

Theoretical Computer Science 242 (2000) 283-300

Theoretical Computer Science

www.elsevier.com/locate/tcs

n and similar papers at core.ac.uk

provia

Drew Vandeth*

School of Mathematics, Physics, Computing and Electronics, Macquarie University, NSW, Australia

Received April 1997; revised April 1998 Communicated by G. Rozenberg

Abstract

Let S be a standard Sturmian word that is a fixed point of a non-trivial homomorphism. Associated to the infinite word S is a unique irrational number β with $0 < \beta < 1$. We prove that the standard Sturmian word S contains no fractional power with exponent greater than Ω and that for any real number $\varepsilon > 0$ it contains a fractional power with exponent greater than $\Omega - \varepsilon$; here Ω is a constant that depends on β . The constant Ω is given explicitly. Using these results we are able to give a short proof of Mignosi's theorem and give an exact evaluation of the maximal power that can occur in a standard Sturmian word. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Sturmian words; Critical exponent; Lyndon-Schutzenberger theorem

1. Introduction

If $\alpha \in (0, 1)$ is irrational, then the *infinite characteristic word* associated with α , denoted by f_{α} , is the word $w_1w_2w_3\cdots$ where $w_n = p_{\alpha}(n)$ with

 $p_{\alpha}(n) := |(n+1)\alpha| - |n\alpha|$

for *n* a positive integer. For example, if $\alpha = (\sqrt{5}-1)/2$, then f_{α} is the infinite Fibonacci word over the alphabet $\{0, 1\}$:

 $f_{\alpha} = 10110101101 \cdots$

Characteristic words are also called *standard Sturmian* words, and may be viewed geometrically. For the remaining part of the paper we shall write Sturmian word instead of the longer standard Sturmian word. Let β be a positive irrational number and consider the ray $y = \beta x$ where x is non-negative. This ray lies in the positive quadrant of \mathbb{R}^2 .

^{*} Correspondence address. Centre for Number Theory Research, Department of Mathematics, Macquarie University, Sydney 2109, Australia. E-mail: vandeth@mpce.mq.edu.au.

Fig. 1. The Fibonacci word.

By overlaying the quadrant with a uniform grid we can construct the infinite word S_{β} . Label the intersections of the ray and the grid according to the following rules. If the grid line crossed is vertical, label the intersection with a 0, and if the grid line crossed is horizontal, label the intersection with a 1. Now if a_1, a_2, a_3, \ldots are the labels, read from left to right, then the infinite word $a_1a_2a_3\cdots$ is a Sturmian word. We denote this word by S_{β} . For example if we let $\beta = (\sqrt{5} + 1)/2$, then the line construction would give us the Fibonacci word f_{α} (see Fig. 1).

There is a simple connection between the characteristic words f_{α} and the words S_{β} . Let α and β be irrational numbers with $0 < \alpha < 1$ and $\beta > 0$. Then $f_{\alpha} = S_{\beta}$ if, and only if,

$$\alpha = \frac{1}{1 + (1/\beta)}.$$

In 1993 Crisp et al. [4] proved that

$$S_{\beta} = \prod_{k=0}^{\infty} 1^{p(k)} 0,$$

where β is irrational, $\beta > 0$, and $p(k) = p_{\beta}(k) = \lfloor (k+1)\beta \rfloor - \lfloor k\beta \rfloor$.

On looking at the infinite Fibonacci word f_{α} , it can be seen that not only does the word 101 occur in f_{α} , but so does $(101)^2$. One may then ask what is the largest non-negative integer k such that $(101)^k$ occurs in f_{α} ? More generally, given a subword u of a Sturmian word S_{β} what is the largest non-negative integer k such that u^k is a subword of S_{β} ?

Similar questions were first looked at by Axel Thue [13, 14] in 1906 and 1912. In 1983 Karhumäki [6] showed that the infinite Fibonacci word is 4th power free. In 1989 Mignosi [9] proved a generalization of Karhumäki's result. He proved that the Sturmian word S_{β} is *k*th power free for some non-negative integer *k* if, and only if, β has a continued fraction expansion with bounded partial quotients. He did not however, determine what the smallest such *k* would be.

There is also the notion of a fractional power of a subword, which we define in Section 2. In 1992 Mignosi and Pirillo [10] showed that the infinite Fibonacci word contains no fractional power with exponent greater than $2+\varphi$, and for any $\varepsilon > 0$ contains a fractional power with exponent greater than $2+\varphi-\varepsilon$. Here $\varphi = (\sqrt{5}+1)/2$, the golden ratio. Their proof relies on the properties of the finite Fibonacci words f_n , for $n \ge 0$. The finite Fibonacci words may be defined as follows. Let $f_0 = 0$ and $f_1 = 1$ and for $n \ge 2$ let $f_n = f_{n-1}f_{n-2}$. One immediately notices that f_n is a subword of the infinite Fibonacci word.

The essential property needed in the proof of Mignosi and Pirillo is the following theorem due to Séébold [12]. Let v be a non-empty word. If v^2 is a subword of the infinite Fibonacci word then v = wz with $zw = f_n$ for some non-negative integer n and words z and w, |w| > 0.

In this paper, we extend Mignosi's and Pirillo's result to all Sturmian words S_{β} , $0 < \beta < 1$ with $\beta = [0; b_0, \overline{b_1, \dots, b_m}]$, where b_0, b_1, \dots, b_m are positive integers and $b_m \ge b_0$. Using this result we are able to give a short proof of Mignosi's theorem and give an exact evaluation of the maximal power that can occur in a Sturmian word. For a list of references on Sturmian words and history of the subject see Brown [3].

2. Preliminaries

In this section we give some of the definitions needed in this paper and state the known results that are used throughout. For any notation not explicitly defined, refer to Lothaire [8].

Let Σ be a finite alphabet, and let Σ^* be the free monoid generated by Σ . Denote the identity of Σ^* , the empty word, by ε ; and let $\Sigma^+ = \Sigma^* \setminus \{\varepsilon\}$. The elements of Σ^* are called words and the length of a given word $u \in \Sigma^*$ is denoted by |u|. A word uis a prefix (suffix) of the word v if there exists a word w such that v = uw (v = wu). If u is a prefix of v then we write $u \triangleleft v$, and if u is a suffix of v then write $u \triangleright v$. If there exist words $x, y \in \Sigma^*$ such that u = xvy for $u, v \in \Sigma^*$ then we say that v is a subword (factor) of u, written $v \mid u$. The reversal of a word $w \in \Sigma^+, w = w_0 w_1 \dots w_n$ is $w_n w_{n-1} \dots w_1 w_0$, written as w^R ; we also define $\varepsilon^R = \varepsilon$.

Now for a given word $w \in \Sigma^+$ we define w_i , for i = 1, ..., |w|, to be the *i*th letter of w (counting from the left). Likewise we define w_{-i} , for i = 1, ..., |w|, to be the *i*th letter of w (counting from the right). Let $u \in \Sigma^*$, $v \in \Sigma^+$. Define $|u|_v$ to be the number of times v occurs in the word u. We define c(w) for $w \in \Sigma^+$ with $|w| \ge 2$ to be $w_0w_1...w_{|w|-2}w_{|w|}w_{|w|-1}$, i.e. the word w with the last two letters interchanged. For i = 0, ..., |w|, $w_i \in \Sigma^+$ we define $r_i(w) = w_1 w_2 ... w_{|w|-i}$, and define $l_i(w)$ to be the word such that $r_i(w)l_i(w) = w$. Two words $u, v \in \Sigma^+$ are said to be conjugate if there exists words $x, y \in \Sigma^*$ such that u = xy and v = yx; we write $u \sim v$.

The set of right infinite words over a finite alphabet Σ is denoted by Σ^{ω} , and a word in Σ^{ω} is called an ω -word. Let w be a word and define $\Lambda(w)$ to be the set of letters in w. Let $w \in \Sigma^+$ with |w| = n. A positive integer i is a period of w if $w_{m+i} = w_m$ for $0 < m \le n - i$. If $r \in \mathbb{Q}, r \ge 1$, then we say that $w = z^r$ if, z is a prefix of w, |z| is a period of w, and r = |w|/|z|. We say that a given ω -word w is *critical* if there exists a real number $\Omega > 1$, called the *critical exponent* of ω , such that the follows conditions hold:

- (i) if $u \in \Sigma^+$, $t \ge 1$ and $u^t \mid w$ then $t \le \Omega$; and
- (ii) for all $\varepsilon > 0$ there exists a $v \in \Sigma^+$ and a rational number $r > \Omega \varepsilon$ such that $v^r | w$.

Thus the result of Mignosi and Pirillo can be restated as: the infinite Fibonacci word is critical and has a critical exponent of $2 + \varphi$, where $\varphi = (\sqrt{5} + 1)/2$.

A useful result will be the Lyndon-Schützenberger theorem: let x, y be words, then xy = yx if, and only if, there exists a word z and positive integers k and l such that $x = z^k$ and $y = z^l$.

Let $w \in \Sigma^+ \cup \Sigma^\omega$; then for $n \ge 1$, let $\rho_w(n)$ denote the number of factors of w of length n. The function $\rho_w(n)$ is called the subword complexity of the word w. With this definition we have the following result (see [11]).

Proposition 1 (Morse and Hedlund [11]). Let β be a positive irrational and S_{β} its corresponding Sturmian word. Then $\rho_{S_{\beta}}(n) = n + 1$.

Let Π be a binary alphabet. Let $\text{Em}(\Pi)$ be the monoid obtained by composing endomorphisms on $\Pi^+ \cup \Pi^{\omega}$. For the rest of the paper assume that $\Sigma = \{0, 1\}$. Let $\Gamma(\Sigma)$ be the submonoid of $\text{Em}(\Sigma)$ generated by *X*, *L* and *R*, where

$X: \Sigma^* \to \Sigma^*$	$L: \Sigma^* \to \Sigma^*$	$R: \Sigma^* \to \Sigma^*$
$0\mapsto 1$	$0\mapsto 0$	$0\mapsto 0$
$1 \mapsto 0$	$1 \mapsto 01$	$1 \mapsto 10$

Within the submonoid $\Gamma(\Sigma)$ we have the following relations:

(1) $X^2 = I$, (2) LR = RL, (3) for all $k \ge 0 RXR^k L = LXL^k R$,

where I is the identity homomorphism.

We note here that if \mathscr{F} is the infinite Fibonacci word and $T \in \Gamma(\Sigma)$ with T = XLthen $T(\mathscr{F}) = \mathscr{F}$. That is, \mathscr{F} is a fixed point of the homomorphism T. This raises the question: given a Sturmian word S_{β} , can one find a homomorphism $T \in \Gamma(\Sigma)$ such that S_{β} is a fixed point of T? This question was partially answered in 1991 by Brown [2] and completely answered in 1993 by Crisp et al. [4]. **Proposition 2** (Crisp et al. [4]). (a) Let $\beta > 1$ be an irrational. The Sturmian word S_{β} is invariant under some non-trivial homomorphism T if, and only if, β has a continued fraction expansion of the form $[b_0; \overline{b_1, \ldots, b_m}]$ where $b_m \ge b_0 \ge 1$. Further, if that is the case and m is minimal, then T must be a power of

 $XL^{b_0}XL^{b_1}\cdots XL^{b_{m-1}}XL^{b_m-b_0}X$

and all such homomorphisms leave S_{β} fixed.

(b) Let $0 < \beta < 1$ be irrational. The Sturmian word S_{β} is invariant under some nontrivial homomorphism T if, and only if, β has a continued fraction expansion of the form $[0; b_0, \overline{b_1, \ldots, b_m}]$ where $b_m \ge b_0 \ge 1$. Further, if that is the case and m is minimal then T must be a power of

 $L^{b_0}XL^{b_1}X\cdots L^{b_{m-1}}XL^{b_m-b_0}$

and all such homomorphisms leave S_{β} fixed.

3. Factors of Sturmian words

As noted in Section 1, the essential property used in determining the critical exponent of the infinite Fibonacci word is a theorem due to Séébold. We would like to have an analogous result regarding the Sturmian words S_{β} , with $0 < \beta < 1$ an irrational number such that $\beta = [0; b_0, \overline{b_1, \dots, b_m}]$, where b_0, b_1, \dots, b_m are positive integers and $b_m \ge b_0$. To do this we will first have to determine which words are analogous to the finite Fibonacci words in the Sturmian word S_{β} . Using the observation that the infinite Fibonacci word \mathscr{F} is the fixed point of T = XL and that $T^n(0) = f_n$ for $n \ge 0$ we make the following definitions.

Let β be an irrational number such that $0 < \beta < 1$ and $\beta = [0; b_0, \overline{b_1, b_2, \dots, b_m}]$ with the b_i positive integers for $i = 0, \dots, m$ and $b_m \ge b_0$. By Proposition 2, S_β is the fixed point of the following homomorphism:

$$T = L^{b_0} X L^{b_1} X \cdots L^{b_{m-1}} X L^{b_m - b_0}.$$

If the period *m* of the continued fraction for β is minimal we will call *T* the fundamental homomorphism of S_{β} . It is clear that $T \in \Gamma(\Sigma)$. Now for t = 0, 1, ..., m - 1 let

$$F_t = L^{b_0} X L^{b_1} X \cdots L^{b_t} X$$

with $F_{-1} = I$. For t = 0, 1, ..., m - 2 let

$$E_t = L^{b_{t+1}} X \cdots L^{b_{m-1}} X L^{b_m - b_0}$$

with $E_{m-1} = L^{b_m - b_0}$ and $E_{-1} = I$. Note that $T = F_t E_t$.

We will show that the finite words of the form $T^n F_t(0)$ for $n \ge 0$ and t = 0, 1, ..., m-1 are subwords of S_β analogous to the finite Fibonacci words view as subwords of the infinite Fibonacci word. We now examine some properties of these words.

Lemma 3. With T and F_t defined as above, we have the following: (a) $T(0) = F_{m-1}(0)$; (b) $T(1) = F_{m-1}(0)^{b_m - b_0} F_{m-1}(1)$; (c) $F_t(1) = F_{t-1}(0)$ for t = 0, ..., m - 1; and (d) $F_t(0) = F_{t-1}(0)^{b_t} F_{t-1}(1)$ for t = 0, ..., m - 1.

Proof. We have

(a)
$$T(0) = L^{b_0} X L^{b_1} X \cdots L^{b_{m-1}} X L^{b_m - b_0}(0)$$

 $= L^{b_0} X L^{b_1} X \cdots L^{b_{m-1}} X(0)$
 $= F_{m-1}(0);$
(b) $T(1) = L^{b_0} X L^{b_1} X \cdots L^{b_{m-1}} X L^{b_m - b_0}(1)$
 $= L^{b_0} X L^{b_1} X \cdots L^{b_{m-1}} X(0^{b_m - b_0} 1)$
 $= F_{m-1}(0)^{b_m - b_0} F_{m-1}(1);$
(c) $F_t(1) = L^{b_0} X L^{b_1} X \cdots L^{b_t} X(1)$

$$= L^{b_0} X \cdots L^{b_{t-1}} X(0) \quad \text{for } t = 1, \dots, m-1$$
$$= F_{t-1}(0);$$

with the result clearly true when t = 0. Finally,

(d)
$$F_t(0) = L^{b_0} X L^{b_1} X \cdots L^{b_t} X(0)$$

= $L^{b_0} X \cdots L^{b_{t-1}} X(0^{b_t} 1)$ for $t = 1, ..., m - 1$
= $F_{t-1}(0)^{b_t} F_{t-1}(1)$.

with the result clearly true when t = 0. \Box

Lemma 4. Let $D = L^{a_1}XL^{a_2}X\cdots L^{a_n}XL^b$ where a_1, a_2, \ldots, a_n are positive integers and b is a non-negative integer. Then (a) if $n \equiv 0 \pmod{2}$ then $l_2(D(0)) = 10$ and $l_2(D(1)) = 01$; (b) if $n \equiv 1 \pmod{2}$ then $l_2(D(0)) = 01$, and (i) if b = 0 and n = 1 then D(1) = 0;

(ii) if b = 0, $n \ge 2$ then $l_2(D(1)) = 10$.

Proof. Let $D = L^{a_1}XL^{a_2}X\cdots L^{a_n}XL^b$. Now if n = 1 and b = 0 then $D = L^{a_1}X$ and so D(1) = 0 and $l_2(D(0)) = 01$. Assume then that if b = 0 then $n \ge 2$ and if $b \ne 0$ then $n \ge 1$. With this we see that |D(1)| > 1 and |D(0)| > 1, so both $l_2(D(0))$ and $l_2(D(1))$ are defined. Consider the homomorphisms given by $D_1 = L^{c_1}X$ and $D_2 = L^{c_1}XL^{c_2}X$ where c_1 and c_2 are positive integers. Let $w \in \Sigma^*$ with $l_2(w) = 01$. Then $l_2(D_1(w)) = 10$ and $l_2(D_2(w)) = 01$. Similarly, if $w \in \Sigma^*$ with $l_2(w) = 10$ then $l_2(D_1(w)) = 01$ and $l_2(D_2(w)) = 10$. Thus if b = 0 then

(a) if $n \equiv 0 \pmod{2}$, then $l_2(D(0)) = 10$ and $l_2(D(1)) = 01$;

- (b) if $n \equiv 1 \pmod{2}$, then $l_2(D(0)) = 01$, and
 - (i) if b = 0, n = 1, then D(1) = 0;
 - (ii) if b = 0 and $n \ge 2$, then $l_2(D(1)) = 10$.

Now by observing that $L^b(0) = 0$ and $L^b(1) = 0^{b_1}$ our result follows. \Box

Corollary 5. Let $D = L^{a_1}XL^{a_2}X \cdots L^{a_m}XL^b$ where a_1, a_2, \dots, a_m are positive integers and b is a non-negative integer. Then if $n \ge 2$, (a) if $m \equiv 0 \pmod{2}$, then $l_2(D^n(1)) = 01$;

- (b) if $m \equiv 1 \pmod{2}$, and $n \equiv 0 \pmod{2}$, then $l_2(D^n(0)) = 10$ and $l_2(D^n(1)) = 01$;
- (c) if $m \equiv 1 \pmod{2}$, and $n \equiv 1 \pmod{2}$, then $l_2(D^n(0)) = 01$ and $l_2(D^n(1)) = 10$.

The finite Fibonacci words f_n have the following important properties. The first belongs to folklore (see for example [1, 5] or [7]): $f_n f_{n-1} = c(f_{n-1}f_n)$. The second is due to de Luca [5]: $r_2(f_n f_{n-1})$ is a palindrome, and each word f_n is primitive; that is, $f_n \neq v^k$ for any $v \in \Sigma^+$ with k a positive integer greater than 2. We prove the following generalizations of these facts. Let $\Pi = \{a, b\}$, $a \neq b$, be a binary alphabet. Let $S : \Pi \to \Sigma$ be the homomorphism given by S(a) = 0 and S(b) = 1. Let $\Delta(\Pi)$ be the submonoid of Em(Π) generated by XS and LS.

Theorem 6. Let Π be a finite alphabet with $x, y \in \Pi^*$. Then xy = c(yx) with $(xy)_{-1} \neq (xy)_{-2}$ if, and only if, |A(xy)| = 2 and there exists a $D \in A(A(xy))$ such that $D((xy)_{-1}) = x$ and $D((xy)_{-2}) = y$. Moreover, if xy = c(yx) with $(xy)_{-1} \neq (xy)_{-2}$ then $r_2(xy) = r_2(yx)$ is a palindrome.

Proof. Let Π be a finite alphabet. Let $x, y \in \Pi^*$ such that xy = c(yx) with $(xy)_{-1} \neq (xy)_{-2}$. Without loss of generality, we may assume that $|\Pi| \ge 2$ with $(xy)_{-1} = 0$ and $(xy)_{-2} = 1$. We note that one cannot have $x = \varepsilon$ or $y = \varepsilon$. Consider when |x| = 1, then x = 1 and $y = 1^k 0$ for some $k \ge 0$. So let $D = XL^k \in \Delta(\Sigma)$, then D(0) = x and D(1) = y. Moreover $\Lambda(xy) = \Sigma$ and $r_2(xy) = r_2(yx)$ is a palindrome. Similarly for |y| = 1. Assume now that $|x| \ge 2$ and $|y| \ge 2$. Assume that for $w_1, w_2 \in \Pi^*$ with $w_1w_2 = c(w_2w_1), (w_1w_2)_{-1} \ne (w_1w_2)_{-2}$ and $|w_1| + |w_2| < |x| + |y|$ that there exists a $D \in \Delta(\Sigma)$ such that $D(0) = w_1$ and $D(1) = w_2$. Moreover that $\Lambda(w_1w_2) = \Sigma$ and $r_2(w_1w_2) = r_2(w_2w_1)$ is a palindrome.

Since xy = c(yx) there exist $x_1, y_1 \in \Pi^*$ such that $x = x_1 01$ and $y = y_1 10$. Thus $x_1 01 y_1 = y_1 10 x_1$. If $x_1 = \varepsilon$ then $y_1 = (01)^k 0$ for some integer $k \ge 0$. Hence x = 01 and $y = (01)^{k+1} 0$. So let $D = LXL^{k+1}$ then $D \in \Delta(\Sigma)$ and D(0) = x with D(1) = y. Moreover, $\Lambda(xy) = \Sigma$ and $r_2(xy) = r_2(yx)$ is a palindrome. Similarly for $y = \varepsilon$.

So assume that x and y are non-empty words. Without loss of generality, we may assume that $x_1 \triangleleft y_1$. Then there exists a word $y_2 \in \Pi^+$ such that $y_1 = x_1 y_2$. Whence $01x_1y_2 = y_210x_1$. This implies that $0 \triangleleft y_2$, and so there exists a word $y_3 \in \Pi^*$ such that $y_2 = 0y_3$. Thus $1x_10y_3 = y_310x_1$. Here we have two possibilities, either $y_3 = \varepsilon$ or $y_3 \neq \varepsilon$.

If $y_3 = \varepsilon$ then $x_1 0 = 0x_1$, and so there exists a non-negative integer k such that $x_1 = 0^k$ and $y_1 = 0^{k+1}$. This give $x = 0^{k+1}1$ and $y = 0^{k+1}10$. So let $D = L^{k+1}XL$. Then $D \in \Delta(\Sigma)$ and D(0) = x with D(1) = y. Moreover, $\Lambda(xy) = \Sigma$ and $r_2(xy) = r_2(yx)$ is a palindrome.

If $y_3 \neq \varepsilon$ then there exists a word $y_4 \in \Pi^*$ such that $y_3 = 1y_4$. Thus $x_101y_4 = y_410x_1$. Now let $w_1 = x_101$ and $w_2 = y_410$. Then $w_1w_2 = c(w_2w_1)$ with $(w_1w_2)_{-1} \neq (w_1w_2)_{-2}$ and $|w_1| + |w_2| < |x| + |y|$. So by our induction hypothesis there exists a $D \in \Delta(\Sigma)$ such that $D(0) = w_1$ and $D(1) = w_2$. Moreover, $\Lambda(w_1w_2) = \Sigma$ and $r_2(w_1w_2) = r_2(w_2w_1)$ is a palindrome. Let $D_1 = DL$ then $D_1(0) = D(0) = x_101 = x$ and $D_1(1) = D(01) = w_1w_2 = y_110 = y$. Moreover, since $r_2(w_1)$ and $r_2(w_2)$ are also palindromes we have that $r_2(xy) = r_2(yx)$ is a palindrome with $\Lambda(xy) = \Sigma$.

Assume now that $\Pi = \Sigma$ and that $D \in \Delta(\Sigma)$. Then there exist positive integers a_1, a_2, \ldots, a_n and non-negative integers *i* and *j* such that

$$D = X^i L^{a_1} X L^{a_2} X \cdots L^{a_n} X L^j.$$

The proof now follows easily by induction on n. \Box

Lemma 7. Let Π be a binary alphabet, $P \in \Gamma(\Pi)$, $w \in \Pi^*$. Then P(w) is primitive if, and only if, w is primitive.

Proof. Assume without loss of generality, that $\Pi = \Sigma$. We clearly have that X(w) is primitive if, and only if, w is primitive. We show that L(w) is primitive if, and only if, w is primitive. We first note that if

$$g = \prod_{i=1}^{p} 0^{a_i} (01)^{b_i}$$

for some non-negative integers $a_i, b_i, i = 1, ..., p$, then $L(\bar{g}) = g$ where

$$\bar{g}=\prod_{i=1}^p 0^{a_i}1^{b_i},$$

with \bar{g} being unique up to juxtaposition of the empty word.

Assume that L(w) is primitive but w is not primitive. Then $w = v^k$ for some $v \in \Sigma^*$ and some integer $k \ge 2$. Thus $L(w) = L(v^k) = L(v)^k$, which is a contradiction. Now assume that w is primitive but L(w) is not primitive. Then $L(w) = v^k$ for some $v \in \Sigma^*$ and some integer $k \ge 2$. Now $1 \le L(w)$, hence $1 \le v$, and since $v \mid L(w)$ we must have

$$v = \prod_{i=1}^{q} 0^{c_i} (01)^{d_i},$$

for some non-negative integers $c_i, d_i, i = 1, ..., q$ because

$$L(w) = \prod_{i=1}^{p} 0^{a_i} (01)^{b_i}$$

for some non-negative integers $a_i, b_i, i = 1, ..., p$. Whence from the comment above, $L(\bar{v}) = v$, where

$$\bar{v}=\prod_{i=1}^q 0^{c_i}1^{d_i}.$$

Thus $w = \overline{v}^k$, which is a contradiction. Similarly, we have that R(w) is primitive if, and only if, w is primitive. The result now follows. \Box

Lastly, we would like to know the lengths of the words $T^nF_t(0)$. If $w \in \Sigma^+$, let $\sigma(w) = (m, n)$ where $m = |w|_0$ and $n = |w|_1$. Then if $w \in \Sigma^+$ with $\sigma(w) = (m, n)$ it is easy to see that

(1) $\sigma(X(w)) = (n, m);$ (2) for $k \in \mathbb{Z}^+$, $\sigma(L^k(w)) = (m + kn, n) = \sigma(R^k(w));$ and (3) |w| = m + n.

Using this notation we prove the following result.

Lemma 8. Let $D = L^{a_1}XL^{a_2}X \cdots L^{a_n}X$ with a_1, a_2, \dots, a_n positive integers and $n \ge 2$. If

$$[a_n; a_{n-1}, \dots, a_1] = \frac{P_0}{Q_0}, \quad (P_0, Q_0) = 1$$

and

$$[a_n; a_{n-1}, \ldots, a_2] = \frac{P}{Q_1}, \quad (P, Q_1) = 1,$$

then

$$|T(0)|_0 = P_0,$$
 $|T(0)|_1 = P,$ $|T(1)|_0 = Q_0,$ $|T(1)|_1 = Q_1.$

If $D = L^{a_1}X$ then

$$|T(0)|_0 = a_1,$$
 $|T(0)|_1 = 1,$ $|T(1)|_0 = 1,$ $|T(1)|_1 = 0.$

Proof. The proof is by induction. The result is clear for n = 2. We now proceed by induction on *n*. Let $a_1, a_2, \ldots, a_{n+1}$ be positive integers. Assume that

$$[a_{n+1}; a_n, \dots, a_2] = \frac{P'_0}{Q'_0}, \quad (P'_0, Q'_0) = 1$$

and

$$[a_{n+1}; a_n, \dots, a_3] = \frac{P'_1}{Q'_1}, \quad (P'_1, Q'_1) = 1.$$

Then if $w_1 = L^{a_2}XL^{a_3}X\cdots L^{a_{n+1}}X(0)$ and $w_2 = L^{a_2}XL^{a_3}X\cdots L^{a_{n+1}}X(1)$, we have by our inductive assumption that $\sigma(w_1) = (P'_0, P'_1)$ and $\sigma(w_2) = (Q'_0, Q'_1)$. Thus,

$$\sigma(L^{a_1}XL^{a_2}X\cdots L^{a_{n+1}}X(0)) = \sigma(L^{a_1}(w_1))$$
$$= (P'_1 + a_1P'_0, P'_0),$$

and

$$\sigma(L^{a_1}XL^{a_2}X\cdots L^{a_{n+1}}X(1)) = \sigma(L^{a_1}X(w_2))$$

= $(Q'_1 + a_1Q'_0, Q'_0)$

Hence $|D(0)|_0 = P'_1 + a_1 P'_0$, $|D(0)|_1 = P'_0$, $|D(1)|_0 = Q'_1 + a_1 Q'_0$ and $|D(1)|_1 = Q'_0$, where $D = L^{a_1} X L^{a_2} X \cdots L^{a_{n+1}} X$. Now

$$[a_{n+1}; a_n, \dots, a_2, a_1] = \frac{a_1 P_0' + P_1'}{a_1 Q_0' + Q_1'}$$

and

$$[a_{n+1}; a_n, \dots, a_2] = \frac{P'_0}{Q'_0}$$

and so the result follows. \Box

4. Factorizations of S_{β}

We are now in a position to look at how the words $T^n F_t(0)$ factor in S_β . We have already seen one factorization of S_β due to Crisp et al. [4]. That is

$$S_{eta} = \prod_{k=0}^{\infty} 1^{p(k)} 0,$$

where β is irrational, $\beta > 0$, and $p(k) = \lfloor (k+1)\beta \rfloor - \lfloor k\beta \rfloor$. This factorization has the disadvantage that when β is irrational with $0 < \beta < 1$, p(k) is zero most of the time. Thus we do not get a clear indication on how S_{β} factors. To fix this problem we have the following modification.

Lemma 9. Let $0 < \beta < 1$ be an irrational number. Then if $q(k) = p_{\beta^{-1}}(k)$ we have

$$S_{\beta} = \prod_{k=0}^{\infty} 0^{q(k)} 1$$

Proof. Assume that

$$S_{\beta} = \prod_{k=0}^{\infty} 0^{h(k)} 1$$

for some non-negative integer valued function h(k). Now $X(S_{\beta}) = S_{\beta^{-1}}$; thus

$$S_{\beta^{-1}} = \prod_{k=0}^{\infty} 1^{h(k)} 0,$$

but from above we have that

$$S_{\beta^{-1}}=\prod_{k=0}^{\infty}1^{q(k)}0,$$

thus h(k) = q(k) for $k \ge 0$. \Box

We now take advantage of the fact that S_{β} is the fixed point of the homomorphism *T*. That is, since $T(S_{\beta}) = S_{\beta}$, we have by Lemma 9 that for $n \ge 0$

$$S_{\beta} = T^n(S_{\beta}) = T^n\left(\prod_{k=0}^{\infty} 0^{q(k)} 1\right) = \prod_{k=0}^{\infty} T^n(0)^{q(k)} T^n(1).$$

So we begin to get an idea how the factors of S_{β} occur. The following theorem and corollary show how the factors $T^n F_t(0)$ occur in the word S_{β} .

Theorem 10. Let $0 < \beta < 1$ with $\beta = [0; b_0, \overline{b_1, \dots, b_m}]$, where b_0, \dots, b_m are positive integers and $b_m \ge b_0$. Then

$$S_{\beta} = \prod_{k=0}^{\infty} F_t(0)^{s_t(k)} F_t(1),$$

where $s_t(k) = \lfloor (k+1)\beta_t^{-1} \rfloor - \lfloor k\beta_t^{-1} \rfloor$, and

$$\beta_t = [0; b_{t+1}, b_{t+2}, \dots, b_m, b_1, b_2, \dots, b_m]$$

for $t = -1, 0, 1, \dots, m-1$.

Proof. Let *T* be the fundamental homomorphism of S_{β} . We have by Lemma 9 that $X(S_{\beta}) = S_{\beta^{-1}}$ and for integers $k \ge 0$, $L^k(S_{\beta}) = S_{(k+\beta^{-1})^{-1}}$. Hence for t = 0, 1, ..., m - 2 we have

$$E_t(S_\beta) = L^{b_{t+1}} X \cdots L^{b_{m-1}} X L^{b_m - b_0}(S_\beta) = S_\gamma,$$

where

$$\gamma = [0; b_{t+1}, b_{t+2}, \dots, b_{m-1}, b_m - b_0, 0, b_0, \overline{b_1, \dots, b_m}]$$

= [0; b_{t+1}, b_{t+2}, \dots, b_m, \overline{b_1, b_2, \dots, b_m}].

Whence

$$S_{\beta} = T(S_{\beta}) = F_t E_t(S_{\beta}) = F_t(S_{\beta_t}) = \prod_{k=0}^{\infty} F_t(0)^{s_t(k)} F_t(1),$$

where $s_t(k) = \lfloor (k+1)\beta_t^{-1} \rfloor - \lfloor k\beta_t^{-1} \rfloor$ and $\beta_t = [0; b_{t+1}, b_{t+2}, \dots, b_m, \overline{b_1, \dots, b_m}]$. The result is also true when t = -1 and t = m - 1. \Box

Corollary 11. Let $0 < \beta < 1$ with $\beta = [0; b_0, \overline{b_1, \dots, b_m}]$, where b_0, \dots, b_m are positive integers and $b_m \ge b_0$. Let T be the fundamental homomorphism of S_β . Then for $n \ge 0$

$$S_{\beta} = \prod_{k=0}^{\infty} (T^{n} F_{t}(0))^{s_{t}(k)} T^{n} F_{t}(1),$$

where $s_t(k) = \lfloor (k+1)\beta_t^{-1} \rfloor - \lfloor k\beta_t^{-1} \rfloor$ and $\beta_t = [0; b_{t+1}, b_{t+2}, \dots, b_m, \overline{b_1, \dots, b_m}]$ for $t = -1, 0, 1, \dots, m-1$.

Let Π be an alphabet (finite or infinite) and $w \in \Pi^{\omega}$ with $w = w_1 w_2 w_3 \dots$ Now let $w(n.k) = w_n w_{n+1} \cdots w_{n+k-1}$ for positive integers *n* and *k*. For finite subwords *u* and *v* of *w* we define

 $\operatorname{dist}_{w}(u,v) = \min_{\substack{n \neq m \\ w(n,|u|) = u \\ w(m,|v|) = v}} |n - m|.$

Now if *u* is a finite subword of *w* such that $dist_w(u, u) > |u|$ then we call *u* a stationary factor of *w*. The following lemmas will be useful in studying stationary factors, and factors of S_{β} .

Lemma 12. Let $w \in \Sigma^+$. Then $\rho_{w^2}(|w|) = |w|$ if, and only if, w is primitive.

Proof. It is clear that $\rho_{w^2}(|w|) \leq |w|$ for all $w \in \Sigma^+$. Assume that w is primitive yet $\rho_{w^2}(|w|) < |w|$. Then there exist $u_1, u_2, v_1, v_2, x \in \Sigma^+$ such that $w^2 = u_1 x v_1 = u_2 x v_2$ with $x \sim w$ and $|u_1| \neq |u_2|$. Assume without loss of generality, that $u_1 \triangleright u_2$ and $v_2 \triangleright v_1$. Then there exist words $u_3, v_3 \in \Sigma^+$ such that $u_2 = u_1 u_3$ and $v_1 = v_3 v_2$. Now $|xv_3| = |u_3x|$, so $|v_3| = |u_3|$, hence $v_3 = u_3$. Thus $u_3 x = x u_3$ and so x is not primitive by the Lyndon–Schützenberger theorem. Whence w is not primitive, which is a contradiction. The other direction is easy. \Box

Lemma 13. Let $0 < \beta < 1$ with $\beta = [0; b_0, \overline{b_1, \dots, b_m}]$, where the b_0, \dots, b_m are positive integers and $b_m \ge b_0$. Let T be the fundamental homomorphism of S_β . Then if $x = (T^n F_t(0))_{-2}$ we have

$$\{s \in \Sigma^*: s \mid S_{\beta}, |s| = |T^n F_t(0)|\} = \{u \in \Sigma^*: u \sim T^n F_t(0)\} \cup \{xr_2(T^n F_t(0))x\}$$

for $n \ge 0$ and t = 0, 1, ..., m - 1.

Proof. From Corollary 11 we see that $(T^nF_t(0))^2 | S_\beta$ for $n \ge 0$ and t = 0, ..., m - 1. Thus if $u \sim T^nF_t(0)$ then $u | S_\beta$. By Lemma 7 we know $T^nF_t(0)$ is primitive, thus by Lemma 13 $\rho_{(T^nF_t(0))^2}(|T^nF_t(0)|) = |T^nF_t(0)|$. We show that $xr_2(T^nF_t(0))x | S_\beta$. By Corollary 11 $T^nF_t(1)T^nF_t(0) | S_\beta$, and by Corollary 5 $l_2(T^nF_t(1)) = c(l_2(T^nF_t(0)))$, thus $xr_2(T^nF_t(0))x$ is a factor of S_β . Now by Theorem 1, $\rho_{S_\beta}(|T^nF_t(0)|) = |T^nF_t(0)| + 1$, and hence the proof is complete. \Box

Lemma 14. Let $0 < \beta < 1$ with $\beta = [0; b_0, \overline{b_1, \dots, b_m}]$, where b_0, b_1, \dots, b_m are positive integers and $b_m \ge b_0$. Let T be the fundamental homomorphism of S_β . The factors 1 and $xr_2(T^nF_t(0))x$ where $x = (T^nF_t(0))_{-2}$ are stationary in S_β , for $n \ge 0$ and $t = 0, \dots, m - 1$.

Proof. Since 11 is not a subword of S_{β} , 1 is clearly a stationary factor of S_{β} . Let t be an integer with $0 \le t \le m - 1$. Since $r_2(T^nF_t(0))xx + S_{\beta}$, any occurrence of the

word $xT^nF_t(0)x$ in S_β corresponds to an occurrence of the word $xT^nF_t(0)$. Now by Corollary 11 we have that

$$S_{\beta} = \prod_{i=0}^{\infty} (T^{n} F_{t}(0))^{s_{t}(k)} T^{n} F_{t}(1),$$

where $s_t(k) = \lfloor (k+1)\beta_t^{-1} \rfloor - \lfloor k\beta_t^{-1} \rfloor$; with $\beta_t = [0; b_{t+1}, \dots, b_m, \overline{b_1, \dots, b_m}]$. Thus, since $T^n F_t(0)$ is a primitive word by Lemma 7, by the Lyndon–Schützenberger theorem it follows that any occurrence of $xr_r(T^n F_T(0))x$ must occur in the subword $T^n F_t(0)T^n$ $F_t(1)T^n F_t(0)$. As

$$T^{n}F_{t}(1)T^{n}F_{t}(0) = T^{n}F_{t}(0)c(T^{n}F_{t}(1)),$$

it follows from the previous argument that the word $xr_r(T^nF_T(0))x$ must occur in the word $T^nF_t(1)T^nF_t(0)$, and only occurs once. The result now follows. \Box

5. The main theorems

We are now in a position to prove a generalization of Séébold's theorem, and thus determine the critical exponent of S_{β} under the condition that S_{β} is the fixed point of a homomorphism.

Theorem 15. Let $0 < \beta < 1$ with $\beta = [0; b_0, \overline{b_1, \dots, b_m}]$, where b_0, \dots, b_m are positive integers and $b_m \ge b_0$. Let *T* be the fundamental homomorphism of S_β and $k = 2 + \max_{1 \le i \le m} b_i$. If $u \in \Sigma^+$ with $u^k | S_\beta$, then $u \sim T^n F_i(0)$ for some $n \ge 0$ and some $0 \le t \le m - 1$.

Proof. Let $u \in \Sigma^+$ such that $u^k | S_\beta$ where $k = 2 + \max_{1 \le i \le m} b_i$. Assume that $u \not\sim T^n$ $F_t(0)$ for any integer $n \ge 0$ and integer t with $-1 \le t \le m - 1$. We first note that $|u| \ne |T^n F_t(0)|$ for any integer $n \ge 0$ and integer t with $-1 \le t \le m - 1$. For if $|u| = |T^n$ $F_t(0)|$ then by Lemmas 13 and 14, u would be a stationary factor of S_β , which contradicts $k \ge 3$. Now by Lemma 3, for an integer $n \ge 1$, $T^n F_{-1}(0) = T^{n-1} F_{m-1}(0)$. Thus there exists an $n \ge 0$ and an integer t with $0 \le t \le m - 1$ (with $n \ge 1$ if t = 0) such that

$$|T^{n}F_{t-1}(0)| < |u| < |T^{n}F_{t}(0)|.$$
⁽¹⁾

Hence u = vw where $|v| = |T^n F_{t-1}(0)|$. Now from (1) and Lemma 3

$$0 < |w| < |T^{n}F_{t}(0)| - |T^{n}F_{t-1}(0)|$$

= $(b_{t} - 1)|T^{n}F_{t-1}(0)| + |T^{n}F_{t-1}(1)|.$ (2)

By Lemma 13 we must have either $v \sim T^n F_{t-1}(0)$ or $v = xr_2(T^n F_{t-1}(0))x$ where $x = (T^n F_{t-1}(0))_{-2}$. We consider the two cases separately. Let us first assume that $v = xr_2(T^n F_{t-1}(0))x$. Let $y = (T^n F_{t-1}(0))_{-1}$. Since v is stationary, we need to determine

 $\lambda = \text{dist}_{S_{\theta}}(v, v) - |v|$. By Lemma 14, $\lambda > 0$. Now by Corollary 11 we have that

$$S_{\beta} = \prod_{i=0}^{\infty} (T^{n} F_{t-1}(0))^{s_{t-1}(i)} T^{n} F_{t-1}(1),$$
(3)

where $s_{t-1}(i) = \lfloor (i+1)\beta_{t-1}^{-1} \rfloor - \lfloor i\beta_{t-1}^{-1} \rfloor$ and

$$\beta_{t-1} = [0; b_t, b_{t+1}, \dots, b_m, b_1, \dots, b_m]$$

Consider when $1 \le t \le m-1$ with $n \ge 0$. Then $|T^n F_{t-1}(0)| > |T^n F_{t-1}(1)|$. Now $v | S_\beta$ only where $d := T^n F_{t-1}(1) T^n F_{t-1}(0) | S_\beta$. From (3), two consecutive occurrences of d in S_β are separated by $(T^n F_{t-1}(0))^{S_{t-1}(i)-1}$. Now

$$T^{n}F_{t-1}(0)T^{n}F_{t-1}(1)(T^{n}F_{t-1}(0))^{s_{t-1}(i)}T^{n}F_{t-1}(1)T^{n}F_{t-1}(0)$$

= $T^{n}F_{t-1}(1)r_{2}(T^{n}F_{t-1}(0))yxr_{2}(T^{n}F_{t-1}(0))xy(T^{n}F_{t-1}(0))^{s_{t-1}(i)-2}T^{n}F_{t-1}(1)$
 $r_{2}(T^{n}F_{t-1}(0))yxr_{2}(T^{n}F_{t-1}(0))xy.$

Thus,

$$\begin{split} \lambda &= |y(T^n F_{t-1}(0))^{\min(s_{t-1}(i)-2)} T^n F_{t-1}(1) r_2(T^n F_{t-1}(0)) y| \\ &= |(T^n F_{t-1}(0))^{\min(s_{t-1}(i)-1)} T^n F_{t-1}(1)| \\ &= (b_t - 1) |T^n F_{t-1}(0)| + |T^n F_{t-1}(1)|, \end{split}$$

and since $|w| \ge \lambda$ we get a contradiction of (2).

We now consider the case when t = 0 and $n \ge 1$. Here we look at two cases: (i) when $b_0 = b_m$ and (ii) when $b_0 < b_m$. If $b_0 = b_m$ then $T^n F_{-1} = T^n$ and $|T^n(0)| > |T^n(1)|$, and the argument follows as above. Now if $b_0 < b_m$ then $|T^n(0)| < |T^n(1)|$. Here we use that for $n \ge 1$, $T^n F_{-1}(0) = T^{n-1} F_{m-1}(0)$ and that $|T^{n-1} F_{m-1}(0)| > |T^{n-1} F_{m-1}(1)|$. By Corollary 11 we have that

$$S_{\beta} = \prod_{i=0}^{\infty} (T^{n-1}F_{m-1}(0))^{s_{m-1}(i)}T^{n-1}F_{m-1}(1),$$
(4)

where $s_{m-1}(i) = \lfloor (i+1)\beta_{m-1}^{-1} \rfloor - \lfloor i\beta_{m-1}^{-1} \rfloor$ and $\beta_{m-1} = [0; b_m, \overline{b_1, b_2, \dots, b_m}]$. Hence from the previous argument we see that by Lemma 3

$$\begin{split} |w| \ge \lambda &= (b_m - 1) |T^{n-1} F_{m-1}(0)| + |T^{n-1} F_{m-1}(1)| \\ &= (b_0 - 1) |T^{n-1} F_{m-1}(0)| + (b_m - b_0) |T^{n-1} F_{m-1}(0)| + |T^{n-1} F_{m-1}(0)| \\ &= (b_0 - 1) |T^n F_{-1}(0)| + |T^n F_{-1}(1)|, \end{split}$$

which contradicts (2).

Assume now that $v \sim T^n F_{t-1}(0)$; in fact, we may assume, without loss of generality, that $v = T^n F_{t-1}(0)$. Consider when $1 \le t \le m-1$. Consider the word u_1 which occurs in S_β and with respect to the factorization of Corollary 11 is represented by

$$u_1 = v^{s_{t-1}(i)-j} T^n F_{t-1}(1) v^l$$
(5)

with $0 \le j \le s_{t-1}(i) - 1$ and $0 \le l \le s_{t-1}(i+1) + 1$. Assume that $u_1^3 | S_\beta$ with the representation by (5) of u_1 representing the first occurrence of u_1 in u_1^3 . This implies that

$$u_{1}^{3} = v^{s_{t-1}(i)-j}T^{n}F_{t-1}(1)v^{l}v^{s_{t-1}(i)-j}T^{n}F_{t-1}(1)v^{l}v^{s_{t-1}(i)-j}T^{n}F_{t-1}(1)v^{l}$$

$$= v^{s_{t-1}(i)-j}T^{n}F_{t-1}(1)v^{s_{t-1}(i)+l-j}T^{n}F_{t-1}(1)v^{s_{t-1}(i)+l-j}T^{n}F_{t-1}(1)v^{l}$$

$$\triangleleft v^{s_{t-1}(i)-j}T^{n}F_{t-1}(1)v^{s_{t-1}(i+1)}T^{n}F_{t-1}(1)v^{s_{t-1}(i+2)}T^{n}F_{t-1}(1)v^{s_{t-1}(i+3)}$$

which gives us that

$$v^{s_{t-1}(i)+l-j}T^{n}F_{t-1}(1)v^{s_{t-1}(i)+l-j}T^{n}F_{t-1}(1)v^{l} \leq v^{s_{t-1}(i+1)}T^{n}F_{t-1}(1)v^{s_{t-1}(i+2)}T^{n}F_{t-1}(1)v^{s_{t-1}(i+3)}.$$
(6)

Now $m(i)+l-j \ge 1$, for $k \ge 0$, $s_{t-1}(k) \ge 1$ and $|v| > |T^n F_{t-1}(1)|$. Thus since $T^n F_{t-1}(1) \le v^2$ and $T^n F_{t-1}(1) v \ne v T^n F_{t-1}(1)$, we must have that $s_{t-1}(i)+l-j=m(i+1)$. Hence $l-j \in \{-1,0,1\}$. Now if $l-j \in \{0,1\}$ then

$$|u_{1}| - |T^{n}F_{t-1}(0)| = |v^{s_{t-1}(i)+l-j-1}T^{n}F_{t-1}(1)|$$

$$\geq \min(s_{t-1}(i)+l-j-1)|T^{n}F_{t-1}(0)| + |T^{n}F_{t-1}(1)|$$

$$= (b_{t}-1)|T^{n}F_{t-1}(0)| + |T^{n}F_{t-1}(1)|.$$

Consider when l - j = -1. Again from (6) we either have $s_{t-1}(i) - 1 = s_{t-1}(i+2)$ or $s_{t-1}(i) = s_{t-1}(i+2)$. If $s_{t-1}(i) - 1 = s_{t-1}(i+2)$ then $s_{t-1}(i+1) = s_{t-1}(i) - 1 = s_{t-1}(i+2)$ which is a contradiction. If $s_{t-1}(i) = s_{t-1}(i+2)$ then $s_{t-1}(i) = b_t + 1$, hence

$$|u_1| - |T^n F_{t-1}(0)| = (s_{t-1}(i) - 2)|T^n F_{t-1}(0)| + |T^n F_{t-1}(1)|$$

= $(b_t - 1)|T^n F_{t-1}(0)| + |T^n F_{t-1}(1)|.$

Now we have that $u^3 | S_\beta$ so $vwvwvw | S_\beta$. We look at the possible positions within S_β where the word vwvwvw occurs. Thus we must look at the possible positions of v within S_β . Now we have that

$$S_{\beta} = \prod_{i=0}^{\infty} v^{s_{t-1}(i)} T^n F_{t-1}(1),$$

and so since v is primitive, by the Lyndon–Schützenberger theorem, we have determined most of the possible positions of v in S_β . There only remains the possibility that v occurs somewhere in the factor $vT^nF_{t-1}(1)v$, other than as a prefix or suffix. We have that $T^nF_{t-1}(1)v = vc(T^nF_{t-1}(1))$, and we claim that this is the only other possible position for v. Now $|c(T^nF_{t-1}(1))| < |v|$, thus if another position of v was possible then $v | vc(T^nF_{t-1}(1)))$. Then by Corollary 5 and the Lyndon–Schützenberger theorem $v = x^m$ for some integer $m \ge 2$ with $x \in \Sigma^+$, which contradicts that v is primitive. If the first occurrence of v in vwvww in S_{β} occurs in $v^{s_{t-1}(i)}$ for some i, there must exist integers j and l such that $0 \le j \le s_{t-1}(i) - 1$ and $0 \le l \le s_{t-1}(i+1) + 1$ such that $vw = u_1$. But then

$$|w| \ge (b_t - 1)|T^n F_{t-1}(0)| + |T^n F_{t-1}(1)|$$

which is a contradiction. Thus, the first occurrence of v in vwvwvw in S_{β} must occur in the factor $T^n F_{t-1}(1)v$. Hence, it easily follows that for some i

$$\begin{split} \lambda &\ge |c(T^n F_{t-1}(1))v^{s_{t-1}(i)-1}| \\ &\ge \min(s_{t-1}(i)-1)|T^n F_{t-1}(0)| + |T^n F_{t-1}(1)| \\ &= (b_t-1)|T^n F_{t-1}(0)| + |T^n F_{t-1}(1)| \end{split}$$

which is again a contradiction.

Lastly, we must consider when t=0 with $n \ge 1$. Here we look at two cases: (i) when $b_0 = b_m$ and (ii) when $b_0 < b_m$. If $b_0 = b_m$ then $T^n F_{-1} = T^n$ and $|T^n(0)| > |T^n(1)|$, and the argument follows as before. If $b_0 < b_m$ then $|T^n(0)| < |T^n(1)|$. Here we use that for $n \ge 1$ $T^n F_{-1}(0) = T^{n-1} F_{m-1}(0)$ and that $|T^{n-1} F_{m-1}(0)| > |T^{n-1} F_{m-1}(1)|$. Thus, from above we have that

$$|w| \ge \lambda = (b_m - 1)|T^{n-1}F_{m-1}(0)| + |T^{n-1}F_{m-1}(1)|(b_0 - 1)|T^nF_{-1}(0)| + |T^nF_{-1}(1)|$$

which is a contradiction. The result now follows. \Box

The above theorem enables us to determine the critical exponent of S_{β} when S_{β} is the fixed point of a homomorphism.

Theorem 16. Let $0 < \beta < 1$ with $\beta = [0; b_0, \overline{b_1, \dots, b_m}]$, where b_0, \dots, b_m are positive integers and $b_m \ge b_0$. Then S_β has a critical exponent Ω , where

$$\Omega = \max_{1 \leq t \leq m} [2 + b_t; b_{t-1}, \dots, b_1, \overline{b_m, \dots, b_1}].$$

Proof. We first show that given any $\varepsilon > 0$ there exists a $v \in \Sigma^+$ and an r such that $\Omega - \varepsilon < r < \Omega$ with $v^r | S_{\beta}$. Let T be the fundamental homomorphism of S_{β} . For $n \ge 1$ and t with $0 \le t \le m - 1$, by Corollary 11 we have that

$$S_{\beta} = \prod_{k=0}^{\infty} T^n F_t(0)^{s_t(k)} T^n F_t(1),$$

where $s_t(k) = \lfloor (k+1)\beta_t^{-1} \rfloor - \lfloor k\beta_t^{-1} \rfloor$ and $\beta_t = [0; b_{t+1}, b_{t+2}, \dots, b_m, \overline{b_1, \dots, b_m}]$. Now by Theorem 6 we have $T^n F_t(1)T^n F_t(0) = T^n F_t(0)c(T^n F_t(1))$, and by Lemma 3, we have $r_2(T^n F_t(1)) \triangleleft T^n F_t(0)$. Thus $(T^n T_t(0))^s | S_\beta$, where

$$s = 2 + b_{t+1} + \frac{|T^n F_t(1)| - 2}{|T^n F_t(0)|}.$$

Now,

$$T^{n}F_{t} = (L^{b_{0}}XL^{b_{1}}X\cdots L^{b_{m-1}}XL^{b_{m}-b_{0}})^{n}L^{b_{0}}XL^{b_{1}}X\cdots L^{b_{t}}X$$
$$= L^{b_{0}}X(L^{b_{1}}X\cdots L^{b_{m}}X)^{n}L^{b_{1}}X\cdots L^{b_{t}}X,$$

thus if

$$[b_t; b_{t-1}, \dots b_1, \overline{b_m, \dots, b_1}^n, b_0] = \frac{P_0}{Q_0} \quad (P_0, Q_0) = 1$$

and

$$[b_t; b_{t-1}, \dots b_1, \overline{b_m, \dots, b_1}^n] = \frac{P_1}{Q_1} \quad (P_1, Q_1) = 1$$

then by Lemma 8

$$\frac{T^{n}F_{t}(1)|-2}{|T^{n}F_{t}(0)|} = \frac{Q_{0}+Q_{1}-2}{P_{0}+P_{1}} <[b_{t};b_{t-1},...,b_{1},\overline{b_{m},...,b_{1}}]^{-1} = [0;b_{t},b_{t-1},...,b_{1},\overline{b_{m},...,b_{1}}]$$

and

$$\lim_{n \to \infty} \frac{|T^n F_t(1)| - 2}{|T^n F_t(0)|} = \lim_{n \to \infty} \frac{Q_0 + Q_1 - 2}{P_0 + P_1}$$
$$= [0; b_t, \dots, b_1, \overline{b_m, \dots, b_1}].$$

Hence there exists an $n \ge 1$ and a t with $0 \le t \le m - 1$ such that $(T^n F_t(0))^s | S_\beta$ with $\Omega - \varepsilon < s < \Omega$.

We now show that if $u \in \Sigma^+$ and $u^r | S_\beta$, then $r < \Omega$. If $r \ge 2 + \max_{1 \le i \le m-1} b_i$, then by Theorem 15 we have $u \sim T^n F^t(0)$ for some $n \ge 0$ and some t with $0 \le t \le m-1$. Then $r < \Omega$, hence the result follows. \Box

As an example consider if $\Phi = (\sqrt{5} - 1)/2$, then $\Phi = [0; 1, 1, 1, ...]$ and so by Theorem 16 the Fibonacci infinite word $\mathscr{F} = S_{\Phi}$ has a critical exponent Ω where

$$\Omega = 2 + [1; 1, 1, 1, ...]$$

= 3 + $\frac{1}{2}(\sqrt{5} - 1)$
= 3.618034

as originally determined by Mignosi and Pirillo [10] in 1992. We now prove an explicit version of Mignosi's theorem.

Theorem 17. Let $\beta > 0$ be an irrational number with $\beta = [b_0; b_1, b_2, ...]$. Then S_β is *kth power-free for some integer k if, and only if,* β *has bounded partial quotients.* Moreover, if β has bounded partial quotients then S_β is *kth power-free but not* (k-1)th power-free for $k = 3 + \max_{i \ge 0} b_i$.

$$k_n = 3 + \max_{0 \le i \le n} b_i$$

So there exist finite words $w_n \triangleleft S_{\beta_n}$ with $w_n \triangleleft S_{\beta}$ and $|w_n| \rightarrow \infty$ as $n \rightarrow \infty$ such that w_n is k_n th power-free but contains $(k_n - 1)$ th powers. Since $k_n \ge k_{n-1}$ the result now follows. \Box

Acknowledgements

I would like to thank Prof. Jeff Shallit for introducing this field of research to me and for his help and support throughout the development of this paper.

References

- [1] J. Berstel, Mots de Fibonacci, Séminaire d'informatique théorique, LITP, 1980-1981, pp. 56-77.
- [2] T.C. Brown, A characterisation of the quadratic irrationals, Amer. J. Math. 34 (1991) 36-41.
- [3] T.C. Brown, Descriptions of the characteristic sequence of an irrational, Canad. Math. Bull. 36(1) (1993) 15-21.
- [4] D. Crisp, W. Moran, A. Pollington, P. Shiue, Substitution invariant cutting sequences, J. Théorie Nombres Bordeaux 5 (1993) 123–137.
- [5] A. de Luca, A combinatorial property of the Fibonacci words, Inform. Process. Lett. 12(4) (1981) 193–195.
- [6] J. Karhumäki, On cube-free ω -words generated by binary morphisms, Discrete Appl. Math. 5 (1983) 279–297.
- [7] D.E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, MA, 1968.
- [8] M. Lothaire, Combinatorics on Words, volume 17 of Encyclopedia of Mathematics and Its Applications, Addison-Wesely, Reading, MA, 1983.
- [9] F. Mignosi, Infinite words with linear subword complexity, Theoret. Comput. Sci. 65 (1989) 221-242.
- [10] F. Mignosi, G. Pirillo, Repetitions in the Fibonacci infinite word, RAIRO Inform. Théor. 26 (1992) 199-204.
- [11] M. Morse, G.A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62 (1940) 1-42.
- [12] P. Séébold, Propriétés combinatoires des mots infinis engendrés par certains morphismes (Thése de 3 é cycle), Ph.D. Thesis, Université P. et M. Curie, Institut de programmation, Paris, 1985.
- [13] A. Thue, Über unendliche Zeichenreihen, Norske vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana, 7 (1906) 1–22; Reprinted in: T. Nagell (Ed.), Selected Mathematical Papers of Axel Thue, Universitetaforlaget, Oslo, 1977, pp. 139–158.
- [14] A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske vid. Selsk. Skr. Math. Nat. Kl., 1 (1912) 1–67; Reprinted in: T. Nagell (Ed.), Selected Mathematical Papers of Axel Thue, Universitetaforlaget, Oslo, 1977, pp. 413–478.