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Setting aside overmature planted forests is currently seen as an option for preserving species associatedwith old-
growth forests, such as those with dispersal limitation. Few data exist, however, on the utility of set-aside plan-
tations for this purpose, or the value of this habitat type for biodiversity relative to old-growth semi-natural eco-
systems. Here, we evaluate the contribution of forest type relative to habitat characteristics in determining
species richness and composition in seven forest blocks, each containing an ancient old-growth stand
(N1000 yrs) paired with a set-aside even-aged planted stand (ca. 180 yrs). We investigated the functionally im-
portant yet relatively neglected ectomycorrhizal fungi (EMF), a group for which the importance of forest age has
not been assessed in broadleaved forests. We found that forest type was not an important determinant of EMF
species richness or composition, demonstrating that set-aside can be an effective option for conserving ancient
EMF communities. Species richness of above-ground EMF fruiting bodies was principally related to the basal
area of the stand (a correlate of canopy cover) and tree species diversity, whilst richness of below-ground
ectomycorrhizae was driven only by tree diversity. Our results suggest that overmature planted forest stands,
particularly those that are mixed-woods with high basal area, are an effective means to connect and expand
ecological networks of ancient old-growth forests in historically deforested and fragmented landscapes for
ectomycorrhizal fungi.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

High structural diversity and long continuity of old-growth forests
make them irreplaceable biodiversity resources (Gibson et al., 2011;
Spake et al., 2015). Planted or regenerated forests of relatively young
and even age now constitute 73% of total forest cover in Europe (San-
Miguel-Ayanz et al., 2011). Throughout Europe, timber-orientated
forest management has shortened forest stand development to just
10–40% of the potential lifespan of dominant tree species (Bauhus
et al., 2009; Barbati et al., 2012). These forests consequently lack the
continuity and many of the structural attributes typical of old-growth
forests, including high variation in tree size, the presence of large
dying trees and irregular gap size and distribution (Bauhus et al., 2009).
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Concern about the global decline of old-growth forest and the asso-
ciated loss of biodiversity has motivated initiatives to increase the area
of protected old-growth (CBD, 2011). Although strict protection of
natural forests will likely remain a conservation priority throughout
the world, management options increasingly recognise the additional
potential for other types of forests to support biodiversity (Gibson
et al., 2011; Putz et al., 2012). Presently, there is much interest in the
setting aside of overmature planted stands as ameans of preserving spe-
cies associated with old-growth forests (Humphrey, 2005; Lassauce
et al., 2013). Set-aside is a topical forest management strategy in
Europe, where countries generally have a greater area of even-aged
planted forests approaching biological maturity than old-growth forest
(Barbati et al., 2014). The ageing of even-aged forest stands is a contin-
uous process in which small-scale disturbances shape forest structural
diversification (Barbati et al., 2012), with consequences for biodiversity
conservation, carbon storage and the ways energy, gases and nutrients
are cycled through the forest (Parker et al., 2004).

Species associated with old-growth forest are predicted to accu-
mulate over time in set-aside in response to the increasing structural
diversification as a forest ages. The temporal continuity and ever-
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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enriching diversity of resources particularly favours colonisation by
the dispersal-limited species characteristic of old-growth forest
(Norden and Appelqvist, 2001). Indeed, several studies of dispersal-
limited groups have demonstrated that ecological communities from
older forests are generally, but not invariably, richer than those of
more recent forests. For example, Peterken (1974) and Rose (1974)
showed that the occurrences of certain vascular plants and epiphytic li-
chens could distinguish ancient semi-natural forests (old-growth forest
that has been continuously wooded since 1600 A.D.) from more recent,
secondary forest stands. Whilst differences in species composition be-
tween ancient and more recent forests can be attributed to differences
in stand structure and microhabitat composition, many studies empha-
sise the importance of time per se; evidenced by certain species being
absent from young forests despite the presence of suitable habitats
(Norden and Appelqvist, 2001). For example, many cyanobacterial
macrolichens are rare in recent stands even if seemingly suitable sub-
strate is available (Kuusinen, 1996). It is therefore thought to be the lon-
ger residence time that is important in allowing dispersal limited
species to reach and establish in a habitat (Norden and Appelqvist,
2001).

Despite the perceived importance of overmature planted forest in
supporting old-growth forest communities, empirical data are lacking
on their relative biodiversity values for many taxonomic groups
(Sverdrup-Thygeson et al., 2015). A recent meta-analysis synthesising
species richness relationships with stand age in temperate and boreal
forests demonstrated functional group-specific responses to stand age,
owing to specific dependencies on resources or environmental condi-
tions that become available at different times during succession
(Spake et al., 2015). This synthesis showed that species richness in
planted and regenerating forests can eventually achieve equivalence
to old-growth forests for some functional groups, including epiphytic li-
chens and fungi. Compositional differences have yet to be investigated,
however, and the potential for planted forests to support old-growth
forest communities remains poorly understood. Here we investigate
empirically the value of planted, economically overmature forests to
ectomycorrhizal fungal communities, relative to ancient old-growth
forest in the New Forest National Park, UK.

Ectomycorrhizal fungi (EMF) comprise a functional group that forms
mutualistic associations with most economically and ecologically im-
portant temperate tree species (Smith and Read, 2008). Approximately
90% of species rely on mycelial networks intimately connected with
their roots, ectomycorrhizae, for the uptake of water and N, P, and
other minerals from soil (Heilmann-Clausen et al., 2014). EMF form a
highly diverse biota in boreal and temperate forests, which is sensitive
to natural and anthropogenic disturbances, such as nitrogen deposition
(Barker et al., 2013; Suz et al., 2014). High EMF diversity is important
both to the vigour of individual hosts and to the functioning of the forest
ecosystem. At the individual level, the diverse capacities amongst EMF
species for mobilising nutrients from soil mineral and organic matter
(Nygren et al., 2007) insure a host tree against environmental stresses
(Courty et al., 2010). At the ecosystem level, EMF are not only important
for nutrient cycling, but high EMF diversity can facilitate resistance to
disease and drought (Kernaghan, 2005), and contribute to net primary
productivity, mineral weathering and soil carbon storage (Smith and
Read, 2008).

Whilst the relative biodiversity value of ancient old-growth and
more recent secondary forest has been established for groups including
vascular plants and epiphytic lichens (Rose, 1974; Peterken, 1974), we
still lack sufficient empirical assessments of the relative biodiversity
value of planted and old-growth forest for EMF. To date, studies have re-
ported only from coniferous forest in North America (e.g. Kranabetter
et al., 2005; Twieg et al., 2007), where they show that EMF exhibit
much lower species richness in young secondary forests. Meta-
analysis of these studies shows an average time of 90 years to recover
EMF richness to old-growth values (between 45 years to unrecoverable
at 95% prediction limits: Spake et al., 2015). No previous study has
examined EMF-stand age relationships in broadleaved forests with a
statistically robust study design. Dispersal limitation is important in
structuring EMF communities, despite the fact that fungal fruit bodies
produce large numbers of spores with high potential for long distance
travel (Peay et al., 2010). Indeed, red-lists andfield observations suggest
that numerous species are likely to be confined to old-growth forests
due to infrequent dispersal (Dickson and Leonard, 1996; Senn-Irlet
et al., 2007).

In historically deforested regions such as the UK, where the propor-
tion of forest has declined to just 12% of total land area, ~80% of this for-
ested area is planted and just 5% is classified as ancient (UK National
Ecosystem Assessment, 2011), the setting-aside of planted forests
presents a particularly pertinent opportunity for increasing the area of
forest that can support the biodiversity and functions that characterise
old-growth forests (Bauhus et al., 2009). The aims of this study were
to (1) compare EMF biodiversity and species associations amongst
overmature planted and ancient old-growth forest stands; and (2) de-
termine what stand characteristics explain the differences in species
richness and composition in order to identify opportunities for enhanc-
ing EMF diversity in overmature planted stands.

2. Methods

2.1. Study area

The study areawas located in theNewForest National Park in south-
ern England, UK (FigureA1.1). TheNewForest lieswithin theWarmDry
climatic zone (Pyatt et al., 2001), withmildwinters andwarmsummers.
Temperatures range from 2.3 °C (mean February minima) to 20.8 °C
(mean July maxima). Annual precipitation is 760 mm. Soils are mainly
brown earths above Barton clays and Chama sands overlying Tertiary
gravels. The old-growth forests in this study are ancient sensu
Peterken (1977), in that they have originated before a threshold date
of 1600 A.D.; a time before which secondary forests were rarely
established throughplanting. In fact, the New Forest's ancient forests in-
clude remnants of post-glacial forest that have never been completely
cleared (Tubbs, 2001), and the ancient stands under study all had
stand continuity of N1000 years. They are also deemed semi-natural,
in that they have been selectively felled for timber in the past, but
allowed to regenerate naturally, without any major tree removal since
the mid-20th century. The canopies of the ancient and planted stands
under study are dominated by English oak (Quercus robur), sessile oak
(Quercus petraea) and beech (Fagus sylvatica) with the understorey
consisting largely of holly (Ilex aquifolium) (Tubbs, 2001).

The plantations under study were on average 180 years old. Planta-
tion ages were considered equal to the number of years since planting
(Table A1.1; Appendix A2). Plantations were established following
clear-cutting of partially forested (deer parks) to completely forested
grounds. All sites likely underwent the same preparation procedure
following clear-cutting, involving the upturning of soil and trench forma-
tion for water drainage (see Appendix A2 for a detailed description). The
management histories of the ancient old-growth stands under study
were elucidated using historic maps, Forestry Commission management
plans, pollen records and consultation with local experts. The stand ages
refer to the oldest record available indicating that the site was forested
(Table A1.1), and since then have not experienced major tree removal.

2.2. Study design

In order to compare EMF communities in overmature planted
set-asides and ancient old-growth forest communities, locations
were selected that paired forest types in a randomised block design
(Hurlbert, 1984). Seven forest locations containing both a planted
stand and an ancient stand were identified. In order to minimise ex-
traneous variation, paired stands were matched for canopy species
(oak dominated), elevation and underlying geology, and separated
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by b1 km. Within each stand at each location, five 10 m × 10 m per-
manent assessment plots were selected inside a 2 ha area using
stratified random coordinates. Stratification met selection criteria
of oak dominance, homogeneous tree and vegetation cover, rela-
tively flat topography and absence of atypical or exotic tree species.

2.3. Sampling of EMF communities

We used two methods to obtain representative samples of EMF
communities in plots: surveys of above-ground sporocarps (‘mush-
rooms’), and soil cores for analysis of below-ground EMF on root tips
(Taylor, 2002; henceforth ‘ectomycorrhizae’).

2.3.1. Above-ground sampling of sporocarps
The incidence of all visible above-ground EMF macrofungal sporo-

carps was recorded across all assessment plots. We define macrofungi
as species with fruiting bodies large enough to be collected in the field
without the aid of a hand lens, including themajority of basidiomycetes
and many ascomycetes (Balmford et al., 2000). Plots were surveyed
during autumn 2012, 2013 and 2014 (September–November) to coin-
cide with the main time of sporocarp production. Three visits were
made to each plot at approximately monthly intervals over this period.
Species identifications were made using a compound microscope and
standard texts (Phillips 2006; Moser 1983), and more specialised texts
for Lactarius (Heilmann-Clausen et al., 1998), Inocybe (Outen and
Cullington, 2009), Cortinarius (Knudsen and Vesterholdt, 2012), Russula
(Kibby, 2012c), Boletus (Kibby, 2012a), and Amanita (Kibby, 2012b). To
obtain a measure of species richness, sporocarp incidence data were
pooled to the plot level across all plot visits.

2.3.2. Below-ground sampling of ectomycorrhizae
Below-ground sampling took place between February and July 2014,

in locations 1–4 only (Table A1.1). Thesewere a random selection of the
available seven locations. Each plot was divided into a 10 × 10 grid, and
every intersection given a coordinate. Sixteen soil cores (2 cmdiameter,
30 cm length) were taken at randomly generated coordinates. Samples
were stored at 4 °C until root tip analysis could be undertaken, always
within 5 days. Cores were soaked in tap water for 15 min and washed
through a 500 μm sieve. After manual removal of coarse woody debris
and senescent roots, live roots were extracted from the core for fivemi-
nutes under a dissecting microscope. To minimise observer bias, three
of the largest roots were selected, and one living root tip was randomly
selected from each of these following Cox et al. (2010) and Suz et al.
(2014). This sampling intensity was justified from the results of prelim-
inary sampling in January 2014, which recorded N60% of the Chao2 es-
timate of EMF species (Figure A3).

2.3.3. Molecular identification of ectomycorrhizae on root tips
Identification of ectomycorrhizae followed the methodology of Suz

et al. (2014). Fungal DNA was extracted from the selected EMF tips
with the Extract-N-Amp™ Plant PCR kit (Sigma-Aldrich, St. Louis,
USA)with somemodifications of the protocol: EMF tips were incubated
in 8-μL of extraction solution and diluted in 8-μL of dilution solution. The
internal transcribed spacer (ITS) region of the rDNA was amplified by
polymerase chain reaction (PCR) on 0.5 μL of the freshly extracted
DNA, mixed with –4 μL of the Extract-N-Amp PCR ReadyMix™
(Sigma-Aldrich, St. Louis, USA), 0.4 μL of each primer at 10 μM and
3.4 μL of distilled water. All PCR reactions were performed using the
primer pair ITS1-F (Gardes and Bruns, 1993) and ITS4 (White et al.,
1990).

Fungal ITS sequences were analysed and edited with Geneious ver-
sion R7, Biomatters, available from http://www.geneious.com/. Edited
sequences were identified using the BLAST algorithm in GenBank and
the UNITE database (http://unite.ut.ee/). The best BLAST identification
was reported for each fungal taxon. The UNITE species name was vali-
dated only when (i) the similarity between the submitted sequence
and the sequence in the database exceeded 97%, and (ii) the UNITE
identification was plausible taking into account ecological consider-
ations and known geographical distributions of related species
(Richard et al., 2011). Sequences with b97% of similarity with the
nearest blast, or for which the UNITE species name was considered
too uncertain, were ascribed to an undetermined operational taxo-
nomic unit (OTU).

2.4. Quantification of environmental variables

Soil was sampled from all plots during a consistently dry periodwith
minimal spatio-temporal variation in rainfall during May 2014. Five
random soil cores (2 cm diameter, 30 cm length) were taken from
each 10 m × 10 m fungal assessment plot and were pooled to the
stand level. Samples were sent to the Forest Research Soil Analysis Ser-
vice (Surrey, UK), for analysis. The following soil variables were mea-
sured: (i) pH; (ii) moisture content (loss in fresh mass after 2 day at
105 °C); (iii) organic matter (loss on ignition after 1 day at 450 °C);
(iv) water-soluble anions, NO3–N, NH4–N, PO4–; (v) exchangeable cat-
ions, K+, Mg2+, Ca2+; (vi) total N; and (vii) total C. See Humphrey
et al. (2003) for further details of soil analytical procedures. All vascular
plants rooted in the plots below 1m in height were sampled to obtain a
measure of understorey richness (Gilliam, 2007). For stand structural
assessments, the 10 m × 10 m plots were nested within 30 m × 30 m
plots. Each 30 m × 30 m plot was assessed for stand basal area, tree
species diversity (Shannon–Weiner, using basal area as a measure of
species' relative abundances) and canopy closure. Assessments of diam-
eter at breast height were inclusive of all trees N5 cm diameter and
followed standard protocols (Newton, 2008). Canopy closure, the pro-
portion of the sky hemisphere obscured by vegetation when viewed
from a single point (Jennings et al., 1999), was estimated by taking the
average of five measurements using a spherical densiometer at each
plot corner and centre. Details of stand environmental variables are
given in Table A2.1.

2.5. Statistical analysis

2.5.1. Variation of species richnesswith forest type and other environmental
variables

All analyses were computed in R 3.00 software (R Core Team, 2013).
Prior to analysis, environmental variables were centred and scaled to
improve the interpretability of regression coefficients, following
Schielzeth (2010). Basal area was square rooted. Principal compo-
nent analysis (PCA) was used to produce orthogonal axes (Soil1,
Soil2, Soil3), representing N70% of variation in the soil chemistry
data for both sporocarp and ectomycorrhizae datasets. Because not
all EMF root tips were sequenced successfully, below-ground sampling
intensity was unequal across plots. We therefore estimated individual-
based sporocarp species richness at plot-level with Chao1 (Chao, 1984),
using the vegan package (Oksanen et al., 2013).

The simultaneous effects of environmental variables on EMF
richnesswere quantified usingmixed effectsmodels. Two response var-
iables were investigated: sporocarp and ectomycorrhizae richness, the
former using a generalizedmixedmodel with Poisson error distribution
and logarithmic link function, and the latter using a linear mixed model
on log-transformed Chao1 estimated richness. Explanatory variables
included: forest type (planted or ancient old-growth), tree species
richness, understorey species richness, tree basal area, Soil1, Soil2 and
Soil3. Canopy closure was not included due to co-linearity with the
more precisely measured basal area (Pearson's r = 0.80, P b 0.001).

Location was included as a random factor crossed with forest type,
reflecting the designed pairing of the two types in each location. All pos-
sible additive models were constructed by maximum likelihood
methods using packages lme4 (Bates et al., 2014), and MuMIn
(Barton, 2013). Akaike's Information Criterion (AIC) with small sample
correction bias (AICc) was used to identify the best model, and all

http://www.geneious.com
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plausible models with ΔAICc b7 (Burnham and Anderson, 2004; Aho
et al., 2014). Random intercepts were featured in the mixed models
only, as allowing for slopes caused a large positive ΔAICc. Goodness of
model fits of the minimum adequate model and other plausible models
was estimated by calculating the marginal R2, following Nakagawa and
Schielzeth (2013). The relative importance values of the explanatory
variableswere calculated by summingup theAkaikeweights of all plau-
sible models (with ΔAICc b 7) that included the variable in question
(Burnham and Anderson, 2004).
2.5.2. Community composition in planted and ancient old-growth stands
All analyses of community composition used the ‘vegan’ R package

(Oksanen et al., 2013). Tests of compositional differences between
planted and ancient forest types used a non-parametric multi-
response permutation procedure (MRPP) (Zimmerman et al., 1985),
based on the Sørensen (Bray–Curtis) distance measure (McCune and
Grace, 2002; Promis et al., 2012). Its statistic A describes within-group
homogeneity relative to random expectation. A = 1 signifies that all
items are identical within groups; A = 0 signifies that heterogeneity
within groups equals chance expectation; A b 0 signifies less agreement
within groups than chance expectation (Promis et al., 2012).

Differences in EMF composition across forest types were visualised
with nonmetric multidimensional scaling (NMDS). NMDS reflects simi-
larities (or dissimilarities) between assemblages. The Sørensen distance
measurewas used for species presence–absence data. Two-dimensional
solutions were produced with 999 iterations, as the reduction in stress
was small beyond the second axis.

Species fidelities to each forest type were identified by indicator
species analysis (ISA; Dufrêne and Legendre, 1997) extended by De
Caceres et al. (2010), using package IndicSpecies (De Cáceres and
Legendre, 2009). Indicator values determine how strongly each species
associates to a forest type, based on two probabilities: (i) the probability
that a surveyed plot belongs to the target forest type (specificity), and
(ii) the probability of finding the species in plots belonging to the forest
type (sensitivity). Indicator values range from 0 (no indication) to 1
(maximum indication). Statistical significances of indicator values
were tested using a randomisation procedure based on 999
permutations.

We estimated the Chao similarity index to quantify the composition-
al similarity between EMF communities sampled as sporocarps and
ectomycorrhizae following Chao et al. (2005). We used the proportion
of sampled plots that species occurred in as a measure of relative abun-
dance. This method calculates a Jaccard- or Sørensen-type dissimilarity
index that accounts for the effect of unseen shared species, based on
replicated incidence or abundance sample data, respectively. Values
range between 0 (no similarity) and 1 (complete similarity).
3. Results

A total of 225 EMF taxa were identified across all plots, with 122
species identified in the sporocarp survey and 136 OTUs characterised
using the molecular analysis (Appendix A4). The same four species
were most frequently observed in the sporocarp and ectomycorrhizae
surveys, in terms of the percentage of plots containing them: Lactarius
tabidus (79% sporocarp, 37% ectomycorrhizae), Lactarius quietus (74%,
48%), Laccaria amethystina (73%, 29%) and Russula ochroleuca (53%,
31%). Visual examination of species' ranked abundance distributions
suggests that the EMF communities from both forest types followed
a Zipf–Mandelbrot distribution, indicating that communities have a
few species that are very abundant, and a long tail of rarer species
(Figure A4.1). The ancient old-growth stand at location 2 and the
planted stand at location 7 were disregarded from the analysis, after
the PCA analysis of soil chemistry revealed unrepresentative soil condi-
tions in extreme outliers (Figure A5.1).
3.1. Environmental drivers of EMF richness

Forest type was not found to be an important determinant of either
sporocarps or ectomycorrhizae richness, as shown by its low relative
importance values, summed over plausible models with ΔAICc b 7
(Tables 1 & 2, Fig. 1a & b). The most important variables explaining
EMF richness were basal area and tree diversity (Tables 1 & 2). For spo-
rocarps, basal areawas themost important predictor of species richness
(Table 1a), with a strong positive effect (Fig. 1c) and a relative impor-
tance value of 1.00 (Table 2). For ectomycorrhizae, tree diversity was a
major positive driver of EMF richness (Table 1b, Fig. 1d), which had a
relative importance value of 0.60 (Table 2) andwas the only variable in-
cluded in the minimum adequate model (Table 1b) explaining below-
ground richness. Marginal R2 values were higher for models explaining
sporocarp richness (0.30 for the best model; Table 1a) than below-
ground richness (0.15 for the minimum adequate model; Table 1b).

Sporocarp richness was also positively driven by tree diversity and
understorey richness (importance values of 0.54 and 0.40; Table 2),
and the richness of ectomycorrhizae was also influenced by Soil2 and
Soil3, though moderately so (relative importance values 0.47 and
0.39; Table 2). Soil2, the second PCA axis of the soil chemistry data, in-
dicated a gradient of increasing ratio of carbon to nitrogen, and decreas-
ing ammonium, sulphate and soil pH. See Appendix A6 for a more
detailed description of the soil PCA axes.

3.2. EMF community composition

MRPP analysis revealed no differences in EMF species composition
between overmature planted and ancient old-growth forest plots, for
communities of either sporocarp or ectomycorrhizae (A b 0.01, P =
0.41 and A = 0.00, P = 0.73, respectively). The NMDS ordination con-
firmed these results, finding no separation in species composition ac-
cording to forest type (Fig. 2; R2 = 0.02; P = 0.28 and R2 = 0.00; P =
0.91 for sporocarp and ectomycorrhizae, respectively). A two-
dimensional solution described 63% and 66% of the variance in the spe-
cies composition for sporocarp and ectomycorrhizae datasets, respec-
tively (Fig. 2).

Indicator species analysis detected associations of a single species
with each forest type from the sporocarp surveys, and of a single species
with ancient old-growth forest from the ectomycorrhizae samples
(Table 3). Indicator values were only moderate, however (Table 3;
De Cáceres and Legendre, 2009). Two of the species recorded are on
the Red List for British fungi (Evans et al., 2006). Both species,
Cortinarius orellanus (Vulnerable) and Cortinarius violaceus (Near
Threatened), were found as sporocarps in ancient old-growth stands
at locations 1 and 2, respectively. Due to their incidences within single
plots, they had low sensitivities to forest type, and sodid not have signif-
icant indicator values.

Compositional similarity between communities sampled as sporo-
carps and ectomycorrhizae was only moderate with Chao similarity in-
dices of 0.41 for ancient and 0.37 for planted forest (Chao et al., 2005).

4. Discussion

4.1. The effectiveness of set-aside overmature planted forest at conserving
ancient forest ectomycorrhizal communities

This investigation found similar richness and composition of EMF in
set-aside plantation and neighbouring ancient stands. It has been sug-
gested that increasing the proportion of overmature planted forests
could offer alternative habitats for species typical of old-growth forests,
but this possibility lacks empirical evaluation (Martikainen et al., 2000;
Sverdrup-Thygeson et al., 2015).Many EMF species require longperiods
of stand continuity for colonisation events to recover richness to old-
growth levels, consistent with strong dispersal limitation. Despite the
fact that fungal fruit bodies produce large numbers of spores with



Table 1
Fixed variables included in mixed models explaining variation in sporocarp and ectomycorrhizae species richness of overmature planted and ancient old-growth forest stands (‘+’ indi-
cates the variable's inclusion). Only models with ΔAICc b 2 are shown. See methods for model details.

Variables included in model df ΔAICc Marginal
R2

Forest
type

Basal
area

Tree
div

Understorey
richness

Soil1 Soil2 Soil3

(a) Sporocarp
1 + + 4 0.00 0.30
2 + + + 6 0.26 0.32
3 + 4 0.83 0.24
4 + + 5 1.19 0.29
5 + + 5 1.41 0.26
6 + + + 6 1.67 0.32
7 + + 5 1.72 0.30
8 + + + 6 1.73 0.29
9 + + + 6 1.79 0.29

(b) Ectomycorrhizae
1 + 5 0.00 0.15
2 + + 6 0.19 0.27
3 + + 6 0.85 0.27
4 + + + 7 1.11 0.34
5 4 1.13 0.00
6 + + 6 1.54 0.26
7 + + 6 1.60 0.21
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high potential for long-distance travel, relatively recent evidence sug-
gests that dispersal limitation is significant in EMF assemblages (Peay
et al., 2010). A meta-analysis of EMF recovery in planted and secondary
forests showed that recovery of species richness is possible after
~90 years in temperate and boreal regions (Spake et al., 2015). This es-
timate, however, is based exclusively on data from coniferous forest,
and from secondary forests less than a century old. Our empirical
study has shown that set-aside overmature broadleaved plantations
~180 years old can attain the species richness of old-growth semi-
natural forests N1000 years old.

The EMF communities in the overmature plantations were indistin-
guishable from those of ancient old-growth forests (Fig. 2). Our findings
concord with studies of regeneration following harvest of mixed conif-
erous forests in the USA (Twieg et al., 2007) and tropical forest in
China (Gao et al., 2015). Both of these studies found significant changes
in the compositions of EMF communities between young and
intermediate-aged or old forest stands, but no significant differences be-
tween intermediate-aged and old forests.

EMF communities observed within samples of sporocarps and
ectomycorrhizae had only moderate overlap in species composition, in
contrast to the complete overlap between forest types. Other studies
using both methods often report a poor correspondence between
them in terms of species richness and community composition
(Dahlberg et al., 1997; Horton and Bruns, 2001). Such differences have
been attributed to differences in modes of reproduction, but also differ-
ences in methodological caveats (discussed below) and sampling effort
between the techniques; sampling of ectomycorrhizae typically spans a
much a shorter time period than sporocarp surveys (five months vs.
three years in our study). Indeed, temporal partitioning amongst EMF
Table 2
Relative importance values for explanatory variables contained within plausible models
(ΔAIC b 7) explaining sporocarp and ectomycorrhizae species richness.

Explanatory variable Sporocarp
richness

Ectomycorrhizae
richness

Forest type 0.27 0.19
Basal area 1.00 0.22
Tree diversity 0.54 0.60
Soil1 0.31 0.15
Soil2 0.23 0.47
Soil3 0.22 0.39
Understorey richness 0.40 0.13
species has been observed (Koide et al., 2007), which may cause many
species to be missed by the short and infrequent sampling of
ectomycorrhizae on root tips (Toth and Barta, 2010).

Different variables were important in predicting sporocarp and
ectomycorrhizae species richness patterns, with sporocarp richness
driven by basal area as a proxy for canopy closure and tree diversity,
and the richness of ectomycorrhizae driven by tree diversity only (Fig.
1). It is possible that these differences may reflect differences in the
communities sampled by above-ground sporocarp and below-ground
ectomycorrhizae samplingmethods. Up to 80% of EMF biomass in forest
soils is in the form of external mycelia (Wallander et al., 2001). Patterns
of resource allocation by a fungus to the production of sporocarps vs.
ectomycorrhizal root tip formation vary amongst species (Gardes and
Bruns, 1996). It is therefore likely that the sampled above-ground rich-
ness is more responsive than below-ground richness to changes in car-
bon allocation, which increases with canopy closure: at canopy closure,
tree growth rates are rapid and leaf areamaximal, with correspondingly
high potential for carbon allocation to roots and ectomycorrhizal part-
ners (Twieg et al., 2007). It is not surprising that EMF richness increased
with tree diversity; different tree hosts provide uniquehabitats for host-
specific taxa (Tedersoo et al., 2012).
4.2. Methodological caveats

We sampled both sporocarps and ectomycorrhizae in our attempt to
acquire an accurate unbiased representation of the EMF communities
within our plots. Each technique has limitations. Sporocarp production
is sensitive to a host of environmental factors, and consequently sporad-
ic annual fruiting patterns necessitate long term monitoring (Dahlberg
et al., 1997). In mesic temperate climates, 3–8 years is considered the
minimum sampling period necessary to obtain a reasonable representa-
tion of fungal community structure (Vogt et al., 1992; Gardes and Bruns,
1996). We sampled only macrofungal sporocarps, those that are large
enough to be collected in the field without the aid of a hand lens
(Balmford et al., 2000); but the sporocarps of many species are incon-
spicuous (e.g. corticioid species) or hypogeous (e.g. truffles; Peter
et al., 2001,, leading to underestimates of diversity if sporocarp surveys
are used alone. The sampling of ectomycorrhizae in our study
complemented the sporocarp surveys and enabled the discovery of spe-
cies that are inconspicuous above-ground e.g. Cenococcum geophilum.
However, the molecular sequencing of ectomycorrhizae is expensive



Fig. 1.The influence of forest type, (a) and (b), and themost important environmental variables on EMF richness (c) and (d). Neither sporocarp (a) nor ectomycorrhizae (b) richness varied
detectably by forest type (bars show mean + SD). (c) Influence of square-rooted basal area on sporocarp richness; (d) influence of tree diversity (Shannon–Wiener H) on richness of
ectomycorrhizae. Regression coefficients are for minimum adequate models based on AICc, with 95% prediction interval (grey shading) based on uncertainty in the fixed effects.
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and time-consuming resulting in relatively small volumes of soil being
screened.

Sporocarp surveys are essential for detecting those rare species that
form conspicuous sporocarps (Smith et al., 2002). It is thought that
there is high variation in fruiting activity amongst species, ranging
from annual fruiting, where species rely heavily on spores for propaga-
tion, e.g. Lactarius and Russula; or sporadic fruiting, in which species do
not produce sporocarps every year (O'Hanlon, 2012). Smith et al.



Fig. 2.NMDSordination on (a) sporocarp and (b) ectomycorrhizae communities, using Sørensen distance of ancient (black) and overmature planted (grey) forest plots based on plot-level
EMF presence-absence data.
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(2002) have suggested that older forest stands comprise rare species
that fruit infrequently, due to decreasing net primary production
(NPP) and corresponding below-ground carbon allocation with stand
age. They compared sporocarp richness and composition in young,
rotation-age, and old-growth stands of Douglas-fir (Pseudotsuga
menziesii) in Canada, and found old-growth stands contained many
species of fungi that infrequently produce sporocarps. With sporocarp
surveys disadvantaged by the inherent sporadicity of EMF fruiting and
ectomycorrhizae surveys limited by the small volume of soil sampled,
either sampling method may have omitted the inclusion of rarer EMF
species that fruit infrequently. Indeed, two species of conservation
concern were recorded only once, both in ancient old-growth stands.
It is possible that further samplingmay reveal more rare species, partic-
ularly within ancient stands: Smith et al. (2002) sampled over 4 years,
whilst we present 3 years of sampling.

A study of EMF communities in forests across the UK in the 1990s
(Humphrey et al., 2000) surveyed 100 m × 100 m plots each within
eight stands of ‘mature’ to ‘overmature’ oak forest (~200 years) for
sporocarps over 3 years, and found a mean of ~14 species per stand.
Comparing this value with the mean of ~30 species per stand from
sporocarp surveys in this study (after pooling the five, smaller
10m× 10m plots to the stand level), we are confident that our sam-
pling was adequate in obtaining a representative sample of EMF
richness. Species accumulation curves using both methods support
this assertion (Figure A3.2). Furthermore, the combination of two
sampling techniques, used simultaneously across replicate sites of
interest, increases the validity of the comparisons we have drawn
between communities from ancient and set-aside planted stands.

It is possible that the ancient old-growth forests of the New Forest
National Park comprise a depauperate subset of the EMF community
thatwas once supported in the past. Indeed, potential threats to EMF in-
cluding nitrogen deposition, selective tree felling and soil compaction
by high herbivore densities (Newton, 2010), might have diminished
EMF diversity in the park. If this were the case, the generalization of
Table 3
Indicator values representing associations by forest type, for species with P b 0.05.

Forest type Species Indicator value P

(a) Sporocarp
Overmature planted Cortinarius flexipes 0.51 0.008
Old growth Hydnum rufescens 0.41 0.048

(b) Ectomycorrhizae
Old growth Laccaria proxima 0.55 0.034
our results to other areas where EMF diversity has not been diminished
may be inappropriate. Nevertheless, the New Forest has been designat-
ed as an Important Fungus Area by national assessment, due to its high
diversity (~2600 species of fungi across all functional groups andhabitat
types have been recorded across the New Forest; Dickson and Leonard,
1996), the persistence of populations of conservation concern and the
presence of habitats of known mycological importance (Evans et al.,
2001; Newton, 2010).

4.3. Conservation and management implications

The setting aside of overmature planted forest is an effective means
of conserving EMF communities associated with ancient old-growth
forests, given temporal continuity of the order of a century. Whilst this
is the first study to investigate the importance of ecological continuity
for EMF in overmature broadleaved plantations, similar studies have
been done for other taxonomic groups; Carpenter et al. (2012) sampled
soil, litter and ground invertebrates from ancient and overmature
planted broadleaved forest stands across the New Forest and found
that species richness and community composition did not differ
amongst the forest types. This holds out particular promise for histori-
cally deforested regions such as the UK, where little ancient forest re-
mains and much planted forest exceeds a century in age. In our study,
the paired ancient and set-aside planted stands were separated by less
than 1 km. Given that many EMF are dispersal limited, it is possible
that the ability of overmature plantations to function as reservoirs for
old-growth EMF communities may depend on the degree of connectiv-
ity with old-growth propagule sources. Indeed, Humphrey et al. (2004)
observed a negative relationship between EMF species richness of coni-
fer plantations with distance from the nearest ancient woodland across
the UK. This finding has relevance to the development of ecological net-
works, a major policy driver in many countries that aims to mitigate
against biodiversity loss in highly fragmented landscapes (Jongman,
2004; Opdam et al., 2006; Lawton et al., 2010). Ecological networks rep-
resent a suite of core areas of habitat connected by buffer zones, corri-
dors and smaller stepping stone patches that allow movement of
species or their propagules (Lawton et al., 2010; Humphrey et al.,
2015). Our study suggests that set-aside, overmature planted stands
can function as effective stepping stones in connecting ancient forest
stands. The protection of overmature planted forest stands located
near or adjacent to ancient semi-natural forest should therefore repre-
sent a conservation priority.

Our study has identified influences of habitat variables that suggest
opportunities for enhancing EMF diversity in planted forest. EMF
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distribution and composition have been shown to be influenced by
the relative proportions of host tree species, indicating a degree
of host preference or specificity for some EMF species or genera
(Newton and Haigh, 1998). In this study, tree diversity was impor-
tant in driving sporocarp and ectomycorrhizae richness (Fig. 1).
Correlations between host richness and EMF richness are a common
finding in empirical research comparing monocultures with mixed
woods (Cavard et al., 2011), probably due to a higher host richness
providing more unique habitats for host-specific taxa (Tedersoo
et al., 2012), or more facilitation of EMF taxa that associate with
multiple hosts (Cavard et al., 2011). Our findings support sustain-
able forest management strategies that promote mixed-wood man-
agement, which will likely enhance EMF richness. Understorey
richness was also important in driving up sporocarp richness, sug-
gesting that restoration of plant communities, a major goal of forest
restoration efforts, may simultaneously enhance EMF sporocarp
richness.

Basal area correlated positively with sporocarp richness (Fig. 1).
Although we cannot distinguish between the effects of basal area and
canopy closure (with which it strongly correlates), the positive re-
sponse is likely due to the combined effects of increasing density of
roots (and therefore a function of the species-area relationship), and
the associated increased carbon availability for EMF partners with in-
creasing canopy closure (Twieg et al., 2007). Furthermore, EMF richness
patterns revealed by sporocarp surveys also shed light on the influence
of environmental variation on sporocarp production, on which canopy
closure has been shown to be a key driver, as it affects precipitation in-
terception (Santos-Silva et al., 2011). Increases in tree stress andmortal-
ity and associated declines in basal area have been observed in both
managed and unmanaged forest stands across the world (Allen et al.,
2010; Mcintyre et al., 2015). These are driven by direct impacts of cli-
mate change on drought frequency and severity (Gonzalez et al.,
2010), and on the dynamics of forest insects and pathogens (Allen
et al., 2010), and by inhibited regeneration due to recreation and over-
grazing (Mountford and Peterken 2003). Our results suggest that EMF
richness will likely benefit from conservation measures designed to
sustain basal area within set-asides and ancient stands.
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