to two consecutive numbers. 

b o ~  Theorem 5.2. Let  k > 1 be an integer, { n}n= 1 any sequence o f  positive integers 
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such that T = )-']~=lbnk -n converges and TN+I > (k + 1)bN fo r  N > 1. Le t  
[ k 2 T  S E ~(k+-k-~' T]. Then there exist  a, E {k,  k + 1 } such that S = ~ =  1 b, 

al • • .an • 

Proof.  Put  S1 = S and for  n = 1,2, 

{ k  if J - T ~ - < S . <  ~ 
k + l  - -  k 

a n  = + 1 i f  k (k +__dT~ Tn < Sn < l _F-;-TTn 

and  S, + 1 = anS, - b, By induct ion  it fol lows tha t  ~ Tn < Sn < ~ and  tha t  
• T ( k +  1) - -  '~ 

V "N • ~ = S - ~ for  all N Since ~ < ~ ~ 0 as N --* ~ ,  we have 
z . .~n= I a l . . .a  n a l . . .aN " al . . .aN - -  
S - ~ - " ~  ~ n 

- -  d - . ~ n = l  al ...a n" 

Example  5.1. For  k > 1, pu t  bn = [ ( k - l )  "] for  n =  1,2,••• .  Then  T =  
~,~= 1 b~ k-n  converges  and  

T n +  1 > k -  • ~ - l ) m  ! ~  n + l  - 2 .  
_ km 2 = 3k(k  - 3" 

m = 0  

_ l ~ n + l  Since (k - ~)~(k + 1) < 3k(k  i j  - 2 for  n = 1, 2 , - . . ,  we have  bn < ~ for  - -  k + l  

all n. Thus  {b,},~_ 1 satisfies the condic t ions  o f  T h e o r e m  5.2. 
I t  is poss ible  to vary  the cons t ruc t ion  in such a way  tha t  an ~ oe as n ~ c~. 

The  fol lowing example  i l lustrates  this observa t ion .  I t  provides  a m o n o t o n i c  
sequence  {b,,}n°°= 1 such tha t  every  n u m b e r  S f rom some  interval  can  be re- 
p resen ted  as S = ~ =  1 ~ with  an E {n, n + 1} for  every n. In  some  sense this 
is a c o u n t e r p a r t  to T h e o r e m s  3.1, 4.1 and  4.2 which show tha t  the ra t iona l i ty  o f  
such sums  is very  res t r ic ted if  {bn}~= 1 satisfies some  g rowth  condict ion.  

Example  5.2. Put  bn = (n - 2 ) ! f o r  n >_ 2 Every  number  S E (17-~,-8 ]3 can be re- 
presented  as S = Y] ~= 2 ~ with a, E {n, n + 1 } f o r  n = 2, 3 , . •  .. 

x-" ~¢ h N! = ~ for  N > 2. Put  Proof .  We have  T := ~ ° = 2  ~ = 1 and  TN := Z..an=Nn! 
a2 = 2, a3 = 3,$4 = S - 2 a n d f o r n  = 4 , 5 , . . - .  

n if  r - ~  < Sn < ~ 
n + l  - -  n 

a n =  n + l  if  " T,  < S ,  < 7", 
- -  n + l  

32  and  S n + l = a , S ~ - b ~ .  Observe  tha t  S = ~ +  b--h--+S4 and $ 4 E ( ~ , 2 ] =  
a2 a2 .a  3 

( ~ , - ~ ]  and  tha t  Tn = b,  + r,__~ for  n = 2, 3 , . .  By induc t ion  it follows 
n + l  •" 

tha t  ~ T, < Sn < ~ for  n = 5, 6 , . . .  and  tha t  E ~  2 ~ = S - ~ for  all 
- - I ' n - I - l )SN+l  i TN 1 = 2"" n 

• ~ ~ 0 a s N ~  oo, w e h a v e y ]  °~ 2 "b--Sh-£=S. [ ]  N. Since a2"'aN "~ ( N + I ) !  - ' >  n =  a2...an 

A na tu ra l  ques t ion  is whe ther  T h e o r e m  5.2 only holds  for  the choice f r o m  two 
consecut ive  integers• The  last  example  shows tha t  for  all posi t ive integers  

b o¢ d > c > 1 there  exist sequences  { ,}n= 1 for  which the choice  a ,  E {c, d} suf- 
fices. 

Example  5.3. Let  c and  d be integers  with d > c > 1. Le t  e be a n u m b e r  wi th  
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_ ( c ( d -  1)(d-  1] ca-c Put  bn = (d 1) n. Then  every number  S E ~ d2~ l + e ) d ~ -  0 < e < yr~_ c • 
can be represented as S = ~ =  1 ~ with an E {c, d} for every n. 

b n ~-'~cx~ ~ _ _ d - I  a n d  T,V:=~_,n~=N(d_I+,),_~, Proof .  We have T : =  ~-~n=l(d- l+,)  - - - Y -  = 
(d- l)N(J- 1+'). Put  $1 S a n d  for n = 1 ,2 , . . - ,  

c if  ~ < S n <  r, 
- -  d - l + e  

a n =  d if ~ T n < S , , < ~  

and S n +  1 = a n S n - b n .  Hence  ~T1  < Sl _< d_--~+~ T1 and Tn---bn - r"-y-"-°--d_l+, for  

T"+l and )-']~nu__ b, every n. By induct ion  it follows that  ~ Tn < Sn <_ ~ law.a, = 

S - s u + l  Since s~, b N + S u + l  and bN : eTN+I > ~ we 
a t ' " a u  " a l . . . a N  I : a l . . . a N  a l . . . a N  ( d -  1)(d- 1 +e) --  ' 

sN+~ = 0 and have su+~ < (d-1)Su for every N. Hence  l imN-~av. .aN 
al'"aN --  (d - 1 + e)al"-aN- I 

b" = S .  [ ]  
E. =I o ,o .  

The following quest ions are open. 
Question: Let k _> 2 be any integer, {bn}n~=l be any sequence o f  positive in- 

tegers such that  T = ~ = l  bn k-n  converges,  a > k and  b _> k be two integers 
with a ~ b. Is there any fixed interval (u, v), u < v such that  for every prescr ibed 

value S in this interval there is a sequence {an}n~=l with an = a or  b, and 
S = ~--~= 1 ~ ?  Are  there infinitely m a n y  different {a(0}n~__l, i 1 ,2 , - . .  with 

a (i) = a or  b, and  S = ~n~= 1 ~ ?  
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