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Abstract

We consider rank one perturbations Aα = A + α(·, ϕ)ϕ of a self-adjoint operator A with cyclic vector
ϕ ∈ H−1(A) on a Hilbert space H. The spectral representation of the perturbed operator Aα is given by
a singular integral operator of special form. Such operators exhibit what we call ‘rigidity’ and are con-
nected with two weight estimates for the Hilbert transform. Also, some results about two weight estimates
of Cauchy (Hilbert) transforms are proved. In particular, it is proved that the regularized Cauchy trans-
forms Tε are uniformly (in ε) bounded operators from L2(μ) to L2(μα), where μ and μα are the spectral
measures of A and Aα , respectively. As an application, a sufficient condition for Aα to have a pure abso-
lutely continuous spectrum on a closed interval is given in terms of the density of the spectral measure of A

with respect to ϕ. Some examples, like Jacobi matrices and Schrödinger operators with L2 potentials are
considered.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Setup of rank one perturbations

Let A be a self-adjoint (possibly unbounded) operator on a Hilbert space H. We are consid-
ering a family of rank-one perturbations A + α(·, ϕ)ϕ. Here, if the operator A is bounded, ϕ is
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a vector in H. For unbounded A, we consider the wider class of so-called form bounded pertur-
bations where we assume ϕ ∈ H−1(A) ⊃ H, so the perturbation α(·, ϕ)ϕ can be unbounded (see
Section 2.2 below for definition).

It is possible that the results of the paper hold for a wider class of perturbations than form
bounded, but we restricted ourselves to avoid problems defining the perturbation, which can be
non-unique.

Without loss of generality, we can assume that A has simple spectrum and that ϕ is a cyclic
vector for A, i.e. that the linear span of {(A − λI)−1ϕ: λ ∈ C \ R} is dense in H. According
to the Spectral Theorem, A is unitary equivalent to a multiplication operator Mt : f (t) �→ tf (t)

on L2(μ) for some (non-unique) Borel measure μ. We make the spectral measure unique by
letting μ be the spectral measure corresponding to ϕ, i.e. μ := μϕ , where μϕ is the unique
measure such that ∫

R

1

t − λ
dμϕ(t) = ((A − λI)−1ϕ,ϕ

)
H ∀λ ∈ C \ σ(A).

Existence and uniqueness of such μ is guaranteed by the Spectral Theorem.
It is easy to see that in this representation vector ϕ is represented by the function 1, meaning

that if U : H → L2(μ) is the unitary operator such that Mt = UAU−1, then Uϕ = 1. As will be
explained later in Section 2.2, in this representation the assumption ϕ ∈ H−1(A) means simply
that

∫
R
(1 + |t |)−1 dμ(t) < ∞.

Without loss of generality, assume henceforth that A=Mt on L2(μ),
∫

R
(1+|t |)−1 dμ(t)<∞,

and ϕ ≡ 1. Consider the family of self-adjoint rank one perturbations

Aα := A + α(·, ϕ)ϕ ∀α ∈ R.

In the case of form bounded perturbations this formal definition of Aα can be made precise, see
e.g. [1].

Remark. By assuming simplicity of the spectrum, i.e. the existence of a cyclic vector ϕ for A, we
do not forfeit generality. Indeed, if there is no cyclic vector, we decompose H into an orthogonal
sum of Hilbert spaces H = H̃ ⊕ Ĥ such that ϕ is cyclic for the restriction A|H̃. So for all α ∈ R

we have Aα|Ĥ = A|Ĥ, and it suffices to investigate the behavior of Aα on H̃.

It is well known that ϕ is cyclic for operators Aα as well, so Aα are unitary equivalent to
multiplication by the independent variable in the spaces L2(μα). For a proof of the cyclicity
confer the proof of Theorem 2.1 below for bounded A and Lemma 2.5 below in the case of form
bounded perturbations.

Without loss of generality, let us make the measure μα unique by choosing μα to be the
spectral measure corresponding to the vector 1 in each L2(μα). So ϕ is represented by 1 in
each L2(μα).

1.2. Notation

We will use the symbol t for the independent variable in L2(μ) and s for the independent
variable in L2(μα), so Mt and Ms are the multiplication by the independent variable in L2(μ)
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and L2(μα), respectively. Slightly abusing notation we will use subscripts t or s to indicate
whether we are treating the function 1 as an element of L2(μ) or L2(μα) for regular perturba-
tions, or as a point in L2((1 + |t |)−ndμ) or in L2((1 + |s|)−ndμα) for some n � 1 for singular
perturbations. Thus 1t means the function ϕ ≡ 1, treated as a point in L2((1+|t |)−ndμ) for some
n � 0, while 1s stands for the same function considered to be an element of L2((1 +|s|)−ndμα).

1.3. Outline

In Section 2, we obtain a formula for the spectral representation of the perturbed operator Aα .
As a partial converse of this representation theorem, we show a certain rigidity for such operators.
That is, integral operators represented by such a formula are unitary up to certain scaling and give
rise to a rank one perturbation setting.

In Section 3, we concentrate on singular integral operators. By a standard approximation ar-
gument, we show that the spectral representation of Aα is a singular integral operator. We obtain
an alternative formula for the spectral representation of Aα . We prove that certain regularizations
of the Hilbert transform are uniformly bounded from L2(μ) to L2(ν) under very weak conditions
on the measures μ and ν. In particular, we allow non-doubling measures.

As an application of the representation theorem and the statements on singular integral opera-
tors, we prove, in Section 4, two results about the absence of embedded singular spectrum in the
rank one perturbation setting.

In Section 5, we present examples of rank one perturbations. In all examples, the unperturbed
operator A has arbitrary embedded singular spectrum which resolves completely as soon as we
‘switch on’ the perturbation. The unperturbed operators include Hilbert–Schmidt perturbations
of the free Jacobi operator, as well as Schrödinger operators with L2 potentials.

2. Spectral representation of the perturbation Aα and its properties

As mentioned above, by the Spectral Theorem, operators Aα are unitary equivalent to the
multiplication Ms by the independent variable s in the space L2(μα), i.e. there exists a unitary
operator Vα : L2(μ) → L2(μα) such that VαAα = MsVα .

Operator Vα is the spectral representation of Aα . The measure μα contains all spectral infor-
mation of Aα . Indeed, it is shown below that 1t is cyclic for Aα .

Let us give an integral representation for this unitary operator. Without loss of generality
we assume that A is the multiplication operator Mt by the independent variable t in L2(μ),
Aα = A + α(·, ϕ)ϕ, ϕ ≡ 1t . We assume that Aα is a form bounded perturbation, i.e.

∫
(1 +

|t |)−1 dμ(t) < ∞. We consider μα to be the spectral measure of Aα corresponding to 1t .

Theorem 2.1 (Representation theorem). Assume the above assumptions. The spectral represen-
tation Vα : L2(μ) → L2(μα) of Aα is given by

Vαf (s) = f (s) − α

∫
f (s) − f (t)

s − t
dμ(t) (2.1)

for all compactly supported C1 functions f .

Integral operators represented by formula (2.1) are very interesting objects, probably de-
serving more careful investigation. Let us mention one property, which can be understood as
a converse to the latter representation theorem.
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Theorem 2.2 (Rigidity theorem). Let measure μ on R be supported on at least two distinct points
and satisfy

∫
(1 + |t |)−1 dμ(t) < ∞. Let V be defined on compactly supported C1 functions f

by formula (2.1).
Assume V extends to a bounded operator from L2(μ) to L2(ν) and assume KerV = {0}.
Then there exists a function h such that 1/h ∈ L∞(ν), and MhV is a unitary operator from

L2(μ) → L2(ν) (equivalently, that V : L2(dμ) → L2(|h|2 dν) is unitary).
Moreover, the unitary operator U := MhV gives the spectral representation of the operator

Aα := Mt + α(·, ϕ)ϕ, ϕ ≡ 1, in L2(μ), namely UAα = MsU , where Ms is the multiplication by
the independent variable s in L2(ν).

Theorem 2.2 will be proved in Section 2.4 below.

2.1. Proof of Theorem 2.1 for bounded A

Assume the hypotheses of the representation theorem, Theorem 2.1, and let A be bounded.
Recall that for bounded A we have 1t ∈ L2(μ), by assumption. In fact, bounded A implies
H−1(A) = H(A) = L2(μ), see Section 2.2 below.

Let us show that the vector 1t is cyclic for Aα .
Recall that for a bounded operator A = A∗, the linear span of {(A − λI)−1ϕ: λ ∈ C \ R} is

dense in H if and only if the linear span of the orbit {Anϕ: n � 0} is dense (in fact, the latter
property is often used as the definition of a cyclic vector in the bounded case).

Since μ is compactly supported, polynomials are dense in L2(μ). It is easy to see that the
functions An

αϕ, ϕ = 1t , are polynomials of degree exactly n. Hence the linear span of {An
α1t }n∈N

is the set of all polynomials, and thus dense in L2(μ). So 1t is cyclic for Aα .
The identity

MsVα = VαAα = Vα

[
Mt + α(·,1t )L2(μ)1t

]
implies

VαMt = MsVα − α(·,1t )L2(μ)Vα1t = MsVα − α(·,1t )L2(μ)1s .

Using induction one can show the identity

VαMn
t = Mn

s Vα − α

n−1∑
k=0

(·, ak)L2(μ)bk,

where ak ∈ L2(μ), ak(t) = tk , bk ∈ L2(μα), bk(s) = sn−k−1. Or, more informally,

VαMn
t = Mn

s Vα − α

n−1∑
k=0

(·, tk)
L2(μ)

sn−k−1 (2.2)

holds true for all n ∈ N. Indeed, assuming that the above identity holds for n − 1, we get



C. Liaw, S. Treil / Journal of Functional Analysis 257 (2009) 1947–1975 1951
VαMn
t = VαMtM

n−1
t = MsVαMn−1

t − α
(·, tn−1)

L2(μ)
1s

= Ms

[
Mn−1

s Vα − α

n−2∑
k=0

(·, tk)
L2(μ)

sn−k−2

]
− α
(·, tn−1)

L2(μ)
1s

= Mn
s Vα − α

n−1∑
k=0

(·, tk)
L2(μ)

sn−k−1.

Since

(
f, tk

)
L2(μ)

sn−k−1 =
∫
R

f (t)tksn−k−1 dμ(t)

we have

n−1∑
k=0

(
1t , t

k
)
L2(μ)

sn−k−1 =
∫
R

(
n−1∑
k=0

tksn−k−1

)
dμ(t) =

∫
R

sn − tn

s − t
dμ(t).

Note, that the integral is well defined, because μ(R) < ∞ and function t �→ (sn − tn)/(s − t) is
bounded on the (bounded) support of μ.

So applying (2.2) to 1t ∈ L2(μ) and using the above identity we get

(
Vαtn

)
(s) = sn − α

∫
R

sn − tn

s − t
dμ(t)

for all n ∈ N. Since Vα1t = 1s , this representation formula holds also on constant functions.
Due to the linearity of Vα , this extends to a representation formula

(Vαp)(s) = p(s) − α

∫
R

p(s) − p(t)

s − t
dμ(t)

on polynomials p(t).
To extend this formula to C1

0(R) we will use the lemma below. While in this case a bit sim-
pler direct reasoning is possible, the lemma below will be useful later, when we need to extend
formula (2.1) to different classes of functions.

Lemma 2.3. Let μ and ν be measures on R satisfying
∫
(1 + |x|)−1 dμ(x) < ∞,

∫
(1 +

|x|)−2 dν(x) < ∞. Let V : L2(μ) → L2(ν) be a bounded operator such that for functions f

in some subset L ⊂ L2(μ) ∩ L2(ν) ∩ C1(R) we have

Vf (s) = f (s) − α

∫
f (s) − f (t)

s − t
dμ(t) ν-a.e., (2.3)

where the integral is well defined (integrand belongs to L1(μ)).
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Let fn ∈ L be such that

(1) fn → f μ-a.e. and ν-a.e.;
(2) |fn(x)| � C/(1 + |x|) (C does not depend on n);
(3) |f ′

n(x)| � C (C does not depend on n).

Then f ∈ L2(μ) and Vf is given by the above formula (2.3) (note that we neither assumed nor
concluded that f ∈ L).

Proof. Assumptions (1) and (2) together with the assumptions about the measures and the Dom-
inated Convergence Theorem imply that fn → f in L2(μ) and L2(ν). The boundedness of V

implies that Vfn → Vf in L2(ν). By taking a subsequence, if necessary, we can always assume
that fn → f , Vfn → Vf with respect to ν-a.e.

On the other hand by the Dominated Convergence Theorem for any fixed s ∈ R we have

lim
n→∞

∫
fn(s) − fn(t)

s − t
dμ(t) =

∫
f (s) − f (t)

s − t
dμ(t).

Indeed, we know that |fn| � C, |f ′
n| � C. So for |s − t | � 1 it holds

|fn(s) − fn(t)|
|s − t | � C

by the Mean Value Theorem. And for |s − t | > 1 we have

|fn(s) − fn(t)|
|s − t | � 2C

|s − t | .

Combining these two estimates, we get∣∣∣∣fn(s) − fn(t)

s − t

∣∣∣∣� C(s)

1 + |t | .

Because
∫
(1 + |t |)−1 dμ(t) < ∞, we can apply the Dominated Convergence Theorem. �

To prove Theorem 2.1 in the general case, let us first remind the reader of a few well-known
facts about form bounded perturbations.

2.2. Form bounded perturbations and resolvent formula

For an unbounded self-adjoint operator A in a Hilbert space H, one can define the standard
scale of spaces

· · · ⊂ H2(A) ⊂ H1(A) ⊂ H0(A) = H ⊂ H−1(A) ⊂ H−2(A) ⊂ · · · ,

where Hr (A) := {ψ ∈ H: ‖(1 + |A|)r/2ψ‖H < ∞} for r � 0. Here |A| is the modulus of the
operator A, i.e. |A| = (A∗A)1/2.
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If r < 0, it is defined by Hr (A) := [H−r (A)]∗ with the duality inherited from the inner prod-
uct in H. Or, speaking more carefully, one can say that the space H−r , r > 0, is defined by
introducing the norm

‖f ‖H−r
= ∥∥(I + |A|)−r/2

f
∥∥

H

on H and taking the completion of H in this norm.
In the case when A is the multiplication operator Mt by the independent variable t in L2(μ),

we simply have

Hr = L2((1 + |t |)rdμ
)= {f :

∫ ∣∣f (t)
∣∣2(1 + |t |)r dμ(t) < ∞

}
.

Note, if A is a bounded operator, then Hr = H for all r .
It is well known that it is possible to define the rank one perturbation Aα = A + α(·, ϕ)ϕ of

the operator A for unbounded perturbations (·, ϕ)ϕ, i.e. when ϕ /∈ H, but ϕ belongs to some Hk .
Such perturbations are called singular, and the case ϕ ∈ H−1 \ H is probably the simplest case
of a singular perturbation.

Perturbations with ϕ ∈ H−1 \ H are called form bounded, the term form bounded used because
the quadratic form of the perturbation (·, ϕ)ϕ is bounded by the quadratic form of the operator
I + |A|.

When ϕ /∈ H, but ϕ belongs to some Hk , we can define the quadratic form of the perturbed
operator Aα = A+α(·, ϕ)ϕ on some dense subset of H. The question is whether or not this form
gives rise to a unique self-adjoint extension.

It is well known that the answer is affirmative for form bounded perturbations.
Without going into details about how the form bounded perturbation is defined, let us mention

the main facts we will be using. The first one is the following resolvent formula

(Aα − λI)−1f = (A − λI)−1f − α((A − λI)−1f,ϕ)

1 + α((A − λI)−1ϕ,ϕ)
(A − λI)−1ϕ (2.4)

which initially holds for f ∈ H, λ ∈ C \ R (see, e.g. Eq. (17) of [1] or Proposition 2.1 and
Theorem 3.3 of [6]).

Note, the inner product ((A − λI)−1ϕ,ϕ) is well defined for ϕ ∈ H−1(A) and (A − λI)−1 is
an isomorphism between Hr−2(A) and Hr (A). Probably the easiest way to see that is to invoke
the Spectral Theorem.

The following three well known lemmata are corollaries of the resolvent formula (2.4).

Lemma 2.4. The resolvent formula (2.4) can be extended to f ∈ H−1(A).
Moreover, for any λ ∈ C \ R the operator (Aα − λI)−1 is an isomorphism between H−1(A)

and H1(A).

Proof. Take f ∈ H−1(A). We have (A − λI)−1f ∈ H1(A). So the right-hand side of (2.4) de-
fines a bounded operator from H−1(A) to H1(A) (for λ ∈ C \ R).

To complete the proof, take a sequence of vectors fn ∈ H, n ∈ N, such that fn → f in the
norm of H−1(A). The boundedness of the right side of (2.4) implies that the sequence gn =
(Aα − λI)−1fn converges in H1(A). Let g be its limit.
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The boundedness of the right-hand side of the identity (2.4) implies the estimate
‖g‖H1(A) � C‖f ‖H−1(A). Since Aα − λI ∈ B(H1(A), H−1(A)), we can conclude that (Aα −
λI)g = f .

The second statement follows trivially from the first one. �
Let us recall that a vector ϕ is called cyclic for a self-adjoint operator A, if the span of the

vectors (A − λI)−1ϕ, λ ∈ C \ R, is dense in H. Note that for this definition, one does not need to
assume that ϕ ∈ H, but only that (A − λI)−1ϕ ∈ H, i.e. that ϕ ∈ H−2(A). If ϕ ∈ H−1(A), then
for Aα = A + α(·, ϕ)ϕ we trivially have (Aα − λI)−1ϕ ∈ H. So ϕ ∈ H−2(Aα).

Lemma 2.5. Let ϕ ∈ H−1(A) be a cyclic vector for A and let Aα = A + α(·, ϕ)ϕ. Then ϕ is
cyclic for Aα .

Proof. Recall Lemma 2.4. So since

α((A − λI)−1ϕ,ϕ)

1 + α((A − λI)−1ϕ,ϕ)
�= 1 ∀λ ∈ C \ R,

the resolvent formula (2.4) implies that (Aα − λI)−1ϕ = c(λ)(A − λI)−1ϕ, c(λ) �= 0, for all
λ ∈ C \ R. �
Lemma 2.6. If ϕ ∈ H−1(A), then ϕ ∈ H−1(Aα) for all α ∈ R. In particular, we have∫

R

dμα(s)
1+|s| < ∞.

Remark. If the operator A is semibounded, i.e. if A � aI for some a ∈ R, then the proof of the
lemma is almost trivial. Indeed, if A is semibounded, then Aα is semibounded, and for semi-
bounded operators f ∈ H−1(A) if and only if ((A−λI)−1f,f ) is defined and bounded for some
(or equivalently, for all) λ ∈ C \ R.

We learned the proof below, which works for the general case, from Pavel Kurasov.

Proof of Lemma 2.6. Recall that we assume ϕ ∈ H−1(A). Define

Fα(z) := ((Aα − zI)−1ϕ,ϕ
)= ∫

R

1

x − z
dμα(x)

for all z ∈ C \ R, α ∈ R. It is not hard to see that

∀K > 0 ∃C(K) > 0:
C(K)−1

1 + |x| �
∞∫

K

Im
1

x − iy

dy

y
� C(K)

1 + |x| . (2.5)

Further we have the statement

∃C ∀|y| � C:
∣∣ImF(iy)

∣∣∼ ∣∣ImFα(iy)
∣∣, (2.6)
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where F := F0. For the proof of statement (2.6), first notice that for |y| � 1 it holds | 1
iy−x

| �
| 1
i−x

| by a geometric argument. Since ϕ ∈ H−1(A), we have
∫

dμ(x)
|i−x| < ∞. By the Dominated

Convergence Theorem, we obtain

lim
y→∞

∣∣F(iy)
∣∣� lim

y→∞

∫ ∣∣∣∣ 1

iy − x

∣∣∣∣dμ(x) =
∫

lim
y→∞

∣∣∣∣ 1

iy − x

∣∣∣∣dμ(x) = 0.

Recall the Aronszajn–Krein formula Fα = F
1+αF

which follows from the resolvent formula (2.4),
see e.g. Eq. (15) of [1]. To see statement (2.6) note that

ImFα = Im
F

1 + αF
= ImF

|1 + αF |2 .

Let us complete the proof that ϕ ∈ H−1(Aα). The inclusion ϕ ∈ H−1(A) means that∫
R

dμ(x)
1+|x| < ∞. By the right inequality of (2.5) it follows that

∫∞
K

ImF(iy)
y

dy < ∞ for all K > 0.
For the interchange of order of integration, note that the latter integrand is positive for all y. Ac-
cording to (2.6) it follows that

∫∞
K

ImFα(iy)
y

dy < ∞ for all K > C. By the left inequality of (2.5),

we obtain
∫

R

dμα(x)
1+|x| < ∞, that is ϕ ∈ H−1(Aα). �

2.3. Proof of Theorem 2.1 for unbounded A

Recall that A = Mt in L2(μ), Aα = A + α(·, ϕ)ϕ, ϕ ≡ 1t and that VαAα = MsVα , where
Ms is the multiplication by the independent variable s in L2(μα). Recall also that Vα1t = 1s .
Using the resolvent equality (2.4) for f = ϕ = 1t and A = Mt , we get

(Ms − λI)−11s = Vα(Aα − λI)−1V −1
α 1s = Vα(Aα − λI)−11t

= [1 + α
(
(Mt − λI)−11t ,1t

)
L2(μ)

]−1
Vα(Mt − λI)−11t

for λ ∈ C \ R. So multiplying both sides by the term in square brackets and recalling that (Mx −
λI)−11x = (x − λ)−1, we have

Vα

1

t − λ
=
[

1 + α

∫
R

dμ(t)

t − λ

]
1

s − λ
∀λ ∈ C \ R.

Rewriting 1
s−λ

· 1
t−λ

= −( 1
s−λ

− 1
t−λ

) 1
s−t

we obtain

Vα

1

t − λ
= 1

s − λ
− α

∫
R

1
s−λ

− 1
t−λ

s − t
dμ(t)

for λ ∈ C \ R. By linearity we get that formula (2.1) holds for f in the space

B := span

{
1

: λk ∈ C \ R

}
.

t − λk
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Let us show that formula (2.1) holds on C1
0(R). Let f ∈ C1

0(R), suppf ⊂ [−L,L], and let
Pε be the Poisson kernel, Pε(x) = 1

π
ε

x2+ε2 .

Assume for a moment that the formula (2.1) holds for functions of the form Pε ∗ f , f ∈ C1
0 .

Convolution Pε ∗f converges to f uniformly on R. So |Pε ∗f (x)| � C (C does not depend on ε

and x) for all sufficiently small ε. Moreover, for |x| > 2L we have |(Pε ∗ f )(x)| � Cε/x2, so
|(Pε ∗ f )(x)| � C/(1 + |x|).

Since (Pε ∗f )′ = Pε ∗f ′, we conclude (Pε ∗f )′ → f ′ uniformly on R, so |(Pε ∗f )′(x)| � C

for all sufficiently small ε. If εn ↘ 0, then the functions fn = Pεn ∗ f satisfy the assumptions of
Lemma 2.3, and (2.1) holds for f .

To complete the proof of Theorem 2.1, we need to show that formula (2.1) holds for the
functions of the form Pε ∗ f , f ∈ C1

0 .
Let us (for a fixed ε > 0) approximate the convolution g(x) := Pε ∗f (x) = ∫ Pε(x − t)f (t) dt

by its Riemann sums.
Since Pε(x − t) = 1

2πi

[ 1
t−iε−x

− 1
t+iε−x

]
, we can choose the Riemann sums gn(x) to be

elements of B . So representation formula (2.1) holds for f = gn. Uniform continuity and bound-
edness of f and Pε imply that gn ⇒ g. It is also easy to see that for |x| > 2L we can estimate
|gn(x)| � C/x2, thus |gn(x)| � C/(1 + |x|).

Finally, taking the derivative we get the uniform estimate |g′
n| � C. Notice, that C = C(ε)

here, we do not need uniform in ε estimate.
Functions gn satisfy the assumptions of Lemma 2.3 and we can extend formula (2.1) to func-

tions of form Pε ∗ f , f ∈ C1
0 . �

2.4. Proof of the rigidity Theorem 2.2

Assume the hypotheses of the rigidity theorem, Theorem 2.2, are satisfied.
Recall that Mt and Ms denote the multiplication operators by the independent variable in

L2(μ) and L2(ν), respectively. Note that if Ms is unbounded, commuting with Ms means com-
muting with its spectral measure, or equivalently, with its resolvent.

We utilize two lemmata.

Lemma 2.7. Under the assumptions of Theorem 2.2 operator V V ∗ commutes with Ms . In par-
ticular, we have V V ∗ = Mψ for some ψ ∈ L∞(ν).

Proof. Let us first present an easier proof for the case of bounded and compactly supported
measures μ and ν.

Let us begin by showing that

MsV = V
[
Mt + α(·,1t )L2(μ)1t

]
. (2.7)

Notice, that we can extend formula (2.1) from C1
0 to polynomials by multiplying the polyno-

mials by an appropriate cut-off function h ∈ C1
0 , h ≡ 1 on suppμ ∪ suppν.

Let us prove (2.7) for monomials tn. For f ≡ 1t , formula (2.1) yields V 1t = 1s . Then appli-
cation of (2.1) to tn and tn+1 yields for n � 1

(MsV − V Mt)t
n(s) = s

(
V tn

)
(s) − (V tn+1)(s)
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= −α

∫ [
s(sn − tn)

s − t
− sn+1 − tn+1

s − t

]
dμ(t)

= α

∫
tn dμ(t) = α

(
tn,1t

)
L2(μ)

1s .

So (2.7) holds for monomials tn.
By linearity and continuity (2.7) holds on polynomials. By assumption the polynomials are

dense in L2(μ), operator V : L2(μ) → L2(ν) is bounded and measures ν, μ are bounded and of
compact support. Therefore (2.7) holds as an operator from L2(μ) to L2(ν).

Denoting Aα = Mt + α(·,1t )1t we rewrite (2.7) as MsV = V Aα , and take the adjoint to get
V ∗Ms = AαV ∗. So V V ∗ commutes with Ms :

MsV V ∗ = V AαV ∗ = V V ∗Ms.

To prove the theorem in the general case we need an analogue of (2.7) with resolvents instead
of the operators Ms and Aα , see (2.8) below.

First, taking a test function f ∈ C1
0 , f � 0, ‖f ‖L2(μ) > 0, and noticing that |(Vf )(s)| �

C/|s| for large |s|, we can see that the boundedness of the operator V implies that
∫
(1 +

s2)−1 dν(s) < ∞.
Next, we want to show that the representation formula (2.1) holds on functions of the form

(t − λ)−1 for all λ ∈ C \ R.
Take f (t) = (t − λ)−1. Notice that f ∈ L2(μ) ∩ L2(ν). Consider a family of cut-off func-

tions hn, n ∈ N, such that 0 � hn � 1, hn ≡ 1 on [−n,n] and |h′
n(t)| � 1. Then for each λ ∈ C\R

the family of functions {fn}, fn(t) := hn(t)(t − λ)−1 satisfies the assumptions of Lemma 2.3, so
the representation formula (2.1) holds for the functions f , f (t) = (t − λ)−1.

With this extension of formula (2.1) we prove an identity that is the unbounded analog of the
intertwining identity (2.7). Namely, for λ ∈ C \ R we have

V (Aα − λI)−1 = (Ms − λ)−1V (2.8)

on L2(μ), where Aα = Mt + α(·,1t )L2(μ)1t .

To show this, fix λ ∈ C \ R. Since 1
s−λ

− 1
t−λ

= − s−t
(t−λ)(s−λ)

, the representation formula (2.1)
gives us (

V (t − λ)−1)(s) = [1 + α
(
(t − λ)−1,1t

)
L2(μ)

]
(s − λ)−1.

That is

V (Mt − λI)−11t = [1 + α
(
(Mt − λI)−11t ,1t

)]
(Ms − λI)−11s .

With this identity and resolvent equality (2.4) for A = Mt and f = ϕ = 1t , we get

(Ms − λI)−11s = V
[
1 + α

(
(Mt − λI)−11t ,1t

)]−1
(Mt − λI)−11t

= V

[
1 − α((Mt − λI)−11t ,1t )

1 + α((Mt − λI)−11t ,1t )

]
(Mt − λI)−11t

= V (Aα − λI)−11t .
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For τ ∈ C \ R, we have the (usual) resolvent identity,

(Aα − λI)−1(Aα − τ I)−1 = [(Aα − λI)−1 − (Aα − τ I)−1](λ − τ)−1.

Combination of the latter two equations and 1
s−λ

− 1
s−τ

= λ−τ
(s−λ)(s−τ)

yields

V (Aα − λI)−1(Aα − τ I)−11t = 1

(s − λ)
V (Aα − τ I)−11t .

Identity (2.8) now follows from cyclicity of 1t for Aα , see Lemma 2.5.
Writing identity (2.8) for λ̄ instead of λ and taking the adjoint, we have

(Aα − λI)−1V ∗ = V ∗(Ms − λI)−1. (2.9)

Combination of (2.8) and (2.9) yields

V V ∗(Ms − λI)−1 = (Ms − λI)−1V V ∗ ∀λ ∈ C \ R,

i.e. V V ∗ commutes with the spectral measures of Ms .
The second statement is a standard result in operator theory. �

Lemma 2.8. Under the assumptions of Theorem 2.2, KerV ∗ = {0}.

Proof. Since KerV ∗ = KerV V ∗ and V V ∗ commutes with Ms (so V V ∗ is a multiplication op-
erator Mψ ), the kernel KerV ∗ is a spectral subspace of Ms . Namely, there exists a Borel subset
E ⊂ R such that

KerV ∗ = {f ∈ L2(ν): χR\Ef = 0
}
.

Assume KerV ∗ �= {0}. Then ν(E) > 0. We obtain a contradiction by constructing a function
f ∈ {f ∈ L2(ν): χR\Ef = 0} such that f /∈ KerV ∗.

By assumption suppμ consists of at least two points. Let a ∈ R such that there exist I1 �
(−∞, a), I2 � (a,∞) with μ(I1) > 0,μ(I2) > 0. We need to consider two cases.

If ν(E ∩[a,∞)) > 0, we can pick b ∈ R such that ν(E ∩[a, b]) > 0. Let f = χE∩[a,b]. Recall
that

∫
(1 + s2)−1 dν(s) < ∞ (see proof of Lemma 2.7). Hence f ∈ L2(ν) and χR\Ef = 0. Take

g ∈ C1
0 such that g|I1 = 1 and so that g and f have separated compact support. We have

(f,Vg)L2(ν) =
∫

E∩[a,b]

∫
I1

f (s)g(t)

s − t
dμ(t) dν(s) > 0,

since
∫
I1

g(t)
s−t

dμ(t) > 0 for all s ∈ E ∩ [a, b].
Because (V ∗f,g)L2(μ) = (f,Vg)L2(ν), we have f /∈ KerV ∗.
Consider the case ν(E ∩ [a,∞)) = 0. Recall ν(E) > 0. So ν(E ∩ (∞, a]) > 0 and an analo-

gous argument yields the desired contradiction.
The assumption KerV ∗ �= {0} was wrong. �



C. Liaw, S. Treil / Journal of Functional Analysis 257 (2009) 1947–1975 1959
With these two lemmata, we prove the rigidity theorem, Theorem 2.2.

Proof of Theorem 2.2. Assume the hypotheses of Theorem 2.2. In particular, KerV = {0}. With
Lemmata 2.7 and 2.8 we have V V ∗ = Mψ , ψ ∈ L∞(ν), and it holds KerV ∗ = {0}.

Let us conclude the first statement. Since V V ∗ � 0, we have ψ � 0 and the existence of
operator |V ∗| = (V V ∗)1/2 = Mψ1/2 . Writing polar decomposition, we get V ∗ = Ũ |V ∗| for some
partial isometry Ũ . Note that h−1 = ψ1/2 ∈ L∞(ν). Taking U := Ũ∗ = MhV . It remains to show
that Ũ is a unitary operator. We have Ker Ũ = KerV ∗ = {0}. Let us show surjectivity. From
KerV = {0} and h−1 ∈ L∞(ν) it follows Ker Ũ∗ = {0}. By definition (polar decomposition) we
have that Ran Ũ is closed. So also Ran Ũ = [Ker Ũ∗]⊥ = L2(μ) and Ũ is unitary.

Let us show the second part of the rigidity theorem, namely UAα = MsU , where Ms is the
multiplication by the independent variable s in L2(ν). Consider the case of bounded A. From the
proof of the first statement we extract U = Mψ−1/2V and ψ1/2 ∈ L∞(ν). Substitution of V into
identity (2.7) yields MsMψ1/2U = Mψ1/2UAα . Because multiplication operators commute, we
get the second part of the rigidity theorem for bounded operators. The unbounded case follows
in analogy using (2.8) instead of (2.7). �
3. Singular integral operators

Functions f and g are said to be of separated compact supports, if suppf and suppg are
compact sets and dist(suppf, suppg) > 0.

Let K(s, t) be a function (kernel) which is bounded on each set {(s, t): |s − t | > ε}, ε > 0.
By a singular integral operator (see [8]), henceforth referred to as SIO, T : L2(μ) → L2(ν)

with kernel K(s, t) we mean a bounded operator T : L2(μ) → L2(ν) such that for f ∈ L2(μ)

and g ∈ L2(ν) with separated compact supports

(Tf,g)L2(ν) =
∫ ∫

K(s, t)f (t)g(s) dμ(t) dν(s).

Notice, due to the condition of separated compact supports, the integral is well defined.

3.1. Unitary operator Vα is a singular integral operator

Lemma 3.1. Operator Vα : L2(μ) → L2(μα) from Theorem 2.1 is an SIO with kernel K(s, t) =
−α(s − t)−1. In particular, we have

(Vαf,g)L2(μα) = −α

∫ ∫
f (t)g(s)

s − t
dμ(t) dμα(s) (3.1)

for all f ∈ L2(μ) and g ∈ L2(μα) with separated compact supports.

Proof. Formula (2.1) implies that (3.1) holds for f ∈ C1
0 and g ∈ L2(μα), if f and g have

separated compact supports.
To show that the same formula holds for arbitrary f ∈ L2(μ) and g ∈ L2(μα) with separated

compact supports, let us take a compact set K such that suppf � K and dist(K, suppg) > 0 and
a sequence {fn} of C1 functions so that suppfn ⊂ K for all n and such that fn → f in L2(μ).
0
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Trivially limn→∞(Vαfn, g) = (Vαf,g). Since |s − t |−1 � 1/dist{K, suppg} for t ∈ K ,
s ∈ suppf , one can easily see that

lim
n→∞

∫ ∫
fn(t)g(s)

s − t
dμ(t) dμα(s) =

∫ ∫
f (t)g(s)

s − t
dμ(t) dμα(s),

which proves the lemma. �
3.2. Cauchy transform acting L2(μ) → L2(μα) and its regularizations

It is well known in the theory of singular integral operators, that if a singular operator T with
a Calderon–Zygmund kernel2 K is bounded on L2, then the truncated operators T̃ε , where

T̃εf (s) =
∫

|t−s|>ε

K(s, t)f (t) dt,

are uniformly (in ε) bounded. Also, this fact remains true, if instead of truncations, one considers
any reasonable regularization of the kernel K .

However, the classical theory does not apply in our case, because we integrate with respect
to the measure μ which does not satisfy the doubling condition. Moreover, even the recently
developed theory, see [8], of singular integral operators on non-homogeneous spaces (i.e. with
non-doubling measure) does not work here, because, first this theory works only for one weighted
case (the same measure in the target space), and second, the measure μ has to satisfy a growth
condition (μ([a − ε, a + ε]) � Cε uniformly in a and ε).

The measure μ appearing in our situation can be any Radon measure. So no known result
about singular integrals can be applied here.

Nevertheless, it still can be shown that the following regularized operators are uniformly
bounded operators acting from L2(μ) to L2(μα).

Let Tε = (Tμ)ε , ε > 0, be the integral operator with kernel (s − t + iε)−1,

Tεf (s) :=
∫

f (t)

s − t + iε
dμ(t), (3.2)

and let T̃ε = (T̃μ)ε be the truncated operator,

T̃εf (s) :=
∫

|t−s|>ε

f (t)

s − t
dμ(t).

Note, it is trivial that both Tε and T̃ε are well defined for compactly supported f . It is also not
hard to show — using Cauchy–Schwartz inequality — that, if

∫
(1 + x2)−1 dμ(x) < ∞, then the

operators are well defined for all f ∈ L2(μ).

2 Calderon–Zygmund means that the kernel K satisfies some growth and smoothness estimates. Without giving the
definition let us only mention that 1/(s − t) is one of the classical examples of a Calderon–Zygmund kernel.
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Theorem 3.2. Let μ and μα be the spectral measures of A and Aα , correspondingly.
Then the regularized operators Tε = (Tμ)ε : L2(μ) → L2(μα) defined by (3.2) are uniformly

bounded ‖Tε‖L2(μ)→L2(μα) � 2|α|−1.
Moreover, the weak limit T of Tε exists as ε → 0+, and operator Vα has the alternative

representation

Vαf (s) = f (s)(1 − αT 1) + αTf (3.3)

for all f ∈ L2(μ).
Finally, for any f ∈ C1

0 we have

lim
ε→0+(Tεf )(s) = Tf (s)

μα almost everywhere.

Remark. If 1 /∈ L2(μ), then the function T 1 can be defined, for example, by duality,

∫
T 1f dμα =

∫
T ∗f dμ

for all compactly supported f ∈ L2(μα). Note, since
∫
(1 + |x|)−1 dμ(x) < ∞, the integral∫

T ∗f dμ is well defined. It is easy to see from the proof that T 1 coincides with −F(x + i0+),
F(x + i0+) := limε→0+ F(x + iε), where

F(z) =
∫

dμ(t)

t − z
.

Remark. For purely singular measure μ the μα-a.e. convergence of Tεf for all f ∈ L2(μ) (not
only for f ∈ C1

0 ) was settled by Poltoratskiı̆’s theorem in [9]. Apparently, as it came out of our
communications with A. Poltoratskiı̆ and other experts in this area, it is possible to prove μα-
a.e. convergence for all f ∈ L2(μ) in the general case, although it is hard to present a formal
reference.

However, for our purposes a simpler fact of μα-a.e. convergence for all f ∈ C1
0 , is sufficient.

Proof of Theorem 3.2. To prove the first statement, let Vα : L2(μ) → L2(μα) be the spectral
representation of Aα from Theorem 2.1. Using formula (2.1) it is easy to see that for all a ∈ R

and f ∈ C1
0 it holds

Vαf (s) − eiasVα

[
e−iatf

]
(s) = α

∫
f (t)(1 − eia(s−t))

s − t
dμ(t).

Note that the kernel (1−eia(s−t))
s−t

is bounded, so the integral is well defined for compactly supported

functions f ∈ L2(μ).
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Since Vα is unitary and multiplication by e−iax is a unitary operator on L2(μ) and L2(μα),∥∥∥∥∫ f (t)(1 − eia(s−t))

s − t
dμ(t)

∥∥∥∥
L2(μα)

� 2|α|−1‖f ‖L2(μ). (3.4)

For ε > 0 we have

ε

∞∫
0

1 − eia(s−t)

t − s
e−εa da = 1

s − t + iε

and ε
∫∞

0 e−εa da = 1. So, by averaging the integral in the left side of (3.4) over all a � 0 with
weight εe−εa , we get ∥∥∥∥∫ f (t)

s − t + iε
dμ(t)

∥∥∥∥
L2(μα)

� 2|α|−1‖f ‖L2(μ)

for compactly supported f ∈ C1 and all ε > 0.
Let us show the existence of the weak limit of Tε .
Take a convergent (in weak operator topology) sequence Tεk

→ T̂ , εk → 0, as k → ∞. For
f ∈ C1

0 , we have that Tεf → Tf pointwise μα-a.e. for some operator T . Indeed,

Tεf (s) =
∫

f (t)

s − t + iε
dμ(t) =

∫
f (t) − f (s)

s − t + iε
dμ(t) + f (s)Tε1

and note that the integrand on the right-hand side remains bounded as ε → 0 for compactly
supported C1 functions f . For the second term on the right-hand side, recall that we denote by w

the density function of operator A’s spectral measure. Aronszajn–Donoghue theory on rank one
perturbations says that −F(·+ iε) = Tε1 → −πw a.e. with respect to the Lebesgue measure and
−F(· + iε) = Tε1 → α−1 a.e. with respect to (μα)s as ε → 0, see e.g. [10]. So for f ∈ C1

0 we
have that Tεf → Tf pointwise μα almost everywhere.

Lemma 3.3 below shows that T̂ f = Tf for all f ∈ C1
0 , so w.o.t.-limk→∞ Tεk

= T̂ = T .
Since the operators Tε are uniformly bounded, any sequence εk → 0 has a subsequence εkn

such that Tεkn
converges in weak operator topology. As we discussed above, this limit must be T .

And that means w.o.t-limε→0 Tε = T .
Let us prove representation formula (3.3). Take f ∈ C1

0 .
By the Dominated Convergence Theorem we have∫

f (s) − f (t)

s − t
dμ(t) = lim

ε→0+

[∫
f (s)

s − t + iε
dμ(t) −

∫
f (t)

s − t + iε
dμ(t)

]
for all real s.

The first part of the theorem implies that the second integral converges weakly in L2(μα) and
μα-a.e. to Tf as ε → 0.

It is an easy exercise to show that the first integral converges weakly in L2(μα) to f T 1 =
−f F(· + i0+), and μα-a.e. convergence was shown above in the proof.

Representation (3.3) now immediately follows from (2.1). �
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The lemma below is well known. We present the proof only for the sake of completeness.

Lemma 3.3. Let η be a measure. If a sequence of functions fn converges to f weakly in L2(η)

and to g pointwise η-a.e., then we have f = g in L2(η).

Proof. Recall that a closed convex subset of a Banach space is weakly closed (it is a sim-
ple corollary of the Hahn–Banach theorem). So we have f ∈ w-clos(conv{fn,fn+1, . . .}) =
clos(conv{fn,fn+1, . . .}) for all n ∈ N. Hence for every n there exists a non-negative sequence
{αn

k }k∈N with
∑

k�n αn
k = 1 and such that gn =∑k�n αn

k fn converge to f in L2(η). Therefore,
one can find a subsequence gnk

such that gnk
→ f η-a.e.

On the other hand limgnk
(x) = limgn(x) = g(x), so f = g η-a.e. �

3.3. Regularization of the Cauchy transform in the general case

The situation we considered in the previous section is very special, because measures μ

and μα are rigidly related to each other. The theorem below shows that for very general mea-
sures, a rather natural and weak assumption of boundedness implies the uniform boundedness of
the regularized operators.

Let us recall that two Borel measures μ and ν are called mutually singular (notation μ ⊥ ν)
if they are supported on disjoint sets, i.e. if there exist Borel sets E and F such that E ∩ F = ∅
and μ(Ec) = ν(F c) = 0.

Theorem 3.4. Let μ and ν be Radon measures on R such that for their singular parts μs ⊥ νs,
and such that ∣∣∣∣∫ ∫ f (t)g(s)

s − t
dμ(t) dν(s)

∣∣∣∣� C‖f ‖L2(μ)‖g‖L2(ν) (3.5)

for all f and g with separated compact supports.
Then for all ε > 0

‖Tεf ‖L2(ν) � 4C‖f ‖L2(μ) ∀f ∈ L2(μ),

and the truncated operators T̃ε : L2(μ) → L2(ν) are also uniformly bounded.

Remark. By a well-known Aronszajn–Donoghue theorem, the singular parts of μα and μβ are
mutually singular for all α,β ∈ R with α �= β , see e.g. [10]. So the above theorem can be used in
the situation when μ is the spectral measure of A and ν = μα is the spectral measure of Aα .

On the other hand, it is not hard to show that the uniform boundedness of Tε implies that
μs ⊥ νs, so Theorem 3.2 gives a different proof of this Aronszajn–Donoghue theorem.

Proof of Theorem 3.4 for Tε . Estimate (3.5) holds, if we replace function f by e−iat f (t) and
g by e−iasg(s), a ∈ R. So for all a ∈ R∣∣∣∣∫ ∫ f (t)g(s)

1 − eia(s−t)

s − t
dμ(t) dν(s)

∣∣∣∣� 2C‖f ‖L2(μ)‖g‖L2(ν)

(again for f and g with separated compact supports).
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In analogy to the proof of Theorem 3.2, we obtain

∣∣∣∣∫ ∫ f (t)g(s)

s − t + iε
dμ(t) dν(s)

∣∣∣∣� 2C‖f ‖L2(μ)‖g‖L2(ν) (3.6)

independent of ε and for f and g with separated compact supports. The lemma below shows that
the estimate holds for arbitrary compactly supported functions, not necessarily with separated
supports, which proves the theorem for Tε . �
Lemma 3.5. Let μ and ν be Radon measures such that μs ⊥ νs. Let T : L2(μ) → L2(ν) be a
compact operator.

If |(Tf,g)| � C‖f ‖L2(μ)‖g‖L2(ν) for all pairs f ∈ L2(μ) and g ∈ L2(ν) with separated com-
pact supports, then ‖T ‖ � 2C.

If one restricts everything to an interval (−R,R), the integral operator with kernel 1/(s −
t + iε) is clearly compact. So Lemma 3.5 gives the estimate |(Tεf, g)| � 4C‖f ‖L2(μ)‖g‖L2(ν)

for compactly supported f and g, which is all we need to prove Theorem 3.4.

Proof of Lemma 3.5. Consider first the case when μ and ν are absolutely continuous with
respect to Lebesgue measure. Pick small δ > 0, define functions h1 = 1[0,1/2−δ], h2 = 1[1/2,1−δ]
on [0,1) and extend them to 1-periodic functions on the whole real line.

For f ∈ L2(μ) and g ∈ L2(ν), define functions fn, gn by

fn(t) := f (t)h1(nt), gn(s) := g(s)h2(ns).

For each n, the functions fn, gn have separated support. We claim that

fn → (1/2 − δ)f, gn → (1/2 − δ)g (3.7)

weakly in L2(μ) and L2(ν), respectively, and that

‖fn‖2
L2(μ)

→ (1/2 − δ)‖f ‖2
L2(μ)

, ‖gn‖2
L2(ν)

→ (1/2 − δ)‖g‖2
L2(ν)

(3.8)

as n → ∞.
Both statements follow immediately from the fact that for arbitrary φ ∈ L1 (with respect to

the Lebesgue measure) and for h = h1 or h = h2

lim
n→∞

∫
R

φ(t)h(nt) dt = (1/2 − δ)

∫
R

φ(t) dt.

This fact is trivial for characteristic functions of intervals, extends by linearity for their finite
linear combinations and from this dense set to all L1 by ε/3 theorem, since the functionals
φ �→ ∫

R
φ(t)h(nt) dt are uniformly bounded.

Since T is compact, the weak convergence of fn and gn implies that (Tfn, gn) →
(1/2 − δ)2(Tf,g). Therefore
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(1/2 − δ)2
∣∣(Tf,g)

∣∣= lim
n→∞

∣∣(Tfn, gn)
∣∣� C lim

n→∞‖fn‖L2(μ)‖gn‖L2(ν)

= (1/2 − δ)C‖f ‖L2(μ)‖g‖L2(ν),

so ‖T ‖ � (1/2 − δ)−1C. Since δ can be arbitrary small, the conclusion of the lemma follows in
the case when μ and ν are absolutely continuous.

The reasoning in the above paragraph works for general Radon measures. So to prove lemma
for the general case it is sufficient for arbitrary f ∈ L2(μ), g ∈ L2(ν) to construct func-
tions fn, gn satisfying (3.7), (3.8) and such that for each n the supports of fn and gn are separated.

Let E and F be disjoint Borel subsets of Lebesgue measure zero supporting the singular parts
of μ and ν, respectively, meaning that μs(E

c) = 0, νs(F
c) = 0. Denote G := (E ∪ F)c .

Radon measures on R are inner regular. So there exist compact subsets En ⊂ E, Fn ⊂ F ,
Gn ⊂ G such that μ(En) → μ(E), ν(Fn) → ν(F ), μ(Gn)+ν(Gn) → μ(G)+ν(G) as n → ∞.

Let fa = f χG, ga = gχG be “absolutely continuous” parts of f and g, and fs = f χE ,
gs = gχF be the “singular” parts of f and g. Take δ > 0 and define

fn(t) := fa(t)h1(nt)χGn(t) + (1/2 − δ)fs(t)χEn(t),

gn(t) := ga(t)h2(nt)χGn(t) + (1/2 − δ)gs(t)χFn(t).

Clearly, for each n supports of fn and gn are separated.
Let us show that fn → (1/2 − δ)f weakly in L2(μ). Clearly, due to absolute continuity of

integral ‖fsχEn − fs‖L2(μ) → 0 as n → ∞.
Take arbitrary k ∈ L2(μ). Then∫

R

fa(t)h1(nt)χGn(t)k(t) dμ(t) → (1/2 − δ)(fa, k)L2(μ)

because, as it was discussed above, fa(t)h1(nt) converges weakly to (1/2 − δ)fa , and trivially
kχGn converges strongly to kχG.

As for the norms, it is not hard to show that

lim
n→∞‖fn‖2

L2(μ)
= (1/2 − δ)‖fa‖2

L2(μ)
+ (1/2 − δ)2‖fs‖2

L2(μ)
� (1/2 − δ)‖f ‖2

L2(μ)
.

Similarly gn → (1/2 − δ)g weakly in L2(ν) and limn→∞ ‖gn‖2
L2(ν)

� (1/2 − δ)‖g‖2
L2(ν)

.
And the same reasoning as for the absolutely continuous case completes the proof. �
In order to show Theorem 3.4 for T̃ε , we prove the necessity of an A2-type condition for Tε

to be uniformly bounded.

Lemma 3.6. Assume that the operators Tε : L2(μ) → L2(ν) are uniformly bounded. Then there
exists a constant C > 0 such that∫

R

2 Ima

|t − a|2 dμ(t)

∫
R

2 Ima

|s − a|2 dν(s) � C

for all a, Ima > 0. In particular |I |−2μ(I)ν(I ) � C′ < ∞ for all intervals I �= ∅.
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Proof. Let ba(x) = x−a
x−ā

, a ∈ C \ R. Consider auxiliary operators Rε := Tε − Mba
TεMba :

L2(μ) → L2(ν), where Mϕ is the multiplication operator, Mϕf = ϕf . Since Mb and Mb are
isometries, the operators Rε are uniformly bounded with respect to ε and a.

Since

1

s − t + iε
− (s − ā)(t − a)

(s − a)(s − t + iε)(t − ā)
= 2i Ima(s − t)

(s − t + iε)(s − a)(t − ā)
,

we have for compactly supported f ∈ L2(μ)

Rεf (s) =
∫

2i Ima(s − t)f (t)

(s − t + iε)(s − a)(t − ā)
dμ(t).

It follows from the Dominated Convergence Theorem that for compactly supported f ∈L2(μ),
g ∈ L2(ν)

lim
ε→0+(Rεf,g)L2(ν) =

∫ ∫
2i(Ima)f (t)g(s)

(s − a)(t − a)
dμ(t)dν(s),

so the weak limit R0 := w.o.t.-limε→0+ Rε . Its norm can be easily computed (for example, the
operator norm of a rank one operator coincides with its Hilbert–Schmidt norm):∫

R

2 Ima

|t − a|2 dμ(t)

∫
R

2 Ima

|s − a|2 dν(s) = ‖R0‖2 � 4 lim sup
ε→0+

‖Tε‖2 < ∞. (3.9)

But that is exactly the conclusion of the theorem.
To prove the statement about intervals, take a non-empty interval I . Set Ima = |I | and Rea =

1/2(sup I − inf I ). Integrating in (3.9) only over I × I and using that 1/|t − a| � 1/(2|I |) for
t ∈ I we get that |I |−2μ(I)ν(I ) � C′ < ∞. �
Proof of Theorem 3.4 for ˜Tε . To prove Theorem 3.4 for the operators T̃ε it is sufficient to show
that the difference operators Tε − T̃ε are uniformly bounded.

The difference operator is defined for compactly supported f ∈ L2(μ) by

(Tε − T̃ε)f (s) =
∫

Kε(s − t)f (t) dμ(t)

where Kε(x) = (x + iε)−1 − x−1χ[−ε,ε]c . Note |Kε(x)| is bounded from above by the decaying

in |x| function
√

2ε

x2+ε2 with uniformly bounded (with respect to ε) L1 norm. So it can be majorated

by a convex combination of characteristic functions |I |−1χI ,

∣∣Kε(x)
∣∣�∑

k

ck(ε)|Ik|−1χIk
(x) =: Mε(x), ck(ε) � 0,

∑
k

ck(ε) � C < ∞

with intervals Ik centered at the origin.
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Clearly∣∣∣∣∫ ∫ Kε(s − t)f (t)g(s) dμ(t) dν(s)

∣∣∣∣� ∫ ∫ Mε(s − t)
∣∣f (t)

∣∣ · ∣∣g(s)
∣∣dμ(t) dν(s).

So to prove uniform boundedness of Tε − T̃ε , it is sufficient to show that the operators
TI :L2(μ) → L2(ν) given by

TIf (s) = |I |−1
∫

χI (s − t)f (t) dμ(t)

are uniformly bounded.
To prove this uniform estimate let

⋃
k∈Z

Jk be a cover of R by non-intersecting half open
intervals of length |Jk| = |I |. Let J̃k := Jk−1 ∪ Jk ∪ Jk+1.

For all s ∈ Jk , we have

∣∣TIf (s)
∣∣� 3|J̃k|−1

∫
J̃k

|f |dμ � 3|J̃k|−1
(∫

J̃k

|f |2 dμ

)1/2(
μ(J̃k)

)1/2
.

(The last inequality is just Cauchy–Schwartz.) So we obtain∫
Jk

|TIf |2 dν � 9|J̃k|−2μ(J̃k)ν(Jk)

∫
J̃k

|f |2 dμ.

Summing over all k and taking into account that |J̃k|−2μ(J̃k)ν(Jk) � |J̃k|−2μ(J̃k)ν(J̃k) � C′
and that each x ∈ R is covered by 3 intervals J̃k , we get∫

R

|TIf |2 dν � 27C′
∫
R

|f |2 dμ. �

4. Absence of singular spectrum

In this section we are going to investigate the absence of the singular spectrum of the perturbed
operator Aα .

For a complex-valued Borel measure η on R such that
∫ |dη(t)|

1+t2 < ∞, let

Kη(s) := lim
ε→0+

∫
dη(t)

s − t + iε
.

It is a standard fact that this limit exists almost everywhere with respect to Lebesgue measure.
We will need the result below about the boundary values of the Cauchy transform of a mea-

sure, cf. [3], where it was proved for the case of the unit circle. The case of the real line can be
treated absolutely the same way.
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Theorem 4.1. Let I ⊂ R be a bounded open interval. Then

tχ({|Kη|>t}∩I ) dx → 2χI d|ηs| + χ∂I d|ηs|

in the weak∗-sense as t → ∞.

The following corollary is an immediate consequence of this theorem.

Corollary 4.2. If I ⊂ R is a bounded closed interval such that ηs|I �= 0, then there exists a C > 0
such that |{|Kη| > t} ∩ I | � C/t for large t .

Assume the setting of rank one perturbations, see e.g. Section 1.1. Let

F(z) =
∫
R

dμ(x)

x − z
, Fα(z) =

∫
R

dμα(x)

x − z
,

where Im z > 0, μ and μα are the spectral measures of A and Aα , respectively.
By the well-known Aronszajn–Krein formula we have

Fα = F

1 + αF
= 1

α

(
1 − 1

1 + αF

)
.

And it is also well known that ImKμ = limε→0+ ImF(x + iε) = πw(x) a.e. with respect to
Lebesgue measure (w is the density of the absolutely continuous part of μ). Therefore, we get

|Kμα| � 1

|α| + 1

α2πw
.

Combining this with Corollary 4.2 one immediately gets the following proposition.

Proposition 4.3. If for a bounded closed interval I we have∣∣{x ∈ I : 1/w(x) > t
}∣∣= o(1/t) as t → +∞,

then the measures μα do not have singular part on I for all α ∈ R, α �= 0.

The above reasoning is probably well known to specialists. We have learned it from E. Abaku-
mov (personal communication).

Using the fact about uniform (in ε not in α) boundedness of the operators Tε = (Tμ)ε :L2(μ)→
L2(μα) we can get a stronger result in this direction.

For a bounded interval I and a weight w, define the distribution function Dw = Dw,I (t) :=
|{x ∈ I : w(x) < t}| of w|I . Consider its inverse function, the increasing rearrangement w∗ = w∗

I

of w|I , i.e. w∗ = (Dw)−1.

Lemma 4.4. Let μ and ν be Radon measures on R such that the operators Tε = (Tμ)ε : L2(μ) →
L2(ν),
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Tεf (s) =
∫
R

f (t)

s − t + iε
dμ(t),

are uniformly (in ε) bounded, and let dμ = w dt + dμs be the Lebesgue decomposition of the
measure μ. Assume that for a bounded closed interval I the increasing rearrangement w∗ = w∗

I

of w|I satisfies

ε∫
0

x−2w∗(x) dx = ∞ (4.1)

for some (all) ε > 0.
Then the measure ν is non-singular on I , i.e. νs|I ≡ 0.

Lemma 4.5. Condition (4.1) can equivalently be expressed in terms of the distribution function
Dw = Dw,I as

δ∫
0

1

Dw(y)
dy = ∞. (4.2)

Proof. If w∗(x) � cx, then Dw(y) � Cy and both (4.1) and (4.2) are satisfied. So it is sufficient
to consider the case when limn→∞ w∗(εn)/εn = 0 for some sequence εn → 0+.

Denoting y = w∗(x), so x = Dw(y), and integrating by parts, we get

ε∫
εn

x−2w∗(x) dx = −
ε∫

εn

w∗(x) d(1/x) = −w∗(x)/x|εεn
+

δ∫
δn

x−1 dy,

where δ = w∗(ε), δn = w∗(εn). Taking limit as n → ∞ we can see that the conditions (4.1)
and (4.2) are equivalent. �
Remark. Condition (4.1) is satisfied if for small x, w∗(x) � x, or if w∗(x) � cx ln−p(1/x),
p < 1, or even if

w∗(x) � cx/
[
(ln 1/x)(ln ln 1/x) · · · ( ln ln · · · ln︸ ︷︷ ︸

m times

1/x)( ln ln · · · ln︸ ︷︷ ︸
m+1 times

1/x)p
]

(p < 1).
Similarly, (4.2) holds if for p < 1 and t → ∞

∣∣{x ∈ I : 1/w(x) > t
}∣∣� Ct−1(ln t)(ln ln t) · · · ( ln ln · · · ln︸ ︷︷ ︸

m times

t)( ln ln · · · ln︸ ︷︷ ︸
m+1 times

t)p.
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Proof of Lemma 4.4. Since (Tμ)∗ε = −(Tν)ε , the operators (Tν)ε : L2(ν) → L2(μ) are uni-
formly bounded, and therefore they are uniformly bounded as operators L2(ν) → L2(w). There-
fore we can pick a subsequence (Tν)εk

, εk → 0+ which converges in the weak operator topology
of B(L2(ν),L2(w)).

Since for any f ∈ L2(ν) the Cauchy integral Kf ν exists a.e. with respect to Lebesgue mea-
sure,3 Lemma 3.3 implies that the corresponding weak limit is the operator f �→ Kf ν.

Since this operator is clearly bounded, applying it to f = χI , we get

∫
I

|Kν̃|2w(x)dx �
∫
R

|Kν̃|2w(x)dx � C‖χI‖2
L2(ν)

= Cν(χI ),

where dν̃ = χI dν.
Using the distribution function we get that

∫
I

|Kν̃|2w(x)dx =
∞∫

0

2t

∫
{|Kν̃|>t}∩I

w(x)dx dt.

Let us assume that ν has a non-trivial singular part on I , i.e. that ν̃ has a non-trivial singular
part. By Corollary 4.2, we have |{|Kν̃| > t} ∩ I | � C/t > 0 for all sufficiently large t (t � A for
some A > 0).

Let L = |{|Kν̃| > t} ∩ I |. Since C/t � L for t � A, we have

C/t∫
0

w∗(x) dx �
L∫

0

w∗(x) dx �
∫

{|Kν̃|>t}∩I

w(x)dx.

Multiplying this inequality by 2t and integrating we get

∞∫
A

2t

C/t∫
0

w∗(x) dx dt �
∞∫

A

2t

∫
{|Kν̃|>t}∩I

w(x)dx dt

�
∞∫

0

2t

∫
{|Kν̃|>t}∩I

w(x)dx dt

=
∫
I

|Kν̃|2w(x)dx � Cν(χclos I ) < ∞. (4.3)

3 It is not difficult to show that under assumptions of the lemma
∫ |f (t)|dν(t)

1+|t | < ∞, but one does not need to show that,
because in the proof it is sufficient to consider only compactly supported f .
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Using Tonelli’s theorem to change the order of integration, we can write the left side as

∞∫
A

2t

C/t∫
0

w∗(x) dx dt =
C/A∫
0

[
(C/x)2 − A2]w∗(x) dx. (4.4)

Clearly
∫ C/A

0 w∗(x) dx < ∞. So combining (4.3) and (4.4), we get that if the measure ν̃ has a
non-trivial singular part, then

ε∫
0

x−2w∗(x) dx < ∞,

where ε = C/A. �
Let Aα = A + α(·, ϕ)ϕ be the family of rank one perturbations of the operator A as described

in Section 1.1, and let μα be their spectral measures (corresponding to ϕ), μ = μ0 being the
spectral measure of A.

The following theorem is an immediate corollary of Lemma 4.4.

Theorem 4.6. Let dμ = w dt + dμs be the Lebesgue decomposition of the spectral measure
μ = μϕ .

If for a bounded closed interval I the distribution function Dw = Dw,I satisfies (4.2) (equiv-
alently, its inverse w∗ satisfies (4.1)), then for all α ∈ R \ {0} operator Aα has empty singular
spectrum on I .

Let us state a similar result that incorporates the averages of the spectral measures into the
hypothesis.

Theorem 4.7 (Averaged condition). For a finite Borel measure σ on R, define the average spec-
tral measure τ = ∫ μβ dσ(β), and let dτ = w dt + dτs be its Lebesgue decomposition. Consider

the set E := {α ∈ R:
∫ dσ(β)

|α−β|2 < ∞}.
If for a bounded closed interval I the distribution function Dw = Dw,I satisfies (4.2), then

for all α ∈ E (in particular, for all α outside of the closed support of σ ) operator Aα has empty
singular spectrum on I .

Proof. To apply Lemma 4.4, we need to show that for each α ∈ E the operators Tε =
(Tτ )ε :L2(τ ) → L2(μα) are uniformly bounded. Take f ∈ L2(τ ) and g ∈ L2(μα) and estimate

∣∣((Tτ )εf, g
)
L2(μα)

∣∣= ∣∣∣∣∫ ∫ f (t)g(s)

s − t + iε
dτ(t) dμα(s)

∣∣∣∣
=
∣∣∣∣∫ ∫ ∫ f (t)g(s)

s − t + iε
dμβ(t) dμα(s) dσ (β)

∣∣∣∣
� 2

∫
‖f ‖L2(μβ)‖g‖L2(μα)|α − β|−1 dσ(β)
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� 2‖g‖L2(μα)

(∫
dσ(β)

|α − β|2
)1/2(∫

‖f ‖2
L2(μβ)

dσ (β)

)1/2

.

Here in the first inequality we used the fact that by Theorem 3.2 we have

∥∥(Tμβ )ε
∥∥

L2(μβ)→L2(μα)
� 2|α − β|−1.

It remains to note that the last factor on the right-hand side is equal to ‖f ‖L2(τ ) and recall that∫ dσ(β)

|α−β|2 � C < ∞. �
5. Some examples

Theorem 4.6 can be used to construct examples of rank one perturbations with weird behavior.
Consider first an abstract situation.

5.1. Friedrichs model

Let μ be a finite Borel measure supported on a finite closed interval I , and let dμ = w dt +dμs

be its Lebesgue decomposition. Let operator A be the multiplication Mt by the independent
variable t in L2(μ).

Let the density w on the interval I satisfy condition (4.2). Assume also that the closed support
of μs coincides with I . Then, first of all, by Theorem 4.6, the perturbed operators Aα := A +
α(·,1)1 have no singular spectrum on I for all α �= 0. Of course, an eigenvalue outside of I can
appear.

Second, the density wα of the spectral measure μα of Aα is highly irregular: It fails to satisfy
condition (4.2) on any subinterval of I .

Indeed, one can write A = Aα − α(·,1)1. Since the close support of the singular part of μs is
the whole interval I , condition (4.2) must fail for density wα on all subintervals of I .

Notice also that, if we consider perturbations Aα0 +α(·,1)1 of the operator Aα0 , α0 �= 0, then
we get a family of rank one perturbations for which the singular spectrum appears at exactly one
value of the parameter α (α = −α0).

If the condition (4.2) holds for any subinterval J � I , then we can conclude that all perturba-
tions Aα have no singular spectrum in the interior of I (atoms can appear at the endpoints).

5.2. Jacobi matrices

The same reasoning as above in Section 5.1 can be applied to Jacobi matrices. By a Jacobi
matrix we refer to a semi-infinite tridiagonal matrix of the form

T :=

⎛⎜⎜⎜⎜⎝
b1 a1 0 · · · · · · · · ·
a1 b2 a2 0 · · · · · ·
0 a2 b3 a3 0 · · ·
.. . . . . . . . . . .

⎞⎟⎟⎟⎟⎠

. . . . . .
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where an > 0, bn ∈ R for all n ∈ N. The free Jacobi matrix T0, is the Jacobi matrix with bn = 0
and an = 1 for all n ∈ N. We assume also that supn |an| + |bn| < ∞, so a Jacobi matrix can be
viewed as a bounded operator on �2 = �2(N) (the Jacobi operator).

As it is well known, see e.g. [2], there is a one-to-one correspondence between compactly
supported Borel measures on R satisfying the normalization condition μ(R) = 1 and bounded
Jacobi operators. Namely, any such measure is the spectral measure (corresponding to the cyclic
vector e1) of the corresponding Jacobi matrix; here {en}∞n=1 is the standard basis in �2.

So all that was said above in Section 5.1 about perturbations of multiplication operator can be
trivially said about perturbations Tα of a Jacobi matrix T , Tα = T + α(·, e1)e1; note that Tα is
obtained from T by replacing the entry b1 in the Jacobi matrix by b1 + α.

What is more interesting, the same can be said about Jacobi matrices that are Hilbert–Schmidt
perturbations of the free Jacobi matrix, i.e. about Jacobi matrices such that

∞∑
n=1

(an − 1)2 + b2
n < ∞.

In [4], the following complete description of spectral measures of such matrices was obtained.

Theorem 5.1. (Killip–Simon [4].) Let J be a Jacobi matrix and μ be the corresponding spectral
measure (corresponding to the vector e1).

Operator T − T0 is Hilbert–Schmidt if and only if all four conditions hold:

(1) Blumenthal–Weyl: suppdμ = [−2,2] ∪ {λ+
j } ∪ {λ−

j }, where {λ±
j } denote the sequences of

eigenvalues of J in R \ [−2,2] and λ+
1 > λ+

2 > · · · > 2 and λ−
1 < λ−

2 < · · · < −2,
(2) Lieb–Thirring:

∑
j (λ

+
j − 2)3/2 +∑j (λ

−
j + 2)3/2 < ∞,

(3) Quasi-Szegö:
∫ 2
−2(4 − t2)1/2 log(w(t)) dt > −∞, where w is the density function of μ,

i.e. dμ = w dt + dμs,
(4) Normalization: μ(R) = 1.

It is easy to see, that one can construct a measure μ satisfying all four conditions of Theo-
rem 5.1, and such that condition (4.2) is satisfied for the interval [−2,2]. Notice, that the condi-
tions of Theorem 5.1 and condition (4.2) pose no restriction (except the trivial one μs(R) < 1)
on the singular part of μ on the interval. So, the reasoning of the previous subsection applies to
this case and the perturbations Tα of T have no singular spectrum on [−2,2]. Considering per-
turbations of Tα0 , α0 �= 0, one comes up with the example of a family of rank one perturbations
Tα0 +α(·, e1)e1 such that the singular spectrum on σess(T ) appears only for one value of α. Note,
operator Tα0 is a Hilbert–Schmidt perturbation of the free Jacobi matrix.

5.3. Schrödinger operators

The same idea as in Section 5.1 can be applied to (half-line) Schrödinger operators H :=
− d2

dx2 + V with L2 potentials (V ∈ L2(R+)) on L2(R+), R+ := (0,∞).

Let us recall that for a formal differential operator H = HV = − d2

dx2 +V on R+, V ∈ L2(R+),

one can define a family of self-adjoint operators Hϑ on L2(R+) with different boundary condi-
tions at 0; that is, these operators differ by their respective domains,
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D(Hϑ) = {u ∈ L2(R+): u,u′ are locally absolutely continuous,

u(0) cos(ϑ) + u′(0) sin(ϑ) = 0 for 0 � ϑ < π, Hϑu ∈ L2(R+)}.
Note that ϑ = 0 corresponds to the Dirichlet boundary condition and ϑ = π/2 corresponds to
the Neumann boundary condition. Recall that if V ∈ L2(R+), then H is limit point, see e.g. [7],
meaning that Dirichlet boundary conditions (and also the boundary conditions for Hϑ ) define a
self-adjoint operator.

A recent theorem of Killip and Simon [5] gives a complete description of spectral measures
of Schrödinger operators with L2 potentials (with Dirichlet boundary condition). Without stating
Killip–Simon theorem here, we will only mention that it is not hard to construct a measure μ

satisfying the conditions of this theorem and such that its weight w satisfies condition (4.2) for
all intervals I � [0,∞). Moreover, it is not hard to show that the singular part of μ can be
essentially arbitrary, i.e. given a singular Radon measure τ on R+ one can find μ satisfying
the conditions of the Killip–Simon theorem and such that the singular part μs of μ is mutually
absolutely continuous with τ (and the density w of μ satisfies (4.2)).

It is well known that the Schrödinger operators with mixed boundary conditions are viewed
as self-adjoint rank one perturbations of the Schrödinger H0 operator with Dirichlet boundary
conditions.

Unfortunately, our results cannot be applied directly, because to get from the H0 to Hϑ the
perturbation should formally be written as H0 + α(ϑ)(·, δ′

0)δ
′
0, where δ′

0 is the derivative of delta
function at zero. The spectral measure, which is traditionally defined via the Weyl M-function,
is also the spectral measure with respect to δ′

0. But vector δ′
0 is not in H−1(H0), one can only

prove that it is in H−2(H0). However, there is a simple workaround: one just needs to consider
resolvents.

Namely, fix ϑ and consider λ < 0 which is not an eigenvalue of H0 or Hϑ . Then the difference
of the resolvents can be formally written as

(Hϑ − λI)−1 = (H0 − λI)−1 + α̃(ϑ)
(·, (H0 − λI)−1δ′

0

)
(H0 − λI)−1δ′

0, (5.1)

where α̃(ϑ) = α(ϑ)/[1 + α(ϑ)((H0 − λI)−1δ′
0, δ

′
0)]. The fact that the difference of resolvents

is a rank one operator follows from the standard theory of differential operators, and knowing
the resolvent one defines the operator. Thus, in this case, one can avoid the rather complicated
construction of rank one perturbations with ϕ ∈ H−2. This construction is described, for example,
in [1].

The spectral measure ν of the resolvent (H0 −λI)−1 can be easily computed from the spectral
measure μ of H0, and it is clear that if the density of μ satisfies the assumption (4.2) on any
subinterval I ⊂ [0,∞), then the density of ν satisfies the same condition (4.2) for any subinterval
of (0,−1/λ].

So, one can apply Theorem 4.6 to the resolvents. By doing so, one can obtain all the phenom-

ena discussed in Section 5.1. For example, one can get H = − d2

dx2 + V , V ∈ L2(R+), such that
H0 (Dirichlet boundary conditions) has dense in R+ singular spectrum, but for all other boundary
conditions the operators Hϑ have no singular spectrum on R+. And the density of the spectral
measure of Hϑ will exhibit some weird behavior: In particular, it will not satisfy condition (4.2)
on any bounded subinterval of R+.
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