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Witt’s formula for restricted Lie algebras
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Abstract

Suppose thatL is the free Lie algebra generated byk elements. This is a homogeneo
algebra and the dimensions of its homogeneous components are given by Witt’s formula dimLn =
1
n

∑
a|n µ(a)kn/a , whereµ(n) is the Möbius function. Recently the author discovered genera

functions for the whole of the free Lie superalgebra. These series yield some new dim
formulas. Now we present generating functions for the free Liep-algebras. As a corollary, we sugge
dimension formulas similar to Witt’s formula.
 2003 Elsevier Science (USA). All rights reserved.

1. Introduction: Witt’s formula for free Lie superalgebras

Suppose thatW is a superalgebra generated by setsX+ = {x1, . . . , xm}, X− =
{xm+1, . . . , xm+k} and which is multihomogeneous with respect to these sets. For ele
of W we introduce themultidegreeα = (α1, . . . , αm+k) ∈ Nm+k

0 , the degree |α| =
α1 + · · · + αm+k , and the numbers|α+| = α1 + · · · + αm, |α−| = αm+1 + · · · + αm+k ,
whereN0 = {0,1,2, . . .}. By a|α we denote thata divides all componentsαi . One has
components for the gradation by the multidegreeWα , by the degreeWn, and by the
superdegreeWij , where the latter space consists of elements of degreei with respect to
x1, . . . , xm, and degreej with respect toxm+1, . . . , xm+k . LetWn =Wn,+ ⊕Wn,− denote
the decomposition into the even and odd components, one also defines thesuperdimension
as sdimWn = dimWn,+ −dimWn,−. For a multihomogeneous subspaceV ⊂W we define
the followingHilbert–Poincaré series

* Current address: Math. Institut, Heinrich-Heine Univ., Universitätsstr. 1, D-40225 Düsseldorf, Germa
E-mail addresses:petrogra@math.uni-duesseldorf.de, petrogradsky@hotbox.ru.

1 Adv. Appl. Math., FPSAC’01 in Arizona; Supported by grants RFBR 99-01-00233, 01-01-00728.
0196-8858/03/$ – see front matter 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0196-8858(02)00533-X



220 V.M. Petrogradsky / Advances in Applied Mathematics 30 (2003) 219–227

as are

invari-
(su-

re
ely.

moge-
include
nt either
uggest
a more
V =
⊕

α∈N
m+k
0

Vα, H(V , t1, . . . , tm+k)=
∑

α∈N
m+k
0

dimVα t
α1
1 · · · tαm+k

m+k ,

V =
∞⊕
i,j=0

Vij , H(V , t+, t−)=
∞∑
i,j=0

dimVij t
i+t
j
−,

V =
∞⊕
n=0

Vn, H(V , t)=
∞∑
n=0

dimVn tn =H(V , t+, t−)|t+=t−=t .

The generating functions for the polynomial rings and the free associative algebr
well known. LetW = K[X], X = {x1, . . . , xm}, be the polynomial ring andW = K〈X〉,
X = {x1, . . . , xm} the free associative algebra. Then

H
(
K[X], t1, . . . , tm

) = 1

(1− t1) · · · (1− tm) ,

H
(
K〈X〉, t1, . . . , tm

) = 1

1− (t1 + · · · + tm) . (1)

These formulas have many applications. In particular, they are applied to study
ants [4,5,10]. In [11,12] the author found the generating functions for the free Lie
per)algebras. It seems that these formulas were not known before.

Theorem 1.1 [12]. Let L = L(X), X = X+ ∪ X− be the free Lie superalgebra whe
X+ = {x1, . . . , xm},X− = {xm+1, . . . , xm+k} are the even and odd generators, respectiv
Then

H(L, t1, . . . , tm, tm+1, . . . , tm+k)

= −
∞∑
a=1

µ(a)

a
ln
(
1− ta1 − · · · − tam + (−tm+1)

a + · · · + (−tm+k)a
)
,

H(L, t+, t−)= −
∞∑
a=1

µ(a)

a
ln
(
1−mta+ + k(−t−)a

)
,

H(L, t)= −
∞∑
a=1

µ(a)

a
ln
(
1− (

m− (−1)ak
)
ta
)
.

In the case of free Lie (super) algebras there are formulas for dimensions of ho
neous and multihomogeneous components [1–3], see also [14]. But these formulas
two cases, they correspond to the fact that a basis of the homogeneous compone
consists only of regular words or it also contains squares of regular odd words. We s
new formulas without two cases (of course, they give the same values). See also
general approach in generality of gradings by some semigroups [13].
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Corollary 1.1 [12].

dimLn = 1

n

∑
a|n
µ(a)

(
m− (−1)ak

)n/a
,

dimLn,+ = 1

n

∑
a|n
µ(a)

(m− (−1)ak)n/a + (m− k)n/a
2

,

dimLn,− = 1

n

∑
a|n
µ(a)

(m− (−1)ak)n/a − (m− k)n/a
2

,

sdimLn = 1

n

∑
a|n
µ(a)(m− k)n/a, (2)

dimLα = (−1)|α−|

|α|
∑
a|α
µ(a)

(|α|/a)! (−1)|α−|/a

(α1/a)! · · · (αm+k/a)! . (3)

The formula for the superdimensions (2) was obtained in [7,8]. Also, (3) was know
the caseX=X− [9].

In [12] these formulas were proved directly. In [13] we consider another appr
and a more general situation of the generating setX = ⋃

α∈Γ Xα being graded by a
semigroupΓ , and instead of series we study characters for the whole of a supera
and for multihomogeneous components. As a particular case we consider the sem
Γ = Nm+k \ {0} and monoidΓ = Nm+k . Denoteei = (. . . ,0,1,0, . . .), i = 1, . . . ,m+ k,
with 1 on theith place. We setε(e1)= · · · = ε(em)= 1, ε(em+1)= · · · = ε(em+k)= −1.
We obtain the homomorphismε :Γ → {±1} and the decomposition into the even and o
componentsΓ = Γ+ ∪ Γ−, Γ+ = {α ∈ Γ | ε(α) = 1}, Γ− = {α ∈ Γ | ε(α) = −1}. We
consider Lie superalgebrasL that are decomposed into the even and odd compon
as follows L = L+ ⊕ L−, L+ = ⊕

α∈Γ+ Lα , L− = ⊕
α∈Γ− Lα . We denoteQ❏t❑ =

Q❏t1, . . . , tm+k❑ and letQ❏t❑0 be the series without a constant term. An arbitrary se
from Q❏t❑ we write asφ(t). Suppose thatV =⊕

α∈Γ Vα is aΓ -graded vector space, the
we also denoteH(V , t)=H(V , t1, . . . , tm+k).

We introduce two important operators as follows.

E(φ)(t) = exp

( ∞∑
b=1

1

b
φ

∣∣∣∣
(ti=ε(ti)b+1t bi )

)
, φ(t) ∈ Q❏t❑0,

L(φ)(t) =
∞∑
a=1

µ(a)

a
ln(φ|(ti=ε(ti)a+1t ai )

), φ(t) ∈ 1+ Q❏t❑0.

The application of these operators is based on the following fact.
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Theorem 1.2 [13]. LetL=⊕
α∈Γ Lα be aΓ -graded Lie superalgebra,Γ = Nm+k \ {0}.

Then the Hilbert–Poincaré series forL and its universal enveloping algebraU(L) are
connected as follows:

(1) H(U(L), t)= E(H(L, t));
(2) H(L, t)= L(H(U(L), t)).

Let L = L(X) be the free Lie superalgebra generated byX = X+ ∪ X−, where
X+ = {x1, . . . , xm} andX− = {xm+1, . . . , xm+k} are the even and odd generators. I
well known thatU(L)∼=K〈X〉 [2]. Now using (1) and the second formula one can ea
derive the formula forH(L, t) given by Theorem 1.1.

2. Witt’s formula for free restricted Lie algebras

LetL be a Lie algebra over a fieldK of characteristicp > 0. We use standard notatio
adx :L→ L, adx(y)= [x, y], x, y ∈ L. Recall thatL is called therestricted Lie algebra
or Liep-algebra, [6] if it additionally affords a unary operationx �→ x[p], x ∈ L, satisfying

(1) (λx)[p] = λpx[p], whenλ ∈K, x ∈L;
(2) ad(x[p])= (adx)p;
(3) (x + y)[p] = x[p] + y[p] +∑p−1

i=1 si (x, y); x, y ∈ L, whereisi(x, y) is the coefficient
of t i−1 in the polynomial ad(tx + y)p−1(x) ∈L[t].

This notion is motivated by the following construction. LetA be an associative algeb
overK, charK = p > 0. The algebraA is turned into a Lie algebra by the new operat
[x, y] = xy − yx, wherex, y ∈ A. Then the mappingx �→ xp, x ∈ A satisfies these thre
properties.

Suppose thatL is a restricted Lie algebra. LetJ be the ideal in the universal envelopi
algebraU(L) generated by all elementsx[p] − xp, x ∈ L. Thenu(L)= U(L)/J is called
therestricted enveloping algebra. In this algebra the formal operationx[p] coincides with
thepth powerxp for all x ∈ L. Let {ai | i ∈ I } be a linearly ordered basis forL. By an
analogue of Poincaré–Birkhoff–Witt’s theorem [6], the restricted enveloping algebr
the following canonical basis:

u(L)= 〈
an1
q1

· · ·ansqs
∣∣ q1< · · ·< qs, 0 � ni < p; s � 0

〉
K
. (4)

Recall that a function of a natural argumentα(n) is calledmultiplicative if α(nm) =
α(n)α(m) for any coprimen,m. We introduce the following two functions:

1p(n) =
{

1, (p,n)= 1,
1− p, (p,n)= p,

µp(n) =
{
µ(n), (p,n)= 1,
µ(m)

(
ps − ps−1

)
, n=mps, (p,m)= 1, s � 1.
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It is easy to check that these functions are multiplicative. One may viewµp(n) as
a deformation of the Möbius function.

By analogy with ordinary Lie algebras, one defines the free restricted Lie algebraL [1].
The goal of this paper is to find generating functions and dimension formulas forL. These
formulas are completely analogous to those for the free Lie superalgebras.

Theorem 2.1. LetL = Lp(X) be the free Liep-algebra generated byX = {x1, . . . , xm}.
Then

H(L, t1, . . . , tm) = −
∞∑
a=1

µp(a)

a
ln
(
1− ta1 − · · · − tam

)
,

H(L, t) = −
∞∑
a=1

µp(a)

a
ln(1−mta).

Corollary 2.1. LetL= Lp(X) be the free Liep-algebra generated byX = {x1, . . . , xm}.
Then

dimLn = 1

n

∑
a|n
µp(a)m

n/a,

dimLα = 1

|α|
∑
a|αi

µp(a)
(|α|/a)!

(α1/a)! · · · (αm/a)! .

It is possible to prove these formulas directly. DenoteQ❏t❑ = Q❏t1, . . . , tm❑. Suppose
that L(X) is the free Lie algebra generated byX. One has the natural embeddi
L(X) ⊂ U(L(X)) ∼= K〈X〉. Let Lp(X) = 〈vpn | v ∈ L,n � 0〉K , thenLp(X) is the free
restricted Lie algebra generated byX and thep-operationv �→ vp , v ∈ L; moreover
u(Lp(X)) ∼= K〈X〉 [2]. Also, one has the following construction of a basis forLp(X).

Suppose that{wα | α ∈Λ} is a homogeneous basis forL(X), then{w[pn]
α | α ∈Λ,n� 0}

is a basis for the freep-algebraLp(X) [2]. This observation leads to the formula

H
(
Lp(X), t

)=
∞∑
n=0

H
(
L(X), t

)∣∣(
ti=tpni

).

Now it is possible to use Theorem 1.1 and Corollary 1.1.
But let us consider another method. We introduce a dilatation on the formal power

[b] :Q❏t❑→ Q❏t❑, (φ)[b](t)= φ|(ti=t bi ), b ∈ N.

Remark that to study the case of Lie superalgebras we needed an operator of atwisted
dilatation [13]. The following properties are easily checked.
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se
Lemma 2.1. (1) f [1] = f .
(2) The twisted dilatationf �→ f [b] is an endomorphism of the algebraQ❏t❑.
(3) (f [a])[b] = (f [b])[a] = f [ab], wheref ∈ Q❏t❑, a, b ∈ N.

We suggest a modification of operatorsE , L as follows:

Ep(φ)(t) = exp

( ∞∑
b=1

1p(b)

b
φ(t)[b]

)
, φ(t) ∈ Q❏t❑0,

Lp(φ)(t) =
∞∑
a=1

µp(a)

a
ln
(
φ(t)[a]

)
, φ(t) ∈ 1+ Q❏t❑0.

Lemma 2.2. The mappingsEp :Q❏t❑0 → 1+ Q❏t❑0 andLp : 1+ Q❏t❑0 → Q❏t❑0 are well-
defined and mutually inverse.

Proof. We denotetα = t
α1
1 · · · tαmm , for α = (α1, . . . , αm) ∈ Nm. By definition of these

operators, we obtain only finitely many terms corresponding to eachtα . Therefore, these
operators are well-defined.

First, let us prove the property
∑
ab=n 1p(b)µp(a) = 0 for all n > 1, that resemble

the property of the Möbius function
∑
ab=n µ(a) = 0, n > 1. Indeed, let us decompo

n= n′pk , (p,n′)= 1 anda = a′pα , (p, a′)= 1; b = b′pβ , (p, b′)= 1. In casek = 0 the
statement follows from the property of the Möbius function. Consider the casek � 1.

∑
ab=n

1p(b)µp(a) =
∑
a′b′=n′

1p(b
′)µp(a′)

∑
α+β=k

1p
(
pβ
)
µp(p

α)

=
( ∑
a′b′=n′

µ(a′)
)(

1
(
pk − pk−1)+ (1− p)(pk−1 − pk−2)+ · · ·

+ (1− p)(p− 1)+ (1− p)1)
=
( ∑
a′b′=n′

µ(a′)
)(

1
(
pk − pk−1)+ (1− p)pk−1)= 0.

Let f = f (t) ∈ Q❏t❑0; then

Lp(Epf ) = Lp

(
exp

( ∞∑
b=1

1p(b)

b
f [b]

))
=

∞∑
a=1

µp(a)

a

∞∑
b=1

1p(b)

b

(
f [b])[a]

=
∞∑
a=1

∞∑
b=1

f [ba]

ba
1p(b)µp(a)=

∞∑
n=1

f [n]

n

∑
ab=n

1p(b)µp(a)= f [1] = f.

The propertyEp(Lpf )= f , f = f (t) ∈ 1+ Q❏t❑0 is proved in the same way.✷
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Now suppose thatL is anNm \ {0}-graded restricted Lie algebra, here we addition
suppose that for allx ∈ Lα , α ∈ Nm \ {0}, we havex[p] ∈Lpα .

Theorem 2.2. Let L = ⊕
α∈Γ Lα be aΓ -graded restricted Lie algebra,Γ = Nm \ {0}.

Then the Hilbert–Poincaré series forL and its restricted enveloping algebrau(L) are
connected as follows:

(1) H(u(L), t)= Ep(H(L, t));
(2) H(L, t)= Lp(H(u(L), t)).

Proof. Let {ai | i ∈ I } be an ordered homogeneous basis forL. Using canonical basis fo
restricted enveloping algebra (4), we obtain

H
(
u(L), t

) =
∏
α∈Γ

(
1+ tα + t2α + · · · + t(p−1)α)dimLα =

∏
α∈Γ

(
1− tpα

1− tα

)dimLα

= exp

(∑
α∈Γ

dimLα
(− ln(1− tα)+ ln(1− tpα)

))

= exp

(∑
α∈Γ

dimLα

( ∞∑
b=1

tbα

b
−

∞∑
b=1

tpbα

b

))

= exp

(∑
α∈Γ

dimLα

∞∑
b=1

tbα
1p(b)

b

)
= exp

( ∞∑
b=1

1p(b)

b

∑
α∈Γ

dimLαtbα
)

= exp

( ∞∑
b=1

1p(b)

b
H(L, t)[b]

)
= Ep

(
H(L, t)

)
.

The another relation follows by Lemma 2.2:

H(L, t)= (LpEp)H(L, t)= Lp
(
EpH(L, t)

)= Lp
(
H
(
u(L), t

))
. ✷

Proof of Theorem 2.1. Let L = Lp(X) be the free restricted Lie algebra generated
X = {x1, . . . , xm}. It is well known thatu(L) ∼= K〈X〉 [2]. Using (1) and the secon
formula of Theorem 2.2, we immediately derive the formula forH(L, t):

H(L, t) = Lp
(
H
(
u(L), t

))= Lp
(
H
(
K〈X〉, t))= Lp

1

1− t1 − · · · − tm

= −
∞∑
a=1

µp(a)

a
ln
(
1− ta1 − · · · − tam

)
. ✷

Proof of Corollary 2.1. Let us expand the formula forH(L, t) given by Theorem 2.1:
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ras,

l. 43,

97–655.
rans.

in the
Funct.
H(L, t) = −
∞∑
a=1

µp(a)

a
ln(1−mta)=

∞∑
a=1

µp(a)

a

∞∑
s=1

ms

s
tas

=
∞∑
a=1

∞∑
s=1

tas

as
µp(a)m

s =
∞∑
n=1

tn

n

∑
a|n
µp(a)m

n/a.

On the other hand,H(L, t) = ∑∞
n=1 dimLntn, hence dimLn = 1

n

∑
a|n µp(a)mn/a . The

second formula follows by similar arguments:

H(L, t1, . . . , tm) = −
∞∑
a=1

µp(a)

a
ln
(
1− ta1 − · · · − tam

)

=
∞∑
a=1

µp(a)

a

∞∑
s=1

(ta1 + · · · + tam)s
s

=
∞∑
a=1

µp(a)

a

∞∑
s=1

1

s

∑
|β|=s

|β|!
β1! · · ·βm! t

aβ1
1 · · · taβmm

=
∑

α∈N
m
0 \{0}

1

|α|
∑
a|αi

µp(a)
(|α|/a)!

(α1/a)! · · ·(αm/a)! t
α1
1 · · · tαmm .

Therefore,

dimLα = 1

|α|
∑
a|αi

µp(a)
(|α|/a)!

(α1/a)! · · · (αm/a)! . ✷

Remark. One may consider the generality ofrestricted Lie superalgebras(see for
definitions [2]). In this case analogous formulas are not so nice.
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