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Abstract

We de0ne the phrase ‘category enriched in an fc-multicategory’ and explore some exam-
ples. An fc-multicategory is a very general kind of two-dimensional structure, special cases
of which are double categories, bicategories, monoidal categories and ordinary multicategories.
Enrichment in an fc-multicategory extends the (more or less well-known) theories of enrichment
in a monoidal category, in a bicategory, and in a multicategory. Moreover, fc-multicategories
provide a natural setting for the bimodules construction, traditionally performed on suitably co-
complete bicategories. Although this paper is elementary and self-contained, we also explain
why, from one point of view, fc-multicategories are the natural structures in which to enrich
categories. c© 2001 Elsevier Science B.V. All rights reserved.

MSC: 18D20; 18D05; 18D50; 18D10

A general question in category theory is: given some kind of categorical structure,
what might it be enriched in? For instance, suppose we take braided monoidal cat-
egories. Then the question asks: what kind of thing must V be if we are to speak
sensibly of V-enriched braided monoidal categories? (The usual answer is that V must
be a symmetric monoidal category.)

In another paper, [7], I have given an answer to the general question for a certain
family of categorical structures (generalized multicategories). In particular, this theory
gives an answer to the question ‘what kind of structure V can a category be enriched
in’? The answer is: an ‘fc-multicategory’.

Of course, the traditional answer to this question is that V is a monoidal cate-
gory. But there is also a notion of a category enriched in a bicategory (see Walters
[15]). And generalizing in a diEerent direction, it is easy to see how one might speak

� Supported by the EPSRC and St John’s College, Cambridge.
E-mail address: leinster@dpmms.cam.ac.uk (T. Leinster).

0022-4049/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0022 -4049(01)00105 -0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82130142?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


392 T. Leinster / Journal of Pure and Applied Algebra 168 (2002) 391–406

of a category enriched in an ordinary multicategory (‘change tensors to commas’).
An fc-multicategory is, in fact, a very general kind of two-dimensional categorical
structure, encompassing monoidal categories, bicategories, multicategories and double
categories. The theory of categories enriched in an fc-multicategory extends all of the
aforementioned theories of enrichment.

So from the point of view of [7], fc-multicategories are the natural structures in which
to enrich a category. In this work, however, we do not assume any knowledge of [7]
or of generalized multicategories. Instead, we de0ne fc-multicategory in an elementary
fashion (Section 1) and then de0ne what a category enriched in an fc-multicategory is
(Section 2). Along the way we see how enrichment in an fc-multicategory extends the
previously-mentioned theories of enrichment, and look at various examples.
fc-multicategories also provide a natural setting for the bimodules construction (Sec-

tion 3), traditionally carried out on bicategories satisfying certain cocompleteness con-
ditions. At the level of fc-multicategories, the construction is both more general and
free of technical restrictions. We show, in particular, that a category enriched in an
fc-multicategory V naturally gives rise to a category enriched in the fc-multicategory
Bim(V) of bimodules in V. This result is functorial (that is, a V-enriched functor
gives rise to a Bim(V)-enriched functor), a statement which only holds if we work
with fc-multicategories rather than bicategories.

1. fc-multicategories

In a moment, an explicit and elementary de0nition of fc-multicategory will be given.
But 0rst it might be helpful to look brieIy at the wider context in which this de0-
nition sits: the theory of ‘generalized multicategories’. The reader is reassured that
no knowledge of this wider context is required in order to understand the rest of the
paper.

Given a monad T on a category E, both having certain convenient properties, there
is a category of T -multicategories. A T -multicategory C consists of a diagram

in E (a T -graph) together with functions de0ning ‘composition’ and ‘identity’; the
full details can be found in Burroni [3] or Leinster ([6] or [8]). Thus when T is the
identity monad on E=Set, a T -multicategory is simply a category. When T is the
free-monoid monad on E=Set, a T -multicategory is a multicategory in the original
sense of Lambek [5]. When T is the free (strict) ∞-category monad on the category
E of globular sets (‘∞-graphs’), a T -multicategory C with C0 = 1 is a higher operad
in the sense of Batanin [1]. The example which concerns us here is when T is the free
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category monad fc on the category E of directed graphs. A T -multicategory is then an
fc-multicategory in the sense of the following explicit de0nition.

De�nition 1. An fc-multicategory consists of

• a class of objects x; x′; : : : ;
• for each pair (x; x′) of objects, a class of vertical 1-cells

x
↓
x′ ;

denoted f;f′; : : : ,
• for each pair (x; x′) of objects, a class of horizontal 1-cells x → x′, denoted

m;m′; : : : ,
• for each n¿ 0, objects x0; : : : ; xn; x; x′, vertical 1-cells f;f′, and horizontal 1-cells

m1; : : : ; mn; m, a class of 2-cells

x0
m1−−−−−−−→ x1

m2−−−−−−−→ · · · mn−−−−−−−→ xn

f



� ⇓



� f′

x −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
m

x′;

(1)

denoted 	; 	′; : : : ,
• composition and identity functions making the objects and vertical 1-cells into a

category,
• a composition function for 2-cells, as in the picture

•
m1

1−−−→ · · · m
r1
1−−−→ •

m1
2−−−→ · · · m

r2
2−−−→ • : : : •

m1
n−−−→ · · · mrn

n−−−→ •
f0 ↓ ⇓ 	1 ↓ ⇓ 	2 ↓ · · · ↓ ⇓ 	n ↓ fn

• −−−−−−−−−−−−−→
m1

• −−−−−−−−−−−−−→
m2

• : : : • −−−−−−−−−−−−−→
mn

•
f ↓ ⇓ 	 ↓ f′

• −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
m

•

•
m1

1−−−→ · · · mrn
n−−−→ •

f◦f0



� ⇓ 	◦(	1 ;	2 ;:::;	n)



� f′◦fn

• −−−−−−−−−−−−−−−−−−−−−−−−−→
m

•

(n¿ 0; ri¿ 0); where the •’s represent objects,
• an identity function

x m−−−→ x′
x m−−−→ x′

1x


� ⇓ 1m



� 1x′

x −−−→
m

x′:

The 2-cell composition and identities are required to obey associativity and identity
laws.
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The associativity and identity laws ensure that any diagram of pasted-together 2-cells
with a rectangular boundary has a well-de0ned composite.

Examples

(1) Any double category gives an fc-multicategory, in which a 2-cell as in diagram
(1) is a 2-cell

x0
mn◦···◦m1−−−−−→ xn

f



� ⇓



� f′

x −−−−−→
m

x′

in the double category. If the double category is called D then we also call the
resulting fc-multicategory D, and we use the same convention for bicategories
(next example).

(2) Any bicategory gives an fc-multicategory in which the only vertical 1-cells are
identity maps, and a 2-cell as in diagram (1) is a 2-cell

in the bicategory (with x= x0 and x′ = xn).
Here mn ◦ · · · ◦ m1 denotes some n-fold composite of the 1-cells mn; : : : ; m1 in

the bicategory. For the sake of argument let us decide to associate to the left,
so that m4 ◦ m3 ◦ m2 ◦ m1 means ((m4 ◦ m3) ◦ m2) ◦ m1. A diEerent choice of
bracketing would only aEect the resulting fc-multicategory up to isomorphism (in
the obvious sense).

(3) Any monoidal category M gives rise to an fc-multicategory �M (the suspension
of M) in which there is one object and one vertical 1-cell, and a 2-cell

(2)

is a morphism Mn⊗ · · · ⊗M1 → M in M. This is a special case of Example (2).
(4) Similarly, any ordinary multicategory M gives an fc-multicategory �M: there is

one object, one vertical 1-cell, and a 2-cell as in diagram (2) is a map M1; : : : ; Mn→
M in M.

(5) We de0ne an fc-multicategory Span. Objects are sets, vertical 1-cells are functions,
a horizontal 1-cell X → Y is a diagram
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of sets and functions, and a 2-cell inside

is a function 	 making

commute. Here Mn◦· · ·◦M1 is the limit of the top row of diagram (3), an iterated
pullback. Composition is de0ned in the obvious way.
Span is an example of a ‘weak double category’, which is just like a double
category except that horizontal 1-cell composition only obeys associativity and
identity axioms up to coherent isomorphism.
It is rather idiosyncratic to name this fc-multicategory after its horizontal 1-cells:
usually one names a categorical structure after its objects (e.g. Group, Set). How-
ever, we do not want to confuse the fc-multicategory Span of sets with the mere
category Set of sets, so we will stick to this convention.
Notice, incidentally, that Set is the category formed by the objects and vertical
1-cells of Span, and that the fc-multicategory �Set arising from the monoidal
category (Set;×; 1) is the ‘full’ sub-fc-multicategory of Span whose only object
is 1.

(6) There is an fc-multicategory Prof , in which the category formed by the objects and
vertical 1-cells is the usual category of (small) categories and functors. Horizontal
1-cells are profunctors (bimodules): that is, a horizontal 1-cell X→ X′ is a functor
Xop ×X′ → Set. A 2-cell

X0
M1−−−→ X1

M2−−−→ · · · Mn−−−→ Xn

F



� ⇓



� F′

X −−−−−−−−−−−−−−−−−−−−−−−−→
M

X′

consists of a function

Mn(xn−1; xn)× · · · ×M1(x0; x1)→ M (F(x0); F ′(xn))
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for each x0 ∈X0; : : : ; xn ∈Xn, such that this family of functions is natural in the
xi’s. So if the functors F and F ′ are identities then this is a morphism of pro-
functors Mn ⊗ · · · ⊗M1 → M .

(7) In a similar spirit, Bimod is the following fc-multicategory:
• objects are rings (with identity, not necessarily commutative),
• vertical 1-cells are ring homomorphisms,
• a horizontal 1-cell R→ S is an (S; R)-bimodule,
• a 2-cell

R0
M1−−−→ R1

M2−−−→ · · · Mn−−−→ Rn

f



� ⇓	



� f′

R −−−−−−−−−−−−−−−−−−−−−−−−→
M

R′

is a function 	 :Mn×· · ·×M1 → M which preserves addition in each component
separately (is ‘multi-additive’) and satis0es the equations

	(rn · mn; mn−1; : : :) = f′(rn) · 	(mn; mn−1; : : :)
	(mn · rn−1; mn−1; : : :) = 	(mn; rn−1 · mn−1; : : :)

...
	(: : : ; m2 · r1; m1) = 	(: : : ; m2; r1 · m1)
	(: : : ; m2; m1 · r0) = 	(: : : ; m2; m1) · f(r0);

• composition and identities are de0ned in the evident way.
(8) If we remove all the additive structure involved in Bimod then we obtain an
fc-multicategory Action; alternatively, Action is the ‘full’ sub-fc-multicategory of
Prof in which the only objects allowed are 1-object categories. Thus the objects of
Action are monoids, the vertical 1-cells are monoid homomorphisms, a horizontal
1-cell R→ S is a set with commuting left S-action and right R-action, and 2-cells
are de0ned as in Example (7).

2. Enrichment

The purpose of this paper is to explore in an elementary way the concept of a
category enriched in an fc-multicategory. But just as the elementary de0nition of
fc-multicategory (De0nition 1) is plucked out of a much larger theory (as explained
in the introduction to Section 1), so too is the de0nition of category enriched in an
fc-multicategory. There is a whole theory [7] of enrichment for generalized multicate-
gories, of which the present work is just the most simple case. This wider theory runs
as follows.

Any T -multicategory has an underlying T -graph, as explained above, and so there
is a forgetful functor

T -Multicat→ T -Graph:
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Under mild conditions on E and T , this functor has a left adjoint. We thus obtain a
monad T ′ on the category E′ =T -Graph. We can then speak of T ′-multicategories, and
if V is a T ′-multicategory one can make a de0nition of V-enriched T -multicategory.
So: we can speak of a T -multicategory enriched in a T ′-multicategory.

The most simple case is the identity monad T on E=Set. Then T -multicategories
are categories, T ′ is the free category monad fc on E′ =Graph, and T ′-multicategories
are fc-multicategories. So the general theory gives a concept of category enriched in an
fc-multicategory. The main part of this section is a direct description of this concept.

The next most simple case is the free monoid monad T on E=Set, and here there
are two especially interesting examples of enriched T -multicategories. Firstly, it turns
out that any symmetric monoidal category S gives rise to a T ′-multicategory V,
and a one-object V-enriched T -multicategory is then exactly what topologists call a
(non-symmetric) operad in S (see e.g. [9]). Secondly, there is a certain naturally-arising
T ′-multicategory V such that V-enriched T -multicategories are the structures called
‘relaxed multicategories’ by Borcherds in his de0nition of vertex algebras over a vertex
group [2,10,11], and called ‘pseudo-monoidal categories’ by Soibelman in his work on
quantum aNne algebras [12,13].

The general de0nition of enriched T -multicategory is very simple. Take a monad T
on a category E, and let T ′ be the free T -multicategory monad, as above. Given an
object A of E, we can form I(A) (with I for ‘indiscrete’), the unique T -multicategory
with graph

T (A)
pr1←−T (A)× A

pr2−→A:

Then I(A) is a T ′-algebra, say h :T ′(I(A))→ I(A). Arising from this is a T ′-multica-
tegory M (I(A)), the unique such with graph

T ′(I(A)) 1←−T ′(I(A)) h−→I(A):

For a 0xed T ′-multicategory V, a V-enriched T -multicategory is de0ned as an object
C0 of E together with a map T ′(I(C0)) → V of T ′-multicategories. Maps between
V-enriched T -multicategories are also de0ned in a simple way, thus giving a category.

In the case concerning us, E=Set and T = id, the de0nition of enriched (T -multi)-
category is therefore as follows. Given a set A, we obtain the indiscrete category I(A)
on A. In the fc-multicategory M (I(A)), an object is an element of A, the only vertical
1-cells are identities, there is one horizontal 1-cell a → b for each a; b∈A, and for
each a0; : : : ; an ∈A there is precisely one 2-cell of the form

a0 −−−→ a1 −−−→ · · · −−−→ an

1



� ⇓



� 1

a0 −−−−−−−−−−−−−−−−−−−−−−−−→ an:

Composition and identities are uniquely determined. A category enriched in an fc-multi-
category V consists of a set C0 together with a map from the fc-multicategory M (I(C0))
to V. This de0nition is plainly equivalent to De0nition 2 below.
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That concludes the sketch of the theory of enriched generalized multicategories, and
we now return to the elementary account.

Fix an fc-multicategory V.

De�nition 2. A category enriched in V, or V-enriched category, C, consists of

• a class C0 (of ‘objects’),
• for each a∈C0, an object C[a] of V;

• for each a; b∈C0, a horizontal 1-cell C[a]
C[a;b]−−−→ C[b] in V;

• for each a; b; c∈C0, a ‘composition’ 2-cell

C[a]
C[a;b]−−−−−→ C[b]

C[b;c]−−−−−→ C[c]

f



� ⇓ compa;b;c



� 1

C[a] −−−−−−−−−−−−−−−−→
C[a;c]

C[c];

• for each a∈C0, an ‘identity’ 2-cell

C[a] C[a]

1



� ⇓ idsa



� 1

C[a] −−−−−−−−→
C[a;a]

C[a]

(where the equality sign along the top denotes a string of 0 horizontal 1-cells),
such that comp and ids satisfy associativity and identity axioms.

To the reader used to enrichment in a monoidal category, the only unfamiliar piece
of data in this de0nition is the family of objects C[a]. To the reader used to enrichment
in bicategories even this will be familiar; indeed, since the vertical 1-cells are not used
in any signi0cant way, our de0nition looks very much like the de0nition of category
enriched in a bicategory (see [15]). This lack of use of the vertical 1-cells might
seem to weigh against the claim that fc-multicategories are, in some sense, the natural
structures in which to enrich categories. However, the vertical 1-cells are used in
the de0nition of V-enriched functor, which is given next. This makes the theory of
enrichment in an fc-multicategory run more smoothly (sometimes, at least) than that
of enrichment in a bicategory, as we shall see towards the end of Section 3.

De�nition 3. Let C and D be V-enriched categories. A V-enriched functor F :C → D
consists of

• a function F :C0 → D0;
• for each a∈C0, a vertical 1-cell

C[a]

� Fa

D[F(a)] ,
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• for each a; b∈C0, a 2-cell

C[a]
C[a;b]−−−−−−−−−→ C[b]

Fa



� ⇓ Fab



� Fb

D[F(a)] −−−−−−→
D[F(a);F(b)]

D[F(b)] ,

such that the Fab’s commute with the composition and identity 2-cells in C and D, in
an evident sense.

With the obvious notion of composition of V-enriched functors, we obtain a category
V-Cat of V-enriched categories and functors.

Examples

(1) Let M be a monoidal category and consider a category C enriched in the fc-
multicategory �M (de0ned in Example 1(3)). There is only one possible choice
for the C[a]’s, so the data for C consists of the set C0, the objects C[a; b] of M,
and the maps

C[b; c]⊗ C[a; b]→ C[a; c]; I → C[a; a]:

Thus it turns out that a category enriched in �M is just a category enriched (in
the usual sense) in M. The same goes for enriched functors, so (�M)-Cat is
isomorphic to the usual category of M-enriched categories and functors.

(2) Let M be an (ordinary) multicategory. There is an obvious notion of category
enriched in M: that is, a set C0 together with an object C[a; b] of M for each
a; b∈C0 and arrows

C[a; b]; C[b; c]→ C[a; c]; · → C[a; a]

(where · is the empty sequence), obeying suitable axioms. This is precisely the
same thing as a category enriched in �M.

(3) If B is a bicategory then our B-Cat is isomorphic to the category of B-enriched
categories de0ned in Walters [15].

(4) Fix a topological space A. Then there is a bicategory �2A, the homotopy bicate-
gory of A, in which an object is a point of A, a 1-cell is a path in A, and a 2-cell
is a homotopy class of path homotopies in A. For any 1-cell � : a → b there is
an associated 1-cell �∗ : b→ a (that is, � run backwards), and there are canonical
2-cells 1b → � ◦ �∗ and �∗ ◦ �→ 1a.
Now suppose that A is non-empty and path-connected, and make a choice of a
basepoint a0 and for each a∈A a path �a : a0 → a. Then we obtain a category C
enriched in �2A, as follows:
• C0 is the underlying set of A;
• C[a] = a;
• C[a; b] = �b ◦ �∗a (a path from a to b),
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• composition C[b; c] ◦ C[a; b]→ C[a; c] is the 2-cell

(�c ◦ �∗b) ◦ (�b ◦ �∗a)→ �c ◦ �∗a
coming from the canonical 2-cell �∗b ◦ �b → 1a0 ,

• the identity 2-cell 1a → C[a; a] is the canonical 2-cell 1a → �a ◦ �∗a .
(5) In the previous example, the bicategory �2A can be replaced by any bicategory B

in which the underlying directed graph of objects and 1-cells is (non-empty and)
connected, and every 1-cell has a left adjoint. (I thank the referee for alerting me
to this.)

(6) Span-Cat is equivalent to the comma category (ob ↓ Set), where ob : Cat→ Set
is the objects functor. This means that a category enriched in Span consists of a
category D, a set I , and a function ob(D)→ I . To see why this is true, recall that
a category C enriched in Span consists of
• a set C0;
• for each i∈C0, a set C[i];
• for each i; j∈C0, a span

C[i]
sij←−C[i; j]

tij−→C[j];

• composition functions C[j; k]×C[ j] C[i; j]→ C[i; k];
• identity functions C[i]→ C[i; i],

all satisfying axioms. We can construct from C a category D with object-set
∐

i∈C0
C[i], arrow-set

∐
i; j∈C0

C[i; j], source and target maps given by the sij’s
and tij’s, and composition and identity operations coming from those in C. By
taking I =C0 and the projection function ob(D) → I , we now have an object
of (ob ↓ Set). A similar analysis of Span-enriched functors can be carried out,
and we end up with a functor

Span-Cat→ (ob ↓ Set):
It is easy to see that this functor is an equivalence.

Let us brieIy consider enriched categories with only one object. In the classical
case of enrichment in a monoidal category M, the category of one-object M-enriched
categories is the category Mon(M) of monoids in M. For an arbitrary fc-multicategory
V, we therefore de0ne Mon(V) to be the full subcategory of V-Cat whose objects are
V-enriched categories C with |C0|=1. De0nitions 2 and 3 yield an explicit description
of Mon(V).

Examples

(1) If M is a monoidal category then Mon(�M) is the category of monoids in M.
(2) If M is a multicategory then an object of Mon(�M) consists of an object M of

M together with maps

M;M → M; · → M
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satisfying associativity and identity laws—in other words, a ‘monoid in M’. A
monoid in M is also the same thing as a multicategory map 1→M, where 1 is
the terminal multicategory.

(3) If B is a bicategory then an object of Mon(B) is a monad in B in the sense of
Street [15]: that is, it’s an object X of B together with a 1-cell t :X → X and
2-cells ! : t ◦ t → t, " : 1 → t satisfying the usual monad axioms. There are no
maps (X; t; !; ")→ (X ′; t′; !′; "′) in Mon(B) unless X =X ′, and in this case such
a map consists of a 2-cell t → t′ commuting with the !’s and "’s. So Mon(B) is
the category of monads and ‘strict monad maps’ in B.

(4) Let B be a 2-category. Associated to B is not only the fc-multicategory B of the
previous example—which we now call V—but also two more fc-multicategories,
W and W′. Both W and W′ are de0ned from double categories (see Example
1(1)), and in both cases an object is an object of B, a vertical 1-cell is a 1-cell of
B, and a horizontal 1-cell is also a 1-cell of B. In the case of W, a 2-cell inside

X t−−−→ Y

f



�



� g

X ′ −−−→
t′

Y ′

is a 2-cell t′ ◦ f → g ◦ t in B; in the case of W′, it is a 2-cell g ◦ t → t′ ◦ f in
B. Composition and identities are de0ned in the obvious way.
Since V, W and W′ are identical when we ignore the vertical 1-cells, the objects
of Mon(W) and Mon(W′) are the same as the objects of Mon(V); that is, they
are monads in B. But by using W or W′ we obtain a more Iexible notion of a
‘map of monads’ than we did in Example (3): a map in Mon(W) is what Street
called a monad functor in [14], and a map in Mon(W′) is a monad opfunctor.

3. Bimodules

Bimodules have traditionally been discussed in the context of bicategories. Thus
given a bicategory B, one constructs a new bicategory Bim(B) whose 1-cells are
bimodules in B (see e.g. [4]). The drawback is that this is only possible when B has
certain properties concerning the existence and behaviour of local reIexive coequalizers.

Here, we extend the Bim construction from bicategories to fc-multicategories, which
allows us to drop the technical assumptions. In other words, we will construct an honest
functor

Bim : fc-Multicat→ fc-Multicat:
(fc-Multicat is the category of (small) fc-multicategories, with maps de0ned in the
obvious way.)

I would like to be able to, but at present cannot, place the Bim construction in a
more abstract setting: as it stands it is somewhat ad hoc. In particular, the de0nition
does not appear to generalize to T -multicategories for arbitrary T .
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The theories of bimodules and enrichment interact in the following way: given an
fc-multicategory V, there is a canonically-de0ned functor

V-Cat→ Bim(V)-Cat:

This is discussed at the end of the section, and provides lots of new examples of
enriched categories.

We 0rst have to de0ne Bim. Let V be an fc-multicategory: then the fc-multicategory
Bim(V) is de0ned as follows.

0-cells. A 0-cell of Bim(V) is an fc-multicategory map 1 → V. That is, it is a
0-cell x of V together with a horizontal 1-cell x t→x and 2-cells

x t−−−−−→ x t−−−−−→ x

1



� ⇓ !



� 1

x −−−−−−−−−−−−−−−→
t

x

x x

1



� ⇓ "



� 1

x −−−−−−−→
t

x

satisfying the usual axioms for a monad, ! ◦ (!; 1t)= ! ◦ (1t ; !) and ! ◦ ("; 1t)= 1t =
! ◦ (1t ; ").

Horizontal 1-cells. A horizontal 1-cell (x; t; "; !) → (x′; t′; "′; !′) consists of a hori-
zontal 1-cell x m→x′ in V together with 2-cells

x t−−−−−→ x m−−−−−→ x′

1



� ⇓ 	



� 1

x −−−−−−−−−−−−−−−→
m

x′

x m−−−−−→ x′ t′−−−−−→ x′

1



� ⇓ 	′



� 1

x −−−−−−−−−−−−−−−→
m

x′

satisfying the usual module axioms 	 ◦ ("; 1m)= 1m, 	 ◦ (!; 1m)= 	 ◦ (1t ; 	), and dually
for 	′, and the ‘commuting actions’ axiom 	′ ◦ (	; 1t′)= 	 ◦ (1t ; 	′).

Vertical 1-cells. A vertical 1-cell

(x; t; "; !)

�

(x̂; t̂; "̂; !̂)

in Bim(V) is a vertical 1-cell

x

�f

x̂

in V together with a 2-cell

x t−−−−−−−→ x

f



� ⇓ !



� f

x̂ −−−−−−−→
t̂

x̂

satisfying ! ◦ != !̂ ◦ (!;!) and a similar equation for units.
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2-cells. A 2-cell

t0
m1−−−→ t1

m2−−−→ · · · mn−−−→ tn
f



� ⇓



� f′

t −−−−−−−−−−−−−−−−−−−−−−−−→
m

t′

in Bim(V), where t stands for (x; t; "; !), m for (m; 	; 	′), f for (f;!), and so on,
consists of a 2-cell

x0
m1−−−→ x1

m2−−−→ · · · mn−−−→ xn

f



� ⇓%



� f′

x −−−−−−−−−−−−−−−−−−−−−−−−→
m

x′

in V, satisfying the ‘external equivariance’ axioms

% ◦ (	1; 1m2 ; : : : ; 1mn)= 	 ◦ (!; %)

% ◦ (1m1 ; : : : ; 1mn−1 ; 	
′
n)= 	′ ◦ (%; !′)

and the ‘internal equivariance’ axioms

% ◦ (1m1 ; : : : ; 1mi−2 ; 	
′
i−1; 1mi ; 1mi+1 ; : : : ; 1mn)

= % ◦ (1m1 ; : : : ; 1mi−2 ; 1mi−1 ; 	i; 1mi+1 ; : : : ; 1mn)

for 26 i6 n.
Composition and identities. For both 2-cells and vertical 1-cells in Bim(V), com-

position is de0ned directly from the composition in V, and similarly identities.
Incidentally, the category formed by the objects and vertical 1-cells of Bim(V) is

Mon(V), the category of monads in V de0ned earlier.
We have now de0ned an fc-multicategory Bim(V) for each fc-multicategory V,

and it is clear how to do the same thing for maps of fc-multicategories, so that we
have a functor

Bim : fc-Multicat→ fc-Multicat:

Again, we have been rather eccentric in naming the ‘bimodules construction’ after what
it does to the horizontal 1-cells rather than the objects: perhaps we should call it the
‘monads construction’. We are, however, following the traditional terminology.

Examples

(1) Let B be a bicategory satisfying the conditions on local reIexive coequalizers
mentioned in the 0rst paragraph of this section, so that it is possible to construct a
bicategory Bim(B) in the traditional way. Let V be the fc-multicategory coming
from B. Then a 0-cell of Bim(V) is a monad in B, a horizontal 1-cell t → t′ is
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a (t′; t)-bimodule, and a 2-cell of the form

t0
m1−−−→ t1

m2−−−→ · · · mn−−−→ tn
1



� ⇓



� 1

t0 −−−−−−−−−−−−−−−−−−−−−−−−→
m

tn

is a map

mn ⊗tn−1 · · · ⊗t1 m1 → m

of (tn; t0)-bimodules, i.e. a 2-cell in Bim(B). So if we discard the non-identity
1-cells of Bim(V), then the resulting fc-multicategory is precisely the fc-multi-
category associated with the bicategory Bim(B).

(2) Bim(Span)=Prof , where Span is the fc-multicategory of sets, functions, spans,
etc, and Prof is the fc-multicategory of categories, functors, profunctors, etc. (Ex-
amples 1(5) and (6)).

(3) Bim(�Ab)=Bimod (Example 1(7)). Here Ab is regarded as a monoidal category
under the usual tensor and �Ab is as in Example 1(3); or equivalently Ab is
regarded as a multicategory with the usual multilinear maps, and �Ab is as in
Example 1(4).

(4) Similarly, Bim(�Set)=Action (Example 1(8)), with cartesian product giving the
monoidal category (or multicategory) structure on Set.

(5) It is possible to de0ne an fc-multicategory Span(E; T ), for any appropriate monad
T on a category E, and then Bim(Span(E; T )) is the fc-multicategory of T -multica-
tegories and maps, profunctors, etc, between them. See [7] or [8] for details.

We now show how the bimodules construction produces new enriched categories
from old.

Proposition 4. For any fc-multicategory V; there is a natural functor

˜( ) :V-Cat→ Bim(V)-Cat;

preserving object-sets.

Proof. Take a V-enriched category C. We must de0ne a Bim(V)-enriched category
C̃ with object-set C0, and so, for instance, we must de0ne an object C̃[a] of Bim(V)
for each a∈C0. To do this we observe that C[a] has a natural monad structure on it:
that is, we put

C̃[a] = (C[a]; C[a; a]; idsa; compa;a;a):

The rest of the construction is along similar lines; there is only one sensible way to
proceed, and it is left to the reader. (An abstract account is in [8]).

Examples

(1) Let C be a category enriched (in the usual sense) in the monoidal category Ab of
abelian groups. Then the resulting Bimod-enriched category C̃ is as follows:
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• C̃0 is the set of objects of C;
• C̃[a] is the ring C[a; a], in which multiplication is given by composition in C;
• C̃[a; b] is the abelian group C[a; b] acted on by C̃[a] =C[a; a] on the right and

by C̃[b] =C[b; b] on the left, both actions being by composition in C,
• composition and identities are as in C.
To illustrate the functoriality in the Proposition, take an Ab-enriched functor
F :C → D. This induces a Bimod-enriched functor F̃ : C̃ → D̃ as follows:
• F̃ :C0 → D0 is the object-function of F ,
• if a∈C0 then F̃a is the ring homomorphism

C̃[a] =C[a; a]→ D[F(a); F(a)]= D̃[F̃(a)]

induced by F ,
• if a; b∈C0 then

F̃ab : C̃[a; b] =C[a; b]→ D[F(a); F(b)]= D̃[F̃(a); F̃(b)]

is de0ned by the action of F on morphisms a→ b.
Note that in general, the ring homomorphism F̃a is not the identity; so the ver-
tical 1-cells of Bimod get used in an essential way. This is the reason why the
Proposition does not hold if we work throughout with bicategories rather than
fc-multicategories: ˜( ) is de0ned on objects of V-Cat, but cannot sensibly be de-
0ned on morphisms.

(2) The non-additive version of (1) is that there is a canonical functor

Cat→Action-Cat
C �→ C̃

which exists because, for instance, the set of endomorphisms on an object of a
category is naturally a monoid.

(3) In the previous example, part of the construction was to take C̃[a] to be the
monoid of all endomorphisms of a in C. However, we could just as well take
only the automorphisms of a, and this would yield a diEerent functor from Cat to
Action-Cat.

(4) Applying the Proposition to V=Span and recalling Example 2(6); we obtain a
functor

(ob ↓ Set)→ Prof-Cat:
What this does on objects is as follows. Take a category D, a set I , and a function
ob(D)→ I . Then in the resulting Prof-enriched category E we have E0 = I ; E[i]
is the full subcategory of D whose objects are those lying over i∈ I ; and E[i; j]
is the profunctor

E[i]op × E[j]→ Set
(d; d′) �→D(d; d′):

Composition and identities are de0ned as in D.
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(5) To get more examples of Prof-enriched categories we can modify the previous
example, taking E[i] to be any subcategory of D whose objects are all in the 0bre
over i. Here are two speci0c instances (each with a vague Iavour of topological
quantum 0eld theory about them). In the 0rst, E0 is the set N of natural numbers,
E[n] is the category of n-dimensional Hilbert spaces (= complex inner product
spaces) and isometries, and E[m; n] sends (H;H ′) to the set of all linear maps H →
H ′. In the second, E0 =N again, and we replace Hilbert spaces by diEerentiable
manifolds, isometries by diEeomorphisms, and linear maps by diEerentiable maps.
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