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NOTE
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For a planar domain � with at least three boundary points and � the�

hyperbolic metric of � with constant curvature �1, G. J. Martin poses a problem
that asks, if f is a K-quasiconformal self-homeomorphism of � with boundary

Ž Ž ..values given by the identity mapping, whether � z, f z � log K holds for�

Ž .z, f z � �. In this note, we give a negative answer to this question. � 2001

Academic Press
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1. INTRODUCTION

Ž . Ž .It is well known that if a , a , a , a and b , b , b , b are two ordered1 2 3 4 1 2 3 4
quadruples of distinct complex numbers, then there exists a conformal
mapping of the whole extended plane which takes a into b if and only ifk k
the cross-ratios are equal. If they are not equal, it is natural to ask for
what K does there exist a K-quasiconformal mapping which transforms

1 This work was partially supported by the Science Foundation of Fujian Province, China,
and by Korea Research Foundation Grant KRF-99-015-DP0019.
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one quadruple into another? The Teichmuller distortion theorem plays an¨
Ž � �. � �important role in answering this question see 1 . Gehring and Martin 2

pointed out a connection between two classical theorems: Schottky’s
theorem and the distortion theorem for planar quasiconformal mappings.

� �Recently, Martin 3 found that the best possible estimates could be
obtained either by using the sharp form of Schottky’s theorem or the sharp
form of the distortion theorem for quasiconformal mappings. A sense
preserving homeomorphism f of a domain � � C is a K-quasiconformal
mapping, 1 � K � �, if f is an L2-solution of the Beltrami equation

Ž . Ž .� f z � f zŽ . Ž .	 � z , where � z is a Borel measurable function in � with� z � z
K � 1� Ž .� Ž .� z � � 1. Let C z , . . . , z be the extended plane minus the� 1 nK 
 1

points z , . . . , z . If n � 3, let us represent the universal covering surface1 n
Ž . Ž . Ž .of C z , . . . , z by the upper half plane Im � � 0, and let z 	 � � be an1 n

Ž . Ž .analytic covering. The hyperbolic density � z in the domain C z , . . . , z1 n
is defined by

� �f 	 zŽ .
� z 	 , 1Ž . Ž .

Im f zŽ .Ž .

Ž .where f is any local inverse for �. Then � z is independent of both � and
Ž . Ž .f z , and � z satisfies the differential equation


 log � z 	 � 2 z , 2Ž . Ž . Ž .

Ž .which is known as � z with constant Gaussian curvature �1. The
Ž . Ž .hyperbolic distance, � z, w , in the domain C z , . . . , z is defined by1 n

� �� z , w 	 inf � z dz , 3Ž . Ž . Ž .H
� �

where the infimum is taken over all rectifiable curves � connecting z and
Ž .w in C z , . . . , z . For a planar domain with at least three boundary1 n

Ž � �.points, corresponding to the Teichmuller distortion theorem see 3, 4 ,¨
� �Martin proved in 3 the following

THEOREM A. Let � be a planar domain with at least three boundary
Ž .points and let � z, w be the hyperbolic metric of � with constant cur�ature�

�1. Suppose z, w � � and

� z , w � log K . 4Ž . Ž .�

Ž .Then there is a K-quasiconformal self-homeomorphism f z of � such that

Ž . Ž .1 f � 	 � for all � � � �,
Ž . Ž .2 f z 	 w.
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Comparing this with the Teichmuller distortion theorem, Martin posed¨
� �the following converse problem in 3 :

Problem. Let � be a planar domain with at least three boundary points
and let � be the hyperbolic metric of � with constant curvature �1.�

Ž .Suppose f z is a K-quasiconformal self-homeomorphism of � such that

Ž . Ž .1 f � 	 � for all � � � �,
Ž . Ž .2 f z 	 w for z, w � �.

Ž Ž ..Does � z, f z � log K still hold?�

2. MAIN RESULT AND ITS PROOF

In this note, we will solve this problem by proving that it does not hold
in general. Our result can be stated as follows:

THEOREM. There are planar simply connected domains � with at least
Ž .two boundary points, and � z, w is the hyperbolic metric of � with�

constant cur�ature �1. For e�ery 1 � K � �, there is a K-quasiconformal
Ž .self-homeomorphism f z of � such that�

Ž . Ž .1 f � 	 � for all � � � �,�

Ž . Ž .2 f z 	 w, for some z, w � �,�

Ž . Ž Ž ..3 � z, f z � log K.� �

Proof of Theorem. Let � be a planar simply connected domain with at
least two boundary points. According to the Riemann mapping theorem,
for a point z � �, there exists a conformal mapping in � onto the disk0

� � � 4 Ž . Ž .D 	 w � w � 1 , such that f z 	 0, f 	 z � 0. We obtain that the0 0
hyperbolic density of � with constant Gaussian curvature �1 is given by

Ž . � Ž . � Ž � Ž . � 2 . Ž .� z 	 2 f 	 z � 1 � f z . We choose a 1� 1 �  -quasiconformal�

Ž .mapping � w of D as

� �� w 	 w � 1 � w  , 0 �  � 1, w � D ,Ž . Ž .

Ž . �1 Ž . Ž . Ž .and let F z 	 f �� � f z . Thus, F w is a 1� 1 �  -quasiconformal
mapping of � onto itself with the following properties:

Ž . Ž .1 F � 	 � , for all � � � �,
f zŽ .zŽ . Ž . Ž . Ž Ž ..2 the complex dilatation of F z is given as � z 	 � f z ,F � f zŽ .z

Ž . � �3 � 	 .�F 2 � 
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Ž . Ž .Thus F z is a 1� 1 �  -quasiconformal mapping of � onto itself which
Ž . Ž .keeps the boundary points � � fixed. Since � 0 	 � , we have F z 	0

�1Ž . �1Ž .f � ; the hyperbolic distant between z and f � in � is given by0

� �2 f 	 zŽ .
� �� z , F z 	 inf dz , 5Ž . Ž .Ž . H� 0 0 2� �1 � f z� Ž .

where the infimum is taken over all rectifiable curves � connecting z and0
�1Ž .f � in �.

We obtain that

1 
  1
� z , F z 	 � 0, � 	 log � log .Ž . Ž .Ž .� 0 0 D 1 �  1 � 

1Because K 	 and 0 �  � 1, K can range from 1 � K � �. There-1 � 

fore the proof of the theorem is completed.
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