On the rationality of Cantor and Ahmes series

by R. Tijdeman and Pingzhi Yuan
Mathematisch Instituut, Universiteit Leiden, Postbus 9512, 2300 RA Leiden, the Netherlands e-mail: tijdeman@math.leidenuniv.nl
Department of Mathematics, Central South University (Tiedao Campus). Changsha 410075, P.R. China
e-mail: yuanpz@csru.edu.cn

Communicated at the meeting of September 30, 2002

Abstract

We give criteria for the rationality of Cantor series $\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \cdots a_{n}}$ and series $\sum_{n=1}^{\infty} \frac{b_{n}}{a_{n}}$ where a_{1}, a_{2}, \cdots and b_{1}, b_{2}, \cdots are integers such that $a_{n}>0$ and the series converge. We precisely say when $\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \cdots a_{n}}$ is rational (i) if $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a monotonic sequence of integers and $b_{n+1}-b_{n}=o\left(a_{n+1}\right)$ or $\lim \sup _{n \rightarrow \infty}\left(\frac{b_{n+1}}{a_{n+1}}-\frac{b_{n}}{a_{n}}\right) \leq 0$, and (ii) if $\frac{b_{n+1}}{a_{n+1}-1} \leq \frac{b_{n}}{a_{n}-1}$ for all large n. We give similar criteria for the rationality of Ahmes series $\sum_{n=1}^{\infty} \frac{1}{a_{n}}$ and more generally series $\sum_{n=1}^{\infty} \frac{b_{n}}{a_{n}}$. For example, if $b_{n}>0$ and $\limsup p_{n \rightarrow \infty} A_{n-1}\left(\frac{b_{n+1} a_{n}}{a_{n+1}}-\frac{b_{n}}{a_{n}}\right) \leq 0$, where $A_{n}=\operatorname{lcm}\left(a_{1}, a_{2}, \cdots, a_{n}\right)$, then $\sum_{n=1}^{\infty} \frac{b_{n}}{a_{n}}$ is rational if and only if $a_{n+1}=\frac{b_{n+1}}{b_{n}} a_{n}\left(a_{n}-1\right)+1$ for large n.

On the other hand, we show that such results are impossible without growth restrictions. For example, we show that for any integers $d>c>1$ there is a sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ such that every number x from some interval can be represented as $x=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \cdots a_{n}}$ with $a_{n} \in\{c, d\}$ for all n.

1. INTRODUCTION

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be two integer sequences with $a_{n}>0$ for all n. Put $S=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \cdots a_{n}}$ and $R_{N}=\sum_{n=N}^{\infty} \frac{b_{n}}{a_{N} \cdots a_{n}}$ for $N=1,2, \cdots$. Most proofs are based on the following fact. If S is a rational number, $S=r / q$ with $r \in \mathbb{Z}, q \in \mathbb{N}$ say, then $q R_{N} \in \mathbb{Z}$ for every N.

In Section 2 we present some basic results. In Theorem 2.1 we generalize a result of Oppenheim as follows: if $a_{n}>1$ for all $n, b_{n}=O\left(a_{n}\right)$ and $\left\{\frac{b_{n}}{a_{n}}\right\}_{n=1}^{\infty}$ has an irrational limit point, then $S \notin \mathbb{Q}$. Oppenheim required additionally that $0 \leq b_{n}<a_{n}$ for all n.

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a nondecreasing sequence with $a_{n}>1$ for all n. In [5] Hančl and Tijdeman showed that S is rational if and only if $\frac{b_{n}}{a_{n}-1}$ is eventually constant
provided that (i) $b_{n}=n$ and $a_{n} \rightarrow \infty$, or (ii) $a_{n}=n, b_{n+1}-b_{n}=o(n)$ or (iii) $b_{n}=o\left(a_{n}^{2}\right), b_{n} \geq 0, b_{n+1}-b_{n}<\epsilon a_{n}$ for $n \geq n_{1}(\epsilon)$. In Section 3 we present a common generalization of (i) and (ii) and we show that the condition $b_{n}=o\left(a_{n}^{2}\right)$ in (iii) is superfluous.

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be arbitrary sequences of positive integers. In Section 4 a rationality criterion for S is given (i) if $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a nondecreasing sequence and limsup $\sin _{n \rightarrow \infty}\left(\frac{b_{n+1}}{a_{n+1}}-\frac{b_{n}}{a_{n}}\right) \leq 0$, and (ii) if $a_{n} b_{n+1}-a_{n+1} b_{n} \leq b_{n+1}-b_{n}$ for all n. Furthermore we generalize and refine rationality criteria of Sylvester [7], Badea [1], [2] and Erdös and Straus [4] for Ahmes series $\sum_{n=1}^{\infty} \frac{1}{a_{n}}$ and more generally series $\sum_{n=1}^{\infty} \frac{b_{n}}{a_{n}}$. For example, if $\lim \sup _{n \rightarrow \infty} A_{n-1}\left(\frac{b_{n+}}{a_{n+1}} \frac{a_{n}}{n}-\frac{b_{n}}{a_{n}}\right) \leq 0$, where $A_{n}=\operatorname{lcm}\left(a_{1}, a_{2}, \cdots, a_{n}\right)$, then $\sum_{n=1}^{\infty} \frac{b_{n}}{a_{n}}$ is rational if and only if $a_{n+1}=\frac{b_{n+1}}{b_{n}} a_{n}\left(a_{n}-1\right)+1$ for large n.

In Section 5 some variants of a construction of Hančl and Tijdeman [5] are presented. We show that if $k>1$ is an integer and $\left\{b_{n}\right\}_{n=1}^{\infty}$ a monotonically nondecreasing sequence, then every number x from some interval can be represented as $x=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \cdots a_{n}}$ with $a_{n} \in\left\{k, k+1, \cdots, k^{2}\right\}$. Furthermore, we show that there exists a sequence $\left\{b_{n}\right\}_{n=2}^{\infty}$ such that every number x from some interval can be represented as $x=\sum_{n=2}^{\infty} \frac{b_{n}}{a_{2} \cdots a_{n}}$ with $a_{n} \in\{n, n+1\}$ for every n. Finally, for any integers $d>c>1$, we construct a sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ such that every number x from some interval can be represented as $x=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \cdots a_{n}}$ with $a_{n} \in\{c, d\}$. These construtions show that the results in Sections 3 and 4 do not hold without growth restrictions.

2. A CRITERION AND SOME BASIC PROPERTIES

In this section we study necessary and sufficient conditions under which the Cantor series

$$
\begin{equation*}
S=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \cdots a_{n}} \tag{1}
\end{equation*}
$$

is rational, where $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ are two sequences of integers with a_{n} positive for all n. We do so by studying the N-th partial sum S_{N} and the N-th remainder R_{N} defined by

$$
\begin{equation*}
S_{N}=\sum_{n=1}^{N-1} \frac{b_{n}}{a_{1} \cdots a_{n}}, \quad R_{N}=\sum_{n=N}^{\infty} \frac{b_{n}}{a_{N} \cdots a_{n}} . \tag{2}
\end{equation*}
$$

Throughout the paper we assume without further mention that $\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \cdots a_{n}}$ converges when we discuss its rationality. Hence it suffices to consider the value of $\lim _{k \rightarrow \infty} S_{n_{k}}(=S)$ for some subsequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ of the positive integers. The following results are crucial.

Lemma 2.1. ([5]). (i) If there is a constant c such that $b_{n}=c\left(a_{n}-1\right)$ for $n \geq n_{0}$, then $S \in \mathbb{Q}$.
(ii) If $S=r / q$ for some $r \in \mathbb{Z}, q \in \mathbb{N}$, then $q R_{n} \in \mathbb{Z}$ for all n.

For a subsequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ of the positive integers, put $n_{0}=1$,

$$
\begin{align*}
& a_{k}^{\star}=a_{n_{k}-1} a_{n_{k}-2} \cdots a_{n_{k-1}} \tag{3}\\
& b_{k}^{\star}=b_{n_{k}-1}+b_{n_{k}-2} a_{n_{k}-1}+\cdots+b_{n_{k-1}} a_{n_{k}-1} a_{n_{k}-2} \cdots a_{n_{k}-1}+1 \tag{4}
\end{align*}
$$

Then, for $k=1,2, \cdots$,

$$
\begin{equation*}
S=\sum_{k=1}^{\infty} \frac{b_{k}^{\star}}{a_{1}^{\star} \cdots a_{k}^{\star}}, \quad S_{n_{k}}=\sum_{j=1}^{k} \frac{b_{j}^{\star}}{a_{1}^{\star} \cdots a_{j}^{\star}}, \quad R_{n_{k}}=\sum_{j=k+1}^{\infty} \frac{b_{j}^{\star}}{a_{k+1}^{\star} \cdots a_{j}^{\star}} . \tag{5}
\end{equation*}
$$

The next lemma presents a sufficient condition for the rationality of S.
Lemma 2.2. If there exists a subsequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ of the positive integers such that $R_{n_{k}}=R_{n_{k+1}}$ for $k=1,2, \cdots$, then S is rational.

Proof. Put $R=R_{n_{1}}$. Using the notation (3)-(4) we have

$$
R=R_{n_{k-1}}=\frac{b_{k}^{\star}}{a_{k}^{\star}}+\frac{1}{a_{k}^{\star}} R_{n_{k}}=\frac{b_{k}^{\star}}{a_{k}^{\star}}+\frac{1}{a_{k}^{\star}} R .
$$

Hence $R=\frac{b_{k}^{\star}}{a_{k}^{\star}-1} \in \mathbb{Q}$, or $b_{k}^{\star}=0, a_{k}^{\star}=1$ for $k=1,2, \cdots$. Since the series for S converges, we have $a_{1}^{\star} \cdots a_{k}^{\star} \rightarrow \infty$ as $k \rightarrow \infty$ unless $b_{k}^{\star}=0$ for $k \geq k_{0}$. In the latter case $S \in \mathbb{Q}$. In the former case we obtain

$$
\begin{aligned}
S & =\lim _{k \rightarrow \infty} S_{n_{k}}=\frac{b_{1}^{\star}}{a_{1}^{\star}}+\lim _{k \rightarrow \infty} \sum_{j=2}^{\infty} \frac{\left(a_{j}^{\star}-1\right) R}{a_{1}^{\star} \cdots a_{j}^{\star}} \\
& =\frac{b_{1}^{\star}}{a_{1}^{\star}}+R-\lim _{k \rightarrow \infty} \frac{R}{a_{1}^{\star} \cdots a_{k}^{\star}}=\frac{b_{1}^{\star}}{a_{1}^{\star}}+R \in \mathbb{Q} .
\end{aligned}
$$

The case $n_{k}=k$ for all k of the following result was repeatedly used by Hančl and Tijdeman in [5].

Proposition 2.1. If $\left\{R_{n}\right\}_{n=1}^{\infty}$ is bounded from below and there exists a subsequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ of the positive integers with $R_{n_{k+1}}-R_{n_{k}}<\epsilon$ for $k \geq k_{0}(\epsilon)$, then S is rational if and only if $R_{n_{k}}=R_{n_{k+1}}$ for all large k.

Proof. Assume $S=r / q$ for some $r \in \mathbb{Z}, q \in \mathbb{N}$. Then $q R_{n} \in \mathbb{Z}$ for all n by Lemma 2.1. Therefore for $K \geq k_{0}(1 / q)$ we have $R_{n_{K}} \geq R_{n_{K+1}} \geq R_{n_{K+2}} \geq \cdots$. Since $\left\{q R_{n_{k}}\right\}_{k=K}^{\infty}$ is an integer sequence bounded from below, we have $R_{n_{k}}=R_{n_{k+1}}$ for k sufficiently large.

The sufficiency of the condition follows from Lemma 2.2.
Remark 2.1. In a similar way we can prove that the conclusion of Proposition 2.1 holds if there exists an integer sequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ with $R_{n_{k+1}}-R_{n_{k}} \rightarrow 0$ as $k \rightarrow \infty$. This idea is used in the proof of the following theorem.

Oppenheim [6] proved: let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be two sequences of integers
such that $a_{n}>1$ and $0 \leq b_{n}<a_{n}$ for all n and that $\left\{\frac{b_{n}}{a_{n}}\right\}_{n=1}^{\infty}$ has an irrational limit point. Then $S=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \cdots a_{n}}$ is irrational. We show here that the condition $0 \leq b_{n}<a_{n}$ can be relaxed to $b_{n}=O\left(a_{n}\right)$.

Theorem 2.1. Suppose that $a_{n}>1$ for all n, that $b_{n}=O\left(a_{n}\right)$ and that $\left\{\frac{b_{n}}{a_{n}}\right\}_{n=1}^{\infty}$ has an irrational limit point α. Then S is irrational.

Proof. Suppose $S=r / q$ for some $r \in \mathbb{Z}, q \in \mathbb{N}$. Then, by Lemma 2.1, $q R_{n} \in \mathbb{Z}$ for every n. Suppose $\left|\frac{b_{n}}{a_{n}}\right| \leq M$ for every n. Consider a subsequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ of the positive integers such that $\frac{b_{n_{k}}}{a_{n_{k}}} \rightarrow \alpha$ as $k \rightarrow \infty$. Since $\alpha \notin \mathbb{Q}$, we have $\lim _{k \rightarrow \infty} a_{n_{k}}=\infty$. Observe that

$$
R_{n_{k}}=\frac{b_{n_{k}}}{a_{n_{k}}}+\frac{1}{a_{n_{k}}} R_{n_{k}+1}
$$

Since

$$
\left|R_{n_{k}+1}\right| \leq\left|\frac{b_{n_{k}+1}}{a_{n_{k}+1}}\right|+\left|\frac{b_{n_{k}+1}}{a_{n_{k}+1} a_{n_{k}+2}}\right|+\cdots \leq M\left(1+\frac{1}{2}+\frac{1}{4}+\cdots\right)=2 M
$$

we obtain

$$
\lim _{k \rightarrow \infty} q R_{n_{k}}=q \lim _{k \rightarrow \infty} \frac{b_{n_{k}}}{a_{n_{k}}}+q \lim _{k \rightarrow \infty} \frac{R_{n_{k}+1}}{a_{n_{k}}}=q \alpha .
$$

Recall that $q R_{n_{k}} \in \mathbb{Z}$. Thus α is rational.
Corollary 2.1. Suppose $\lim _{n \rightarrow \infty} \frac{b_{n}}{a_{n}}$ exists and is irrational. Then S is irrational.
3. THE CASE $b_{n+1}-b_{n}=o\left(a_{n+1}\right)$

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a nondecreasing sequence of integers with $a_{n}>1$ for all n. Hančl and Tijdeman [5] showed that $S=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \cdots a_{n}}$ is rational if and only if $\frac{b_{n}}{a_{n}-1}$ is constant for n greater than some n_{0} provided that (i) $b_{n}=n$ and $a_{n} \rightarrow \infty$ (Theorem 6.2), or (ii) $a_{n}=n, b_{n+1}-b_{n}=o(n)$ (Corollary 4.2) or (iii) $b_{n}=o\left(a_{n}^{2}\right), b_{n} \geq 0, b_{n+1}-b_{n}<\epsilon a_{n}$ for $n \geq n_{1}(\epsilon)$. In this section we present a common generalization of (i) and (ii) in Theorem 3.1 and we show that the condition $b_{n}=o\left(a_{n}^{2}\right)$ in (iii) can be dropped in Theorem 3.2.

Theorem 3.1. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a monotonic integer sequence with $a_{n}>1$ for all n and $\left\{b_{n}\right\}_{n=1}^{\infty}$ an integer sequence such that $b_{n+1}-b_{n}=o\left(a_{n+1}\right)$. Then the sum $S=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \cdots a_{n}}$ is rational if and only if $\frac{b_{n}}{a_{n}-1}$ is constant from some n_{0} on.

Proof. In view of Lemma 2.1(i) one direction is obvious. Therefore it suffices to prove the other direction. Suppose $S=r / q$ for some $r \in \mathbb{Z}, q \in \mathbb{N}$. Then, by Lemma 2.1(ii), $q R_{n} \in \mathbb{Z}$ for every n. By the definition of R_{n} we have

$$
\begin{equation*}
R_{n+1}=a_{n} R_{n}-b_{n} \quad(n=1,2, \cdots) \tag{6}
\end{equation*}
$$

and, by the convergence assumption $S-S_{n}=\frac{R_{n}}{a_{1} \cdots a_{n-1}} \rightarrow 0$ as $n \rightarrow \infty$,

$$
\begin{equation*}
R_{n}=o\left(a_{1} a_{2} \cdots a_{n-1}\right) \tag{7}
\end{equation*}
$$

It follows from (6) that

$$
\begin{equation*}
R_{n+2}-R_{n+1}=\left(R_{n+1}-R_{n}\right) a_{n+1}+R_{n}\left(a_{n+1}-a_{n}\right)-\left(b_{n+1}-b_{n}\right) . \tag{8}
\end{equation*}
$$

Since $a_{n+1} \geq a_{n}, q\left(R_{n+1}-R_{n}\right) \in \mathbb{Z}$ and $b_{n+1}-b_{n}<\frac{a_{n+1}}{4 q}$ for $n \geq n_{1}$, we see that $R_{m+1}>R_{m} \geq 0$ for some $m \geq n_{1}$ implies $R_{m+2}>R_{m+1}$. Moreover,

$$
R_{m+2}-R_{m+1}>\left(R_{m+1}-R_{m}\right) a_{m+1}-\frac{a_{m+1}}{4 q} .
$$

Hence by (6) with $n=m+1$,

$$
\begin{aligned}
R_{m+3} & -R_{m+2}>a_{m+2}\left(R_{m+2}-R_{m+1}\right)-\frac{a_{m+2}}{4 q} \\
& >a_{m+2} a_{m+1}\left(R_{m+1}-R_{m}\right)-\frac{a_{m+2} a_{m+1}}{4 q}-\frac{a_{m+2}}{4 q} .
\end{aligned}
$$

By induction we get, using that $a_{n}>1$ for all n,

$$
\begin{aligned}
& R_{m+r+1}-R_{m+r} \geq \\
& \left(R_{m+1}-R_{m}\right) a_{m+1} \cdots a_{m+r}-\frac{1}{4 q}\left(a_{m+1} \cdots a_{m+r}+a_{m+2} \cdots a_{m+r}+\cdots+a_{m+r}\right)> \\
& \frac{1}{q} a_{m+1} \cdots a_{m+r}-\frac{1}{4 q} a_{m+1} \cdots a_{m+r}\left(1+\frac{1}{2}+\frac{1}{4}+\cdots\right)=\frac{1}{2 q} a_{m+1} \cdots a_{m+r} .
\end{aligned}
$$

Therefore

$$
\lim _{n \rightarrow \infty} \frac{R_{n+1}}{a_{1} \cdots a_{n}}=\frac{1}{a_{1} \cdots a_{m}} \lim _{r \rightarrow \infty} \frac{R_{m+r+1}}{a_{m+1} \cdots a_{m+r}} \neq 0
$$

which contradicts (7). Thus $R_{m+1} \leq R_{m}$ if $R_{m} \geq 0, m \geq n_{1}$. By replacing b_{n} with $-b_{n}$ for all n, we see that also $R_{m+1} \geq R_{m}$ if $R_{m} \leq 0, m \geq n_{1}$. If R_{n} is constant from some n_{0} on, then S is rational by Lemma 2.2. Thus we may assume that $\left\{R_{n}\right\}_{n=1}^{\infty}$ has infinitely many sign changes. Let $m \geq n_{1}$ be such that $R_{m} \leq 0, R_{m+1}>0$. By (6) we have $b_{m}<0$. Hence, $b_{m+1}<b_{m}+\frac{a_{m+1}}{4 q} \leq \frac{a_{m+1}}{4 q}$. From (6) and $a_{n}>1$ with $n=m+1$ and Lemma 2.1 we get

$$
R_{m+2}-R_{m+1}=\left(a_{m+1}-1\right) R_{m+1}-b_{m+1}>\frac{a_{m+1}}{2 q}-\frac{a_{m+1}}{4 q}>0 .
$$

On applying (8) for $n=m+1, m+2, \cdots$ we obtain by induction that

$$
R_{m+i+1}-R_{m+i}>\left(R_{m+i}-R_{m+i-1}\right) a_{m+i}-\frac{a_{m+i}}{4 q}
$$

and reasoning as before we again arrive at a contradiction with (7).
Theorem 3.2. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a monotonic integer sequence with $a_{n}>1$ for all n. Let $\left\{b_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive integers such that $\lim \sup _{n \rightarrow \infty} \frac{b_{n+1}-b_{n}}{a_{n}} \leq 0$. Then $S=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \cdots a_{n}}$ is rational if and only if $\frac{b_{n}}{a_{n}-1}$ is constant from some ${ }^{n_{0}}$ on.

Proof. Since $R_{n} \geq 0$ for all n, it suffices to follow the first part of the proof of Theorem 3.1.

Example 3.1. $\sum_{n=1}^{\infty} \frac{(n+1)!}{(2 n)!} \notin \mathbb{Q}$. Apply Theorem 3.1 with $b_{n}=n+1$ and $a_{n}=4 n+2$.

4. THE CASE OF POSITIVE b_{n}

In this section we assume $b_{n}>0$ for all n, but in most results we drop the requirement that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is monotonic. This will enable us to derive rationality results on series $\sum_{n=1}^{\infty} \frac{b_{n}}{a_{n}}$ too.

Theorem 4.1 also deals with such series. Its proof is based on the proofs of Erdös and Straus [4], but it is much simpler and more general.

Theorem 4.1. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be two sequences of positive integers such that the series $S:=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{n}}$ converges. Let A_{n} denote the lowest common multiple of the numbers a_{1}, \cdots, a_{n}. Suppose $\lim \sup _{n \rightarrow \infty} A_{n-1}\left(\frac{b_{n+1} a_{n}}{a_{n+1}}-\frac{b_{n}}{a_{n}}\right) \leq 0$. Then S is rational if and only if $a_{n+1}=\frac{b_{n+1}}{b_{n}} a_{n}\left(a_{n}-1\right)+1$ for large n.

Proof. Suppose $S=r / q$ with $r, q \in \mathbb{N}$. Put $R_{n}^{\star}=\sum_{k=n+1}^{\infty} \frac{b_{k}}{a_{k}}$. Then $q A_{n} R_{n}^{\star}=$ $A_{n} r-q \sum_{k=1}^{n} \frac{A_{n} b_{n}}{a_{n}} \in \mathbb{N}$ for all n. By the assumptions of the theorem, for every $\epsilon>0$, there is an $n_{1}(\epsilon)$ such that

$$
\frac{b_{n+1} a_{n}}{a_{n+1}}-\frac{b_{n}}{a_{n}} \leq \frac{\epsilon}{A_{n-1}} \quad \text { and } \quad \frac{b_{n}}{a_{n}} \leq \epsilon
$$

which implies $a_{n}<\epsilon a_{n+1}$, for $n>n_{1}(\epsilon)$. We have, assuming that $\epsilon<\frac{1}{2}$,

$$
\begin{aligned}
a_{n} R_{n}^{\star}-R_{n-1}^{\star}= & \left(\frac{b_{n+1} a_{n}}{a_{n+1}}-\frac{b_{n}}{a_{n}}\right)+\left(\frac{b_{n+2} a_{n}}{a_{n+2}}-\frac{b_{n+1}}{a_{n+1}}\right)+\left(\frac{b_{n+3} a_{n}}{a_{n+3}}-\frac{b_{n+2}}{a_{n+2}}\right) \\
& +\cdots \leq\left(\frac{b_{n+1} a_{n}}{a_{n+1}}-\frac{b_{n}}{a_{n}}\right)+\frac{a_{n}}{a_{n+1}}\left(\frac{b_{n+2} a_{n+1}}{a_{n+2}}-\frac{b_{n+1}}{a_{n+1}}\right) \\
& +\frac{a_{n}}{a_{n+1}} \frac{a_{n+1}}{a_{n+2}}\left(\frac{b_{n+3} a_{n+2}}{a_{n+3}}-\frac{b_{n+2}}{a_{n+2}}\right)+\cdots \\
& <\frac{\epsilon}{A_{n-1}}+\frac{\epsilon^{2}}{A_{n}}+\frac{\epsilon^{3}}{A_{n+1}}+\cdots<\frac{2 \epsilon}{A_{n-1}} .
\end{aligned}
$$

Choose $\epsilon=\frac{1}{4 q^{*}}$. It follows that the integer $q A_{n-1} a_{n} R_{n}^{*}-q A_{n-1} R_{n-1}^{*}$ is less than 1 , hence ≤ 0, for $N>n_{1}$. Therefore $a_{1} \cdots a_{n} R_{n}^{\star} \leq a_{1} \cdots a_{n-1} R_{n-1}^{\star}$ for $n>n_{1}$. Since $q a_{1} \cdots a_{n} R_{n}^{\star} \in \mathbb{N}$ and the sequence $\left\{a_{1} \cdots a_{n} R_{n}^{*}\right\}_{n=1}^{\infty}$ is non-increasing for $n>n_{1}$, we obtain that the sequence is ultimately constant, whence

$$
a_{n} R_{n}^{\star}=R_{n-1}^{\star}
$$

for $n>n_{2}$. Observe that $a_{n} R_{n}^{*}=R_{n-1}^{*}=\frac{b_{n}}{a_{n}}+R_{n}^{*}$. So $R_{n}^{*}=\frac{b_{n}}{a_{n}\left(a_{n}-1\right)}$ and $\frac{b_{n+1}}{a_{n+1}-1}=$ $a_{n+1} R_{n+1}^{*}=R_{n}^{*}=\frac{b_{n}}{a_{n}\left(a_{n}-1\right)}$ for $n>n_{2}$. This implies that $a_{n+1}=\frac{b_{n+1}}{b_{n}} a_{n}\left(a_{n}-1\right)+$ 1 for $n>n_{2}$.

On the other hand, suppose $a_{n+1}=\frac{b_{n+1}}{b_{n}} a_{n}\left(a_{n}-1\right)+1$ and $a_{n}>1$ for
$n \geq n_{0}$. Then, by induction, $\sum_{k=n_{0}}^{n} \frac{b_{k}}{a_{k}}=\frac{b_{n_{n}}}{a_{n_{0}}\left(a_{n_{0}}-1\right)}-\frac{b_{n}}{a_{n}\left(a_{n}-1\right)}$ for $n \geq n_{0}$. Hence $\sum_{k=m_{0}}^{\infty} \frac{b_{k}}{a_{k}} \in \mathbb{Q}$.

Theorem 4.1 implies several old results on Ahmes series. Case (i) of Corollary 4.1 is due to Badea [1], [2]. The special case with $b_{n}=1$ for all n already occurs in a paper of Sylvester [7]. Case (iv) with $b_{n}=1$ for all n is Theorem 1 of Erdös and Straus [4] and case (v) with the same restriction is an improvement of Theorem 3 of that paper. We show that the condition (i) of their Theorem 3 can be dropped.

Corollary 4.1. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be two sequences of positive integers such that the series $S:=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{n}}$ converges. Then $a_{n+1}=\frac{b_{n+1}}{b_{n}} a_{n}\left(a_{n}-1\right)+1$ for large n if and only if S is rational provided that at least one of the following conditions is satisfied:
(i) $a_{n+1} \geq \frac{b_{n+1}}{b_{n}} a_{n}^{2}-\frac{b_{n+1}}{b_{n}} a_{n}+1$,
(ii) $a_{n+1} \geq \frac{b_{n+1}^{b_{n}} a_{n}^{2}+O\left(b_{n+1} a_{n}\right) \text {, }, \text {, } b_{n} a_{n} b_{n}}{b_{n}}$
(iii) $a_{n+1} \geq \frac{b_{n+1}}{b_{n}} a_{n}^{2}\left(1-\epsilon_{n}\right)$ where $\sum_{n=1}^{\infty}\left|\epsilon_{n}\right|<\infty$,
(iv) $a_{n+1} \geq \frac{b_{n+1}^{b_{n}}}{b_{n}} a_{n}^{2}(1+o(1))$ and $\left\{\frac{A_{n} b_{n+1}}{a_{n+1}}\right\}$ is bounded,
(v) $a_{n+1} \geq \frac{b_{n+1}^{b_{n}}}{b_{n}} a_{n}^{2}\left(1+o\left(\frac{a_{n}}{A_{n-1} b_{n}}\right)\right)^{-1}$.

Proof. Condition (v) is just a rewriting of the limsup condition. If $\left\{\frac{A_{n} b_{n+1}}{a_{n+1}}\right\}$ is bounded, then condition (iv) implies condition (v).

Suppose condition (iii) holds. Then

$$
\begin{aligned}
& a_{n+1} \geq \frac{b_{n+1}}{b_{n}} a_{n}^{2}\left(1-\epsilon_{n}\right) \geq \frac{b_{n+1}}{b_{n}} a_{n} a_{n-1}\left(1-\epsilon_{n}\right)\left(1-\epsilon_{n-1}\right) \geq \cdots \geq \\
& \quad \frac{b_{n+1}}{b_{n}} a_{n} a_{n-1} \cdots a_{2} a_{1}^{2} \prod_{k=1}^{n}\left(1-\epsilon_{k}\right)
\end{aligned}
$$

Since $C:=\prod_{k=1}^{\infty}\left(1-\epsilon_{k}\right)$ converges and is positive, we obtain

$$
\frac{A_{n} b_{n+1}}{a_{n+1}} \leq \frac{a_{1} \cdots a_{n} b_{n+1}}{a_{n+1}} \leq \frac{b_{1}}{a_{1} C}
$$

Of course $\epsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. Thus case (iii) follows from (iv).
Cases (i) and (ii) follow immediately from (iii) since $\sum_{n=1}^{\infty} \frac{1}{a_{n}} \leq \sum_{n=1}^{\infty} \frac{b_{n}}{a_{n}}$ converges.

By varying the proof of Theorem 4.1 we derive a result on Cantor series. Theorem 4.2 shows that in Corollary 4.1 of [5] the conditions $b_{n}=O\left(a_{n}^{2}\right)$ and $b_{n+1}-b_{n}=o\left(a_{n}\right)$ can be replaced with the single condition $\frac{b_{n+1}}{a_{n+1}} \leq \frac{b_{n}}{a_{n}}+o(1)$.

Theorem 4.2. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be sequences of positive integers such that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is ultimately monotonic and $\lim \sup _{n \rightarrow \infty}\left(\frac{b_{n+1}}{a_{n+1}}-\frac{b_{n}}{a_{n}}\right) \leq 0$. Then $S=$ $\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \cdots a_{n}} \in \mathbb{Q}$ if and only if $\frac{b_{n}}{a_{n}-1}$ is constant for n larger than some n_{0}.

Proof. For every $\epsilon>0$ there is an $n_{1}(\epsilon)$ such that $\frac{b_{n+1}}{a_{n+1}}-\frac{b_{n}}{a_{n}}<\epsilon$ for $n \geq n_{1}(\epsilon)$. Suppose $S=r / q$ with $r, q \in \mathbb{N}$. Choose $\epsilon=\frac{1}{4 q}$. We have

$$
\begin{aligned}
R_{n+1} & -R_{n}=\left(\frac{b_{n+1}}{a_{n+1}}-\frac{b_{n}}{a_{n}}\right)+\left(\frac{b_{n+2}}{a_{n+1} a_{n+2}}-\frac{b_{n+1}}{a_{n} a_{n+1}}\right) \\
& +\left(\frac{b_{n+3}}{a_{n+1} a_{n+2} a_{n+3}}-\frac{b_{n+2}}{a_{n} a_{n+1} a_{n+2}}\right)+\cdots \\
& <\left(\frac{b_{n+1}}{a_{n+1}}-\frac{b_{n}}{a_{n}}\right)+\frac{1}{a_{n+1}}\left(\frac{b_{n+2}}{a_{n+2}}-\frac{b_{n+1}}{a_{n+1}}\right)+\frac{1}{a_{n+1} a_{n+2}}\left(\frac{b_{n+3}}{a_{n+3}}-\frac{b_{n+2}}{a_{n+2}}\right)+\cdots \\
& <\frac{1}{4 q}\left(1+\frac{1}{2}+\frac{1}{4}+\cdots\right) \leq \frac{1}{2 q} .
\end{aligned}
$$

The fact that $q\left(R_{n+1}-R_{n}\right)$ is an integer implies $R_{n+1} \leq R_{n}$ for all $n \geq n_{1}\left(\frac{1}{4 q}\right)$. Since $R_{n}>0$ for all n, we obtain $R_{n+1}=R_{n}$ for n larger than some n_{0}. Hence, by (6) and $b_{n}>0$, we find that $\frac{a_{n}-1}{b_{n}}$ is constant for $n>n_{0}$.

The assertion in the other direction follows from Lemma 2.1.

In the following variant of Theorem 4.2 the monotonicity of $\left\{a_{n}\right\}_{n=1}^{\infty}$ is no longer required. Note that the proof has a different structure.

Theorem 4.3. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be two sequences of positive integers such that $a_{n} b_{n+1}-a_{n+1} b_{n} \leq b_{n+1}-b_{n}$ for all large n. Then $\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \cdots a_{n}}$ is rational if and only if $\frac{a_{n}-1}{b_{n}}$ is constant for $n \geq n_{0}$.

Proof. One direction follows from Lemma 2.1. Suppose $S=r / q$ with $r \in \mathbb{Z}, q \in \mathbb{N}$. If $R_{n+1} \leq R_{n}$ for all but finitely many n, then the assertion follows as in the last few lines of the proof of Theorem 4.2. So let m be an integer with $R_{m+1}>R_{m}$. From (6) we obtain $R_{m+2}-a_{m+1} R_{m+1}=\frac{b_{m+1}}{b_{m}}\left(R_{m+1}-a_{m} R_{m}\right)$ which we rewrite as

$$
\begin{align*}
R_{m+2} & -R_{m+1} \\
& =R_{m+1}\left(a_{m+1}+\frac{b_{m+1}}{b_{m}}-a_{m} \frac{b_{m+1}}{b_{m}}-1\right)+\left(R_{m+1}-R_{m}\right) a_{m} \frac{b_{m+1}}{b_{m}} . \tag{9}
\end{align*}
$$

The inequality $a_{m} b_{m+1}-a_{m+1} b_{m} \leq b_{m+1}-b_{m}$ is equivalent to $a_{m+1}+\frac{b_{m+1}}{b_{m}}-$ $a_{m} \frac{b_{m+1}}{b_{m}}-1 \geq 0$. Hence

$$
R_{m+2}-R_{m+1} \geq\left(R_{m+1}-R_{m}\right) a_{m} \frac{b_{m+1}}{b_{m}}>0
$$

On applying induction we obtain

$$
R_{m+r+1}-R_{m+r} \geq\left(R_{m+1}-R_{m}\right) a_{m} \cdots a_{m+r-1} \cdot \frac{b_{m+r}}{b_{m}} \quad(r=1,2, \cdots)
$$

By the convergence condiction we obtain,

$$
\lim _{n \rightarrow \infty} \frac{b_{n}}{a_{n}}=\lim _{r \rightarrow \infty} \frac{b_{m+r}}{a_{m+r}} \leq \frac{a_{1} \cdots a_{m-1} b_{m}}{R_{m+1}-R_{m}} \lim _{r \rightarrow \infty} \frac{R_{m+r+1}}{a_{1} a_{2} \cdots a_{m+r}}=0 .
$$

Let $0<\epsilon \leq \frac{1}{2}$. Then $\frac{b_{n}}{a_{n}} \leq \epsilon$ and $a_{n} \geq 2$ for $n \geq n_{1}(\epsilon)$. Hence, for $n \geq n_{1}(\epsilon)$,
$R_{n}=\frac{b_{n}}{a_{n}}+\frac{b_{n+1}}{a_{n} a_{n+1}}+\cdots \leq \epsilon\left(1+\frac{1}{a_{n}}+\frac{1}{a_{n} a_{n+1}}+\cdots\right) \leq 2 \epsilon$. Since $q R_{n} \in \mathbb{Z}$ by Lemma 2.1, we obtain $R_{n}=0$ for $n \geq n_{1}\left(\frac{1}{2 q}\right)$, which is impossible.

Remark. The following argument shows that Theorem 4.3 implies Badea's result (i) of Corollary 4.1. On applying Theorem 4.3 with $B_{n}:=a_{1} a_{2} \cdots a_{n}$ in place of b_{n}, we find that $\sum_{n=1}^{\infty} \frac{b_{n}}{a_{n}}$ is rational if and only if $\frac{a_{n}-1}{B_{n}}$ is constant for $n \geq n_{0}$. Hence $\left(a_{n}-1\right) B_{n+1}=\left(a_{n+1}-1\right) B_{n}$ for $n \geq n_{0}$ and the equality can be rewritten as $a_{n+1}=\frac{b_{n+1}}{b_{n}} a_{n}^{2}-\frac{b_{n+1}}{b_{n}} a_{n}+1$.

In a similar way we obtain the following refinement of Badea's result.
Corollary 4.2. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be two sequences of positive integers such that the series $\sum_{n=1}^{\infty} \frac{b_{n}}{a_{n}}$ converges and has a rational sum. Let A_{n} denote the lowest common multiple of the numbers a_{1}, \cdots, a_{n}. If

$$
a_{n+1} \geq \frac{b_{n+1}}{b_{n}} a_{n}\left(\frac{A_{n}}{A_{n-1}}-1\right)+\operatorname{gcd}\left(A_{n}, a_{n+1}\right)
$$

for all large n. Then

$$
a_{n+1}=\frac{b_{n+1}}{b_{n}} a_{n}\left(\frac{A_{n}}{A_{n-1}}-1\right)+\operatorname{gcd}\left(A_{n}, a_{n+1}\right)
$$

for $n \geq n_{0}$.
Proof. Put $A_{0}=1, B_{n}^{\star}=\frac{b_{n} A_{n}}{a_{n}}$ for $n=1,2, \cdots$. Then

$$
\sum_{n=1}^{\infty} \frac{b_{n}}{a_{n}}=\sum_{n=1}^{\infty} \frac{B_{n}^{\star}}{A_{1} \cdot \frac{A_{2}}{A_{1}} \cdots \frac{A_{n}}{A_{n-1}}} .
$$

Note that

$$
\begin{equation*}
\frac{A_{n}}{A_{n+1}}\left(\frac{A_{n+1}}{A_{n}}-1\right)=1-\frac{\operatorname{gcd}\left(a_{n+1}, A_{n}\right)}{a_{n+1}} \tag{10}
\end{equation*}
$$

On applying Theorem 4.3 with A_{n} / A_{n-1} in place of a_{n} and B_{n}^{\star} in place of b_{n} and using (10), we find that $\sum_{n=1}^{\infty} \frac{b_{n}}{a_{n}}$ is rational if and only if $\frac{A_{n} / A_{n-1}-1}{B_{n}^{*}}=\frac{A_{n+1} / A_{n}-1}{B_{n+1}^{*}}$ for $n \geq n_{0}$. By (10) the equality is equivalent with

$$
a_{n+1}=\frac{b_{n+1}}{b_{n}} a_{n}\left(\frac{A_{n}}{A_{n-1}}-1\right)+\operatorname{gcd}\left(A_{n}, a_{n+1}\right) .
$$

The following proposition shows that under the conditions of Corollary 4.2 in case $b_{n}=1$ for all n and limsup $\frac{a_{n}^{2}}{a_{n+1}} \leq 1$ it follows that the gcd equals 1 from some n_{1} on so that $a_{n+1}=a_{n}^{2}-a_{n}+1$ for all larger n.

Proposition 4.1. Let the notation be as in Corollary 4.2 If $b_{n}=1$ and $a_{n+1}=a_{n}\left(\frac{A_{n}}{A_{n-1}}-1\right)+\operatorname{gcd}\left(A_{n}, a_{n+1}\right)$ for all n and there are infinitely many n such that $\operatorname{gcd}\left(A_{n}, a_{n+1}\right)>1$, then $\lim \sup _{n \rightarrow \infty} \frac{a_{n}^{2}}{a_{n+1}}>1$.

Proof. Note that $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$. If $a_{n} \mid A_{n-1}$, then $A_{n}=A_{n-1}$, hence $a_{n+1}=\operatorname{gcd}\left(A_{n}, a_{n+1}\right)$ and so $a_{n+1} \mid A_{n}=A_{n-1}$. This would imply that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is bounded which is excluded. Therefore $A_{n}>A_{n-1}$ and $\operatorname{gcd}\left(A_{n}, a_{n+1}\right) \leq \frac{a_{n+1}}{2}$ for all $n>1$. If $\operatorname{gcd}\left(A_{n}, a_{n+1}\right)=\frac{a_{n+1}}{2}$, then $a_{n+1}=a_{n}+\frac{a_{n+1}}{2}$ whence $\frac{a_{n}^{2}}{a_{n+1}}=\frac{a_{n}}{2}$. If $1<\operatorname{gcd}\left(A_{n}, a_{n+1}\right)<\frac{a_{n+1}}{2}$, then $a_{n+1}<\frac{a_{n}^{2}}{2}+\frac{a_{n+1}}{3}$ whence $\frac{a_{n}^{2}}{a_{n+1}} \geq \frac{4}{3}$. So if there are infinitely many n such that $\operatorname{gcd}\left(A_{n}, a_{n+1}\right)>1$, then $\lim \sup _{n \rightarrow \infty} \frac{a_{n}^{2}}{a_{n+1}}>1$.

5. CONSTRUCTIONS

For any monotonically non-decreasing sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ of positive integers such that $T:=\sum_{n=1}^{\infty} b_{n} 2^{-n}$ converges and for any number $S \in\left(\frac{T}{2}, T\right)$, Hančl and Tijdeman [5] constructed a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ with $a_{n} \in\{2,3,4\}$ for every n such that $S=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \ldots a_{n}}$. Here we extend this result to any integer $k>1$ where $a_{n} \in\left\{k, k+1, \cdots, k^{2}\right\}$. Moreover we show that there exist rapidly growing sequences $\left\{b_{n}\right\}_{n=1}^{\infty}$ for which a restriction $a_{n} \in\{k, k+1\}$ suffices. We give some further examples in the same vein.

For given sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ and positive integer k put $T_{N}=\sum_{n=N}^{\infty} b_{n} k^{N-n}$ for $N \geq 1$.

Theorem 5.1. Let $k>1$ be an integer. Let $\left\{b_{n}\right\}_{n=1}^{\infty}$ be any sequence of positive integers such that $T=\sum_{n=1}^{\infty} b_{n} k^{-n}$ converges and $b_{n} \leq(1-1 / k) T_{n+1}$ for all n. Let $S \in\left(\frac{T}{k+1}, T\right]$. Then there exist $a_{n} \in\left\{k, k+1, \cdots, k^{2}\right\}$ such that $S=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \ldots a_{n}}$.

Remark 5.1. If $\left\{b_{n}\right\}_{n=1}^{\infty}$ is monotonically non-decreasing, then $T_{N+1} \geq T_{N} \geq$ $\sum_{n=N}^{\infty} b_{N} k^{N-n}=\frac{k}{k-1} b_{N}$ so that the condition is satisfied. So Theorem 5.1 applies to all monotonic sequences $\left\{b_{n}\right\}_{n=1}^{\infty}$ for which the series T converges.

Proof. Put $S_{1}=S$ and for $n=1,2$,

$$
a_{n}=\left\{\begin{array}{lll}
k & \text { if } & \frac{T_{n}}{k}<S_{n} \leq \frac{T_{n}}{k} \\
k+1 & \text { if } & \frac{T_{n}}{k+2}<S_{n} \leq \frac{T_{n}}{k+1} \\
\cdots & & T_{n} \\
k^{2}-1 & \text { if } & \frac{T_{n}}{k^{2}}<S_{n} \leq \frac{T_{n}}{k^{2}-1} \\
k^{2} & \text { if } & \frac{T_{n}}{k(k+1)}<S_{n} \leq \frac{T_{n}}{k^{2}}
\end{array}\right.
$$

and $S_{n+1}=a_{n} S_{n}-b_{n}$. Note that $T_{n}=b_{n}+\frac{T_{n+1}}{k}$, that $\frac{k}{k+1} T_{n}<a_{n} S_{n} \leq T_{n}$ and that $\frac{k}{k+1} T_{n}-b_{n}=\frac{1}{k+1}\left(T_{n+1}-b_{n}\right) \geq \frac{1}{k(k+1)} T_{n+1}$. By induction it follows that $\frac{T_{n}}{k(k+1)}<S_{n} \leq \frac{1}{k} T_{n}$ and $\sum_{n=1}^{N} \frac{b_{n}}{a_{1} \cdots a_{n}}=S-\frac{\rho_{N+1}}{a_{1}+a_{N}}$ for all N. Since $\frac{S_{N+1}}{a_{1} \cdots a_{N}} \leq \frac{T_{N+1}}{k^{N+1}}=$ $\sum_{n=N+1}^{\infty} b_{n} k^{-n} \rightarrow 0$ as $N \rightarrow \infty$, we have $S=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \ldots a_{n}}$.

The next theorem and the subsequent example show that for some sequences $\left\{b_{n}\right\}_{n=1}^{\infty}$ the range for the a_{n} can be restricted to two consecutive numbers.

Theorem 5.2. Let $k>1$ be an integer, $\left\{b_{n}\right\}_{n=1}^{\infty}$ any sequence of positive integers
such that $T=\sum_{n=1}^{\infty} b_{n} k^{-n}$ converges and $T_{N+1} \geq(k+1) b_{N}$ for $N>1$. Let $S \in\left(\frac{k^{2} T}{(k+1)^{2}}, T\right]$. Then there exist $a_{n} \in\{k, k+1\}$ such that $S=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \ldots a_{n}}$.

Proof. Put $S_{1}=S$ and for $n=1,2$,

$$
a_{n}=\left\{\begin{array}{lll}
k & \text { if } & \frac{T_{n}}{k+1}<S_{n} \leq \frac{T_{n}}{k} \\
k+1 & \text { if } & \frac{k}{(k+1)^{2}} T_{n}<S_{n} \leq \frac{1}{k+1} T_{n}
\end{array}\right.
$$

and $S_{n+1}=a_{n} S_{n}-b_{n}$. By induction it follows that $\frac{k}{(k+1)^{2}} T_{n}<S_{n} \leq \frac{T_{n}}{k}$ and that $\sum_{n=1}^{N} \frac{b_{n}}{a_{1} \cdots a_{n}}=S-\frac{S_{N+1}}{a_{1} \cdots a_{N}}$ for all N. Since $\frac{S_{N+1}}{a_{1} \cdots a_{N}} \leq \frac{\left.T_{N+1}+1\right)^{2}}{k^{N+1}} 0$ as $N \rightarrow \infty$, we have $S=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \cdots a_{n}}$.

Example 5.1. For $k>1$, put $b_{n}=\left[\left(k-\frac{1}{3}\right)^{n}\right]$ for $n=1,2, \cdots$. Then $T=$ $\sum_{n=1}^{\infty} b_{n} k^{-n}$ converges and

$$
T_{n+1} \geq\left(k-\frac{1}{3}\right)^{n+1} \cdot \sum_{m=0}^{\infty} \frac{\left(k-\frac{1}{3}\right)^{m}}{k^{m}}-2=3 k\left(k-\frac{1}{3}\right)^{n+1}-2 .
$$

Since $\left(k-\frac{1}{3}\right)^{n}(k+1)<3 k\left(k-\frac{1}{3}\right)^{n+1}-2$ for $n=1,2, \cdots$, we have $b_{n} \leq \frac{T_{n+1}}{k+1}$ for all n. Thus $\left\{b_{n}\right\}_{n=1}^{\infty}$ satisfies the condictions of Theorem 5.2.

It is possible to vary the construction in such a way that $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$. The following example illustrates this observation. It provides a monotonic sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ such that every number S from some interval can be represented as $S=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \ldots a_{n}}$ with $a_{n} \in\{n, n+1\}$ for every n. In some sense this is a counterpart to Theorems $3.1,4.1$ and 4.2 which show that the rationality of such sums is very restricted if $\left\{b_{n}\right\}_{n=1}^{\infty}$ satisfies some growth condiction.

Example 5.2. Put $b_{n}=(n-2)$! for $n \geq 2$ Every number $S \in\left(\frac{146}{75}, \frac{8}{3}\right]$ can be represented as $S=\sum_{n=2}^{\infty} \frac{b_{n}}{a_{2} \cdots a_{n}}$ with $a_{n} \in\{n, n+1\}$ for $n=2,3, \cdots$

Proof. We have $T:=\sum_{n=2}^{\infty} \frac{b_{n}}{n!}=1$ and $T_{N}:=\sum_{n=N}^{\infty} \frac{b_{n}}{n!} N!=\frac{N!}{N-1}$ for $N \geq 2$. Put $a_{2}=2, a_{3}=3, S_{4}=S-\frac{2}{3}$ and for $n=4,5, \cdots$.

$$
a_{n}=\left\{\begin{array}{lll}
n & \text { if } & \frac{T_{n}}{n+1}<S_{n} \leq \frac{T_{n}}{n} \\
n+1 & \text { if } & \frac{n}{(n+1)^{2}} T_{n}<S_{n} \leq \frac{T_{n}}{n+1}
\end{array}\right.
$$

and $S_{n+1}=a_{n} S_{n}-b_{n}$. Observe that $S=\frac{b_{2}}{a_{2}}+\frac{b_{3}}{a_{2} \cdot a_{3}}+S_{4}$ and $S_{4} \in\left(\frac{32}{25}, 2\right]=$ $\left(\frac{4 T_{4}}{25}, \frac{T_{4}}{4}\right]$ and that $T_{n}=b_{n}+\frac{T_{n+1}}{n+1}$ for $n=2,3, \cdots$ By induction it follows that $\frac{n}{(n+1)^{2}} T_{n}<S_{n} \leq \frac{T_{n}}{n}$ for $n=5,6, \cdots$ and that $\sum_{n=2}^{N} \frac{b_{n}}{a_{2} b_{n}}=S-\frac{S_{N+1}}{a_{2} \cdots a_{N}}$ for all N. Since $\frac{S_{N+1}}{a_{2} \cdots a_{N}} \leq \frac{T_{N+1}}{(N+1)!} \rightarrow 0$ as $N \rightarrow \infty$, we have $\sum_{n=2}^{\infty} \frac{a_{2} b_{n} \cdots a_{n}}{a_{2} \cdots a_{n}}=S$.

A natural question is whether Theorem 5.2 only holds for the choice from two consecutive integers. The last example shows that for all positive integers $d>c>1$ there exist sequences $\left\{b_{n}\right\}_{n=1}^{\infty}$ for which the choice $a_{n} \in\{c, d\}$ suffices.

Example 5.3. Let c and d be integers with $d>c>1$. Let ϵ be a number with
$0<\epsilon<\frac{c d-c}{d^{2}-c}$. Put $b_{n}=(d-1)^{n}$. Then every number $S \in\left(\frac{c(d-1)(d-1+\epsilon)}{d^{2} \epsilon}, \frac{d-1}{\epsilon}\right]$ can be represented as $S=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \ldots a_{n}}$ with $a_{n} \in\{c, d\}$ for every n.

Proof. We have $T:=\sum_{n=1}^{\infty} \frac{b_{n}}{(d-1+\epsilon)^{n}}=\frac{d-1}{\epsilon}$ and $T_{N}:=\sum_{n=N}^{\infty} \frac{b_{n}}{(d-1+\epsilon)^{n-N}}=$ $\frac{(d-1)^{N}(d-1+\epsilon)}{\epsilon}$. Put $S_{1}=S$ and for $n=1,2, \cdots$,

$$
a_{n}=\left\{\begin{array}{lll}
c & \text { if } & \frac{T_{n}}{d}<S_{n} \leq \frac{T_{n}}{d-1+\epsilon} \\
d & \text { if } & \frac{c}{d^{2}} T_{n}<S_{n} \leq \frac{T_{n}}{d}
\end{array}\right.
$$

and $S_{n+1}=a_{n} S_{n}-b_{n}$. Hence $\frac{c}{d^{2}} T_{1}<S_{1} \leq \frac{1}{d-1+\epsilon} T_{1}$ and $T_{n}=b_{n}+\frac{T_{n+1}}{d-1+\epsilon}$ for every n. By induction it follows that $\frac{c}{d^{2}} T_{n}<S_{n} \leq \frac{T_{n+1}}{d-1+\epsilon}$ and $\sum_{n=1}^{N} \frac{b_{n}}{a_{1} \cdots a_{n}}=$ $S-\frac{S_{N+1}}{a_{1} \cdots a_{N}}$. Since $\frac{S_{N}}{a_{1} \cdots a_{N-1}}=\frac{b_{N}}{a_{1} \cdots a_{N}}+\frac{S_{N+1}}{a_{1} \cdots a_{N}}$ and $b_{N}=\frac{\epsilon T_{N+1}}{(d-1)(d-1+\epsilon)} \geq \frac{\epsilon S_{N+1}}{d-1}$, we have $\frac{S_{N+1}}{a_{1} \cdots a_{N}} \leq \frac{(d-1) S_{N}}{(d-1+\epsilon) a_{1} \cdots a_{N-1}}$ for every N. Hence $\lim _{N \rightarrow \infty} \frac{S_{N+1}}{a_{1} \cdots a_{N}}=0$ and $\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \cdots a_{n}}=S$.

The following questions are open.
Question: Let $k \geq 2$ be any integer, $\left\{b_{n}\right\}_{n=1}^{\infty}$ be any sequence of positive integers such that $T=\sum_{n=1}^{\infty} b_{n} k^{-n}$ converges, $a \geq k$ and $b \geq k$ be two integers with $a \neq b$. Is there any fixed interval $(u, v), u<v$ such that for every prescribed value S in this interval there is a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ with $a_{n}=a$ or b, and $S=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \cdots a_{n}}$? Are there infinitely many different $\left\{a_{n}^{(i)}\right\}_{n=1}^{\infty}, i=1,2, \cdots$ with $a_{n}^{(i)}=a$ or b, and $S=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1}^{(i) \cdots a_{n}^{(i)}}}$?

ACKNOWLEDGMENTS

The work was done at Leiden University when the second author was a visiting scholar. He is pleased to thank the staff of the Mathematicial Institute for its hospitality.

REFERENCES

[1] Badea C. - The irrationality of certain infinite series. Glasgow Math J. 29, 221-228 (1987).
[2] Badea C. - A theorem on irrationality of infinite series and applications. Acta Arith. 63, 313-323 (1993).
[3] Erdös P. and Straus E. G. - On the irrationality of certain series. Pacific J. Math. 55, 85-92 (1974).
[4] Erdös P. and Straus E. G. - On the irrationality of certain Ahmes series. J. Indian Math. Soc. 27, 129-133 (1968).
[5] Hančl J. and Tijdeman R. - On the irrationality of Cantor series, preprint.
[6] Oppenheim A. - Criteria for irrationality of certain classes of numbers. Amer. Math. Monthly 61, 235-241 (1954).
[7] Sylvester J. - On a point in the theory of vulgar fractions. Amer. J. Math. 3, 332-335 (1880).
(Received September 2002)

