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ABSTRACT

We give criteria for the rationality of Cantor series 2 | axb - and series 320 | 2 ba where ay, a3, -

and by, bz, - are integers such that a, > 0 and the series converge. We preclsely say when
>, a2 is rational (i) if {a,}or | isa monotomc sequence of integers and b, 41 — by = 0(@y+) OF
lim sup,,_,co('ﬁi— ;ﬂ) <0, and (11) if —"‘f—‘—l < -—"— for all large n. We give similar criteria for the
rationality of Ahmes series y 2, o L and more generally series 2 5’* For example, if b, > 0 and
llmsupnqooAnAl(b";"%?‘ —ﬂ) <0, where 4, =lem{ai,a,- -+, a,), then 332 l;’:'l is rational if and
onlyifa,., = bﬂb"—‘a,,(a,, - 1) + 1 for large n.

On the other hand, we show that such results are impossible without growth restrictions. For
example, we show that for any integers d > ¢ > | thereisa sequence {bu};>; such that every num-

ber x from some interval can be represented as x = 3,3 | a| a2 with a, € {c,d} for all n.

1. INTRODUCTION

Let {a,},~, and {bn},~, be two integer sequences with a, > 0 for all n. Put
S=321z —"— and Ry = 300 o - for N =1,2,---. Most proofs are based
on the followmg fact. If S is a rational number, S = r/q with r € Z,q € N say,
then gRy € Z for every N.

In Section 2 we present some basic results. In Theorem 2.1 we generalize a
result of Oppenheim as follows: if a, > 1 for all n, b, = O(a,) and {[—’ﬂ} -, has
an irrational limit point, then S ¢ Q. Oppenheim required addmonally that
0<b,<ay,foralln

Let {a,},., be a nondecreasing sequence with a, > 1 for all n. In [5] Han¢l
and Tijdeman showed that S is rational if and only if ;1:”1;—1 is eventually constant
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provided that (i) b, = n and a, — oo, or (ii) a, = n,b,+1 — by = 0(n) or (iii)
b, = o(aﬁ),b,, >0,b,.1—b, <ea, for n>m(e). In Section 3 we present a
common generalization of (i) and (ii) and we show that the condition b, = o(a?)
in (iii) is superfluous.

Let {a,},-, and {b,},-, be arbitrary sequences of positive integers. In Sec-
tion 4 a rationality criterion for § is given (i) if {a,,}n_1 is a nondecreasing se-
quence and lim sup,,‘,oo(z:+l a,.) <0, and (i) if apby 7 — @np1by < byyp1 — by,
for all n. Furthermore we generalize and refine rationality criteria of Sylvester
[7], Badea [1), [2] and Erd6s and Straus [4] for Ahmes series En_l - and more
generally series Zn_l b For example, if limsup,_, . A,- (Ii;;i%n"— a2 by < 0,
where A, =lcm(ay,a2,---,a,), then > 2 g: is rational if and o"nly if
i1 = b},:‘a,,(a,, — 1) + 1 for large n.

In Section 5 some variants of a construction of Hanc¢l and Tijdeman [5] are
presented. We show that if £ > 1 is an integer and {b,},.,; a monotonically
nondecreasing sequence, then every number x from some interval can be re-
presented as x =) 77 "a with a, € {k,k+1,---,k*}. Furthermore, we
show that there exists a sequence {b,},. , such that every number x from some
interval can be represented as x = ) % , azb -~ with a, € {n,n+ 1} for every n.

Finally, for any integers d > ¢ > 1, we construct a sequence {b,},-., such that

every number x from some interval can be represented as x = 3 | ;”";; with

a, € {c¢,d}. These construtions show that the results in Sections 3 and 4 do not
hold without growth restrictions.

2. A CRITERION AND SOME BASIC PROPERTIES

In this section we study necessary and sufficient conditions under which the
Cantor series

o0 b

1 S = "
(1) 2w
is rational, where {a,},~, and {b,},>., are two sequences of integers with a,
positive for all n.”'We do so by studying the N-th partial sum Sy and the N-th
remainder Ry defined by

5 S N-1  p o by
() N_ngl a---ay —ngNaN "an.

Throughout the paper we assume without further mention that ) 2° , ;”—bﬂa—
converges when we discuss its rationality. Hence it suffices to consider the value
of limy _, o Sy, (= S) for some subsequence {ni};_, of the positive integers. The

following results are crucial.
Lemma 2.1. ([5)). (i) If there is a constant ¢ such that b, = c¢(a, — 1) for n > ny,

then S € Q.
(ii) If S =r/qforsomerc Z,q € N, thengR, € Z for all n.
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For a subsequence {n};.., of the positive integers, put ng = 1,

@) G} = An 10 -2 Ony_,,

(4) ;zbnk—l +bnk—2ank—l + "'+bnk-lank—lank—2'"ank_1+1-

Then, fork =1,2,--,

* 0 b*
> o1

*
b -
"k - .. )

j j=k+1 g1 G

5 s=3

k=14 “k

>
=
The next lemma presents a sufficient condition for the rationality of S.

Lemma 2.2. If there exists a subsequence {ny};., of the positive integers such
that R,, = Ry, fork = 1,2, -, then S is rational.

Proof. Put R = R,,. Using the notation (3)-(4) we have

P 1
e =—1:-+;;R,,k _ak+a R.
k k k

R=R

Hence R = 45 € Q, or by =0,a; =1 for k= 1,2, - .. Since the series for §
converges, we have aj---a; — co as k — oo unless b* =0 for k > ko. In the
latter case S € Q. In the former case we obtain

b (a- — 1)R
= li = lim B
S = lim S, 1+kim122 P
* b*
b—+R—11m R l+R€0'.:D ad

k-»ooal ‘ak al

The case nr = k for all k of the following result was repeatedly used by Han¢l
and Tijdeman in [5].

Proposition 2.1. If{R,},> | is bounded from below and there exists a subsequence
{m}i= of the positive integers with R,, ., — Ry, < € for k > ko(e), then S is ra-
tional if and only if R,, = R, ,, for all large k.

Proof. Assume S =r/q for some r € Z,q € N. Then gqR, € Z for all n by
Lemma 2.1. Therefore for K > ko(1/q) we have R, > Ry, > Ryy,, >
Since {qRn }iox is an integer sequence bounded from below, we have
R, = R, for k sufficiently large.

The sufficiency of the condition follows from Lemma 2.2. []

Remark 2.1, In a similar way we can prove that the conclusion of Proposition
2.1 holds if there exists an integer sequence {n};_; with R, ,, — R, — 0 as
k — oo. This idea is used in the proof of the following theorem.

Oppenheim [6] proved: let {a,},., and {b,},., be two sequences of integers
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such that a, > 1 and 0 < b, < ay for all n and that {—‘l},,_1 has an irrational
limit point. Then § = >~ , ——”—n is irrational. We show here that the condition
0 < b, < a, can be relaxed to b, = Ofay).

Theorem 2.1. Suppose that a, > 1 for all n, that b, = O(a,) and that {—ll}oo has
an irrational limit point o. Then S is irrational.

Proof. Suppose S = r/q for some r € Z,q € N. Then, by Lemma 2.1, gR, € Z
for every n. Suppose |§fl < M for every n. Consider a subsequence {n;};-., of
the positive integers such that %—» a as k— oo. Since a ¢ Q, we have
limy _, o 4y, = c0. Observe that )

by, 1

Rnk =+ +"—'Rnk+1-
ank ny
Since
b b 1 1
ank+ll< e+ 1 + i + 1 + .- M<1+ o4 )"’ZM,
A +1 Ay +18n;, +2 2 4
we obtain
b R 1
Jim R, =g lim ~%+ g li 2t
im gRy = q Jim % +q lim =

Recall that gR,, € Z. Thus a is rational. ]
Corollary 2.1. Suppose lim,, _, o, 1;’5 exists and is irrational. Then S is irrational.

3. THE CASE b, (| — by = 0(an+1)

Let {a,},.; be a nondecreasing sequence of integers with a, > 1 for all n.
Hangél and Tijdeman [5] showed that § =3 % , ——"a— is rational if and only if
—bﬂ—l is constant for n greater than some ng provxded that (i) b, = nand a, — oo
(Theorem 6.2), or (i) a,=n,byy1 — by, =0(n) (Corollary 4.2) or (iii)
b, = o(an),b,, >0,b,. — b, < €a, for n > ny(e). In this section we present a
common generalization of (i) and (i) in Theorem 3.1 and we show that the
condition b, = o(a2) in (iii) can be dropped in Theorem 3.2.

Theorem 3.1. Let {a,},. | be a monotonic integer sequence with a, > 1 for all n
and {b, }n_1 an integer sequence such that bui1 — by = 0(an+1). Then the sum
S=3%2,- ———"— is rational if and only if ;= —"— is constant from some ny on.

Proof. In view of Lemma 2.1(i) one direction is obvious. Therefore it suffices to
prove the other direction. Suppose S = r/q for some r € Z,q € N. Then, by
Lemma 2.1(ii), gR, € Z for every n. By the definition of R, we have

(6) Ry = anRy — by (n=172a"')
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and, by the convergence assumption § — S, = ﬁ_—] —0asn— oo,

(7 R, =o(aay---an_1).

It follows from (6) that

(8) Rii2—Rui1 = (Ray1~ Ru)ans1 + Ru(ani1 — an) — (bns1 — bn).

Since @n 41 > Ay, q(Ry+1 — Ry) € Zand by — by < £’%,;—’forn > n;, we see that
R, ;1> R, > 0for some m > n; implies R,, ;2 > Ry 4+ 1. Moreover,

a
Ryi2— Rpiy > (Rm+l "Rm)am+l - '2;1 .
Hence by (6) withn =m + 1,
a
Rpy3—Rpi2> am+2(Rm+2 - Rm+1) - m4;—2
a, 24 1 a 2
>am+2am+1(Rm+l_Rm)_ m+4qm+ - 'Z;— .
By induction we get, using that a, > 1 forall n,
Rm+r+1 '_Rm+r 2
1
(Rm+1_Rm)am+l"'am+r“@(am+l'"am+r+am+2"’am+r+"‘+am+r)>
1a a —la a (1+1+1+ )-*ia a
q m+1 m+r 4q m+1 m+r 2 4 2q m+ 1 m+r-
Therefore
lim Rt 1y R #0
n—oo0d) Gy A1 AT O0myl Aty

which contradicts (7). Thus R, 1 < R, if R, > 0,m > ny. By replacing b, with
—b, for all n, we see that also R, .1 > R, if R, <0,m > n;. If R, is constant
from some ny on, then § is rational by Lemma 2.2. Thus we may assume
that {R,},~, has infinitely many sign changes. Let m > n; be such that
R, <0,R,.1 >0. By (6) we have b,, < 0. Hence, by, < b, +&"4qLl < ﬁ'gqﬁ—‘
From (6) and a, > 1 withn = m + 1 and Lemma 2.1 we get

Am+l  Gm+1
Rui2—Rus1 =(ami1 = DRy 1 —bpy1 > 5————>0

2q 4q
On applying (8) forn =m+ 1,m + 2, - - - we obtain by induction that
m+ i
Ruyis1 —Rmti> (Rmsi— Rmiiz1)@myi— "‘qu

and reasoning as before we again arrive at a contradiction with (7). [

Theorem 3.2. Let {a,},., be a monotonic integer sequence with a, > 1 for all n.
Let {b,};  bea sequence of positive integers such that limsup, _, %ﬁnlbl <0.
Then S =) , a—"— is rational if and only if b~ 727 Is constant Jrom some ng on.
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Proof. Since R, > 0 for all n, it suffices to follow the first part of the proof of
Theorem 3.1. [

Example 3.1. "% ,ﬁ%)l,ﬂ ¢ Q. Apply Theorem 3.1 with b,=n+1 and
a, =4n + 2.

4. THE CASE OF POSITIVE b,

In this section we assume b, > 0 for all n, but in most results we drop the re-
quirement that {a,,}n_1 is monotonic. This will enable us to derive rationality
results on series 3% % too.

Theorem 4.1 also deals with such series. Its proof is based on the proofs of
Erdés and Straus [4], but it is much simpler and more general.

Theorem 4.1. Let {a,}," =1 and {b,};__ | be two sequences of positive integers such
that the series S := Zn_ o = converges. Let A, denote the lowest common multiple
of the numbers ay,- - - ,ay,. Suppose limsup, _, ., An— (el ) <0.Then S is

Qn+1
rational if and only if Ani| = b’;):‘ ay(a, — 1) + 1 for large n

Proof. Suppose S=r/q with r,geN. Put R, =52 n+1a_k Then gA4,R; =
Agr—q30_ 2 a £% ¢ N for all n. By the assumptions of the theorem for every
€ > 0, there is an n; () such that

bpiy1an  bn €

b
-I< and —<cg,
An+1 an ~ An_ an

which implies a, < €a, 1, for n > ny(e). We have, assuming that ¢ < %,
a,,R* n-l — (bn—Han _ &1') + <bn+20n _ bn+1)+ (b,,+3a,, _ bn+2>
an+1 an an42 an+1 an+3 an 42

+“'<<bn+1an_é£)+ an (bn+2an+l_bn+l)

/7 ay anyi ap 42 An41
an Ap41 (bn+3an+2_bn+2> +
ap+1ap42 an 43 an 42
€ € N e < 2¢
A A A A

Choose ¢ = 4%] It follows that the integer g4, _1a,R;, — qA,_ 1R}, is less than
1, hence <0, for N > n;. Therefore a;---a,R; <ai---a,_1R;_, for n > ny.
Since ga; - - -a,R% € N and the sequence {a; - - - a,R},. | is non-increasing for
n > n;, we obtain that the sequence is ultimately constant, whence

a, R, =R, _,

for n > ny. Observe that a,R;, = R}, | = + R;. So R}, = (a "y and buer_ —

Qny1— [

a1 R, =R, = K(a‘b,f'—T) for n > ny. ThlS 1mphes that a,,, = b—b—‘:—a,,(a,, - D+
1forn > ny.
On the other hand, suppose a4 :b—b'"La( —-1)+1 and a,>1 for
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n > ng. Then, by induction, > %_ ,,0%‘
S no;fe@ O

by b
Gng@ng—1)  n (;:—1) for n > ny. Hence

Theorem 4.1 implies several old results on Ahmes series. Case (i) of Corollary
4.1 is due to Badea [1], [2]. The special case with b, = 1 for all n already occurs
in a paper of Sylvester [7]. Case (iv) with b, = 1 for all n is Theorem 1 of Erdos
and Straus [4] and case (v) with the same restriction is an improvement of
Theorem 3 of that paper. We show that the condition (i) of their Theorem 3 can
be dropped.

Corollary 4.1. Let {a,},> I and {b,},._ | be two sequences of positive integers such
that the series S := Y% | b 2 converges. Then an.| = é’g—‘an(an — 1) + 1 for large
nifand only if S is rational provided that at least one of the following conditions is
satisfied:
(1) an+1 > Pf'_a +1
(i) ans1 > 4‘a2 + O(bn+l an)
(iii) ap41 > Ea2(1 — €n) where Y-, [ea| < 00,
(V) apy1 > ——*—‘az(l + 0(1)) and {i’i”'—t} is bounded,
(V) Qi1 2 -—*—‘az(l +o(z25))

Proof. Condition (v) is just a rewriting of the limsup condition. If {%j—‘} is
bounded, then condition (iv) implies condition (v).
Suppose condition (iii) holds. Then

b b
tny1 2 a1 = ) 2 7 antn (1= )1 = 6no1) 2 - 2
n
bnb+la,,an 1°* aza%H (1 —ek).
n k=1

Since C := []2 ,(1 — &) converges and is positive, we obtain

Anb a---apb by
nn+1 < 1 nn+1 < 1 ]
Qn + 1 An+1 aC

Of course ¢, — 0 as n — oo. Thus case (iii) follows from (iv).
Cases (i) and (ii) follow immediately from (iii) since E;’f’:la‘—n < ;”zlﬁ‘:
converges. [

By varying the proof of Theorem 4.1 we derive a result on Cantor series. The-
orem 4.2 shows that in Corollary 4.1 of [5] the conditions b, = O{a2) and
bni1 — bn = 0(a,) can be replaced with the single condition z:ﬁ < g: +o(1).

Theorem 4.2. Let {a,},. |, and {b,},, be sequences of posmve integers such
that {a,,},, | is ultimately monotomc and lim sup,,_wo(;’:ﬂ;l 51) <0. Then S =
e, ;"a— € Qifandonly if ;= ——"— is constant for n larger than some ny.

Proof. For every e > 0 there is an n;{¢) such that 'i*‘— 2 < ¢ for n > m(e).
Suppose S = r/q with r,q € N. Choose € = l _We have
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b b
Rn+l_Rn=<'L+—l_—n)+( bn+2 _ bn+l )
An+1  ap An+18n4+2  OnQp 41
+< bn+3 _ bn+2 )+
A 14n+28n+3  Aulp41GQn42
< (bn+1_£7£) + 1 <bn+2_bn+1> + 1 <bn+3_bn+2> +
(79 Ani1 \dn+2 Gpyid An+10n4+2 \Qn+3  Any2
I 141 1 L1 1 L. 1
4q 2 4 - 2q
The fact that g(R,+ — R,) is an integer implies R, , | < R, for all n > nl(%).
Since R, > Ofor all n, we obtain R, .1 = R, for nlarger than some ny. Hence, by

(6) and b, > 0, we find that fﬂﬁl is constant for n > ny.
The assertion in the other direction follows from Lemma 2.1. [

In the following variant of Theorem 4.2 the monotonicity of {a,},.; is no
longer required. Note that the proof has a different structure.

Theorem 4.3. Let {a,}, | and {b,},"_, be two sequences of positive integers such
that apb, | — Gy 1by < byy1 — by, for all large n. Then Zn_la——ﬂ—— is rational if
and only if gﬂfl is constant for n > ny.

Proof. One direction follows from Lemma 2.1. Suppose S =r/q with
reZ,qe N If R,,| < R, for all but finitely many », then the assertion follows
as in the last few lines of the proof of Theorem 4.2. So let m be an integer with
Rpy1 > Ry. From (6) we obtain Ry 2 —am i 1Ry = b—’gmﬂ(RmH — amRym)
which we rewrite as

Rm+2 - Rm+1

b bm b
m+1{ Gn+1 +-—F— ml — am +1—‘1 +(Rm+1“Rm)am +1-
b, bm by

%)

The inequality ambpm+1 — am+16m < b1 — by is equivalent to a,,+1 + b—’,;'mf—'—
ambg;m‘ —12>0. Hence

bm+l

0.
b,

Rmi2—Rpui1 2 (Rm+1 ‘Rm)am

On applying induction we obtain

b
Rm+r+1 —Rm+r > (Rm+l - Rm)am’ CQmr—1- mrr (r = 1,27)

By the convergence condiction we obtain,

. b . b ai- - Au_1bm .. Ryyrii
lim 2 = lim =2 < 2= " lim mirtl  —0.
n—oody  r=0dmyr Rpy1— Ry rocaiay- - amy,

Let 0 <e< % Then %5 e and a, > 2 for n > nj(e). Hence, for n > ni(e),



R, = _rL_,_a_i’ifl__i_ <e(l+t +a,,a+1 -+) < 2e. Since gR, EZbyLemma

2.1, we obtain R, = 0 forn > nl(2 ), Wthh is impossible. []

Remark. The following argument shows that Theorem 4.3 implies Badea’s re-
sult (i) of Corollary 4.1. On applying Theorem 4.3 with B, := aja, - - - a, in place
of b, we find that " | %ﬂ is rational if and only if %:—1 is constant for n > ng.
Hence (@, — 1)By+1 = (an+1 — 1)B, for n > ny and the equality can be re-
written as a, | = b’;—:‘aﬁ - b—’;,j—‘a,, +1.

In a similar way we obtain the following refinement of Badea’s result.

Corollary 4.2. Let {a,},. | and {b,},> | be two sequences of positive integers
such that the series 3, §g converges and has a rational sum. Let A, denote the
lowest common multiple of the numbers ay,- - - ,an. If

an+l>bn+lan 4y =1} +ged(4n,an+1)
bn An—l

for all large n. Then

b, Ay
Any1 = ‘L]an( - 1) +ng(Aman+l)

bn An—l
forn > ny
Proof. Put 40 =1, B; = for n=1,2,---.Then
00 bn 0 B;
n=1 4n _ngl Al %A_I:f_l
Note that
(10) An (Aﬂ+l 1) - 1 ._ng(an+1aAn) .
n+1 Ap An+1

On applying Theorem 4.3 with 4,,/A4, _; in place of g, and B} in place of b, and
using (10), we find that 3" | l—’ﬂls rational if and only if 4/ A" =l "*‘/ A= for
n > ng. By (10) the equality is equlvalent with Pre

b, Ay

Gy =——ay ~1) + ged(Anyans1). O
bn An -1

The following proposition shows that under the conditions of Corollary 4.2 in

case b, = 1 for all n and llmsup—n— < 1 it follows that the gcd equals 1 from

some n; on so that a,, | = a2 - ay, + 1 for all larger n.

Proposition 4.1. Let the notation be as in Corollary 42 If b,=1 and

il = a,,(A—:‘l'_—l — 1) + ged( A4y, @y11) for all n and there are infinitely many n such
that gcd(A,,an+1) > 1, then lim SUp, _, 00705 > 1.
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Proof. Note that a4, » o0 as n— oo. If a,|4,-1, then 4, = A,_;, hence
any1 = gcd(Ay, any 1) and 50 @y 4 1|4y = A,_ 1. This would imply that {a,},> , is
bounded which is excluded. Therefore An > Ay and ged(A4n, a,41) 25 sy for
all n> 1. If ged(4n,any1) = then Api1 = an+ 2t whence ——"—l CIf
1 < ged(Aq,an41) < “L’r— then a,,+1 < ~ﬂ+“£ﬂ— whence _”ﬁ_ > . So if there are
infinitely many # such that ged(A4,, any 1) > 1 then lim sup,,_wo a A ->1. [0

5. CONSTRUCTIONS

For any monotonically non-decreasing sequence {b,},- , of positive integers
such that 7 := ) | b,27" converges and for any number S € (£, T'), Handl
and Tijdeman [5] constructed a sequence {a,},., With a, € {2,3,4} for every n
suchthat $ = 3", al 72 Here we extend this result to any integer k > 1 where
a, € {k,k +1,--- k?}. Moreover we show that there exist rapidly growing se-
quences {b,},7_, for which a restriction a, € {k,k + 1} suffices. We give some
further examples in the same vein.

For given sequence {b,},-, and positive integer k put Ty = > oo bpk¥ ="
for N > 1.

Theorem 5.1. Let k > 1 be an integer. Let {b,},_, be any sequence of positive
integers such that T = > | b,k™" converges and b, < (1 — 1/k)T, 1 for all n.
Let S€(X5,T. Then there exist a, € {k,k+1,--- k*} such that

T
S = Zn lal an’

Remark 5.1. If {b,},° | is monotonically non-decreasing, then Ty > Ty >
Y% vy bvk¥ =" = ko by so that the condition is satisfied. So Theorem 5.1 ap-
plies to all monotonic sequences {b,},. ; for which the series 7 converges.

Proof. Put S} = Sandforn=1,2,

k if Jn<S, <k
k+1 if k7;2<s_k£1

ap =14 -
-1 if <S8, <z
K2 if ey <Si<@

andS+1——a,,S — b,. Note that T,,—b + "“ that k’frlT < apS, < T, and

that % k+1 b —k+l(T”+1 b) k(kﬂ) T,+1. By induction it follows that
k+1)<s <tTpand YN, ;- = §— 22l for all N. Since 2%l < Iy =
2 Ns1bnk™ — 0as N — oo, we have § = > .—b"— O

The next theorem and the subsequent example show that for some sequences
{bn},~, the range for the a, can be restricted to two consecutive numbers.

Theorem 5.2. Let k > 1 be an integer, {b,}, .| any sequence of positive integers
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such that T =32 b,k™ converges and Tn 41 > (k+ 1)by for N > 1. Let
Se (—k"i—Tl);, T). Then there exist a, € {k,k + 1} such that S =3 | b,

n=1aq,..a,

Proof. Put S; = Sandforn=1,2,
{k if S, <h

k+1

;

and S, .| = a,S, — b,. By induction it follows that m T, < S, < —'1 and that

Zana_"a_ S - SL;forallN anceﬁi‘—<%—+-r—->0asN—>oo,wehave
=Y a U
n=1a..a,

Example 5.1. For k> 1, put b,=[(k—-1)" for n=1,2,--. Then T =
3% | byk~" converges and

Thi1 2 (k—%) mzo (kk 3" -2= 3k(k—%)"“ -2
Since (k —3)"(k + 1) < 3k(k —- )”+1 2forn=1,2,-, we have b, Sk—+‘*'Tfor
all n. Thus {b,},., satisfies the condictions of Theorem 5.2.

It is possible to vary the construction in such a way that a, — oo as n — oc.
The following example illustrates this observation. It provides a monotonic
sequence {b,},, such that every number S from some interval can be re-
presentedas S =) 9% —ZL: with a, € {n,n+ 1} for every n. In some sense this
is a counterpart to Theorems 3.1, 4.1 and 4.2 which show that the rationality of
such sums is very restricted if {b,},. | satisfies some growth condiction.

Example 5.2. Put b, = (n ~2)! for n > 2. Every number S € ( 1“56,§] can be re-
presentedas S =33 ——"—~ ~witha, € {n,n+1}forn=2,3,.-

Proof. Wehave T:= 3" , % = land Ty := 32 & N! = 2 for N > 2. Put
a2=2,a3=3,S4—S—§andforn=45

n if n-—+nT<S<
n n+1 if (TI)IT <S—n_-fT

and S,y1 = anS, — by Observe that S = —1+ +8; and Si€ (2,2 =

ay-ay
(3%2,%) and that T =by+Ix for n=2, 3 --. By induction it follows
thatﬁ,T < Sy <Laforn=5,6,---and that 3"N_ 23, "a =8 - S”“ for all
N. Since S”abs(;—’ﬁj—l————)OasN—»oo we have 20 , - — S, =}

A natural question is whether Theorem 5.2 only holds for the choice from two
consecutive integers. The last example shows that for all positive integers
d > ¢ > 1 there exist sequences {b,},, for which the choice a, € {c,d} suf-
fices.

Example 5.3. Let ¢ and d be integers with d > ¢ > 1. Let € be a number with
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0 <e<4=< Put b, = (d —1)". Then every number S € (il lme d)

d €
can be represented as S =3 > _b1_ with a, € {c, d} for every n. )

n=1a. a,
by  __d-1 —
Proof. We have T := anlm——T and Ty := —_L—N(d—ue)"‘

(_‘1_)(:‘;”_5) Put S; = Sandforn=1,2, -,

o — c if d<S< I+e
" d if dT,,<S,,_<_—d'l

and S, ;1 = a,Sy — b,. Hence 571 < §1 £ Ty, and T, = b, +——t—for

l+€
every n. By induction it follows that 7T <S$, < T"ﬂ and 3"V n—la, "a =
"
S, : N b S, eIy
N+ 1 N — N N+1 N+l
S — ke Since T = o 4 and bN— 1)([1_1“)2 d &, we
S (d=1)Sn
Syst «  @-DSy Syer
have ey S @ Tromean for every N. Hence lrmN_,ooa1 g =0 and

Zn"lal Gy =S D

The following questions are open.

Question: Let k > 2 be any integer, {bn}n— be any sequence of positive in-
tegers such that T = 32 | b,k™" converges, a > k and b > k be two integers
with a # b. Is there any fixed 1nterva1 (u,v),u < vsuch that for every prescribed
value S in thrs interval there is a sequence {a,},., with a, =a or b, and

=% b 72~ Are there 1nﬁn1tely many different {a,,)}n_l,l =1,2,--- with

(')——aorbandS 3, ﬁ?
]
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