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In this paper, we describe a mathematical model about the reaction–diffusion kinetics of
bicarbonate system, which it plays a key role in regulating blood pH. It is very important to
know the determinants of blood pH in both experimental and theoretical studies, in order
to help to investigate the hidden mechanism of acid–base disorders in the clinical setting.
We explore the dynamics of the bicarbonate system under the closed condition. This
condition yields that the total amount of carbon dioxide is conserved and the difference
in concentrations between anions and cations is conserved. For the stability of the model,
we hypothesize that the amount of initial concentrations perturbed around an equilibrium
point is less than a certain constant depending on a rate constant. With an application
of Liapunov’s method, we prove that the model in the form of reaction–diffusion system
is globally stable under the hypothesis. We also provide the blood pH profile, which is
computed in our model with the experimentally observed rate constants.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The primary systems that regulate blood pH are the chemical acid–base buffer systems of the body fluids; the respiratory
center; the kidneys. These mechanisms help the body-pH balance so effectively that they can control body-pH to vary
slightly within a normal range in physiologic status. The normal range of pH in the blood plasma is 7.40 ± 0.02 (clinical
normal range 7.35–7.45). Among three mechanisms, the bicarbonate system is the main physiological buffer, because the
H2CO3 of blood plasma is in equilibrium with a large reserve capacity of gaseous carbon dioxide CO2(g) in the air space of
the lungs [17].

The relationship among the elements of the bicarbonate system is described in the classical formulation by Henderson–
Hasselbalch (1908) that aids in understanding pH regulation of body fluids [21]. For normal plasma at 37 ◦C, it takes the
following form

pH = pK′ + log10
[HCO−

3 ]
[CO2(d)] , (1)

where by Henry’s law, dissolved carbon dioxide CO2(d) is equal to α × PCO2 with α = 0.0306 M per mmHg. The partial
pressure of carbon dioxide PCO2 is measured in millimeters of mercury and HCO−

3 is measured in millimoles per liter. The

constant K′ is defined as K′ = [H+][HCO−
3 ]

[CO2(d)] = 10−6.103 (thus pK′ = 6.103) and is said to be an equilibrium constant. We note

that [CO2(d)] is regulated by lung and [HCO−
3 ] is regulated by kidney. When pH is equal to 7.4, the ratio [HCO−

3 ]/[CO2(d)] is
approximately 20/1. Acid–base disorders are classified both by the direction of the pH change and by the underlying cause.

* Corresponding author.
E-mail addresses: chopin9530@ajou.ac.kr (S.J. Choi), jisun@colorado.edu (J. Lim).
0022-247X/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2009.02.025

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:chopin9530@ajou.ac.kr
mailto:jisun@colorado.edu
http://dx.doi.org/10.1016/j.jmaa.2009.02.025


146 S.J. Choi, J. Lim / J. Math. Anal. Appl. 356 (2009) 145–153
Acidosis is defined as an arterial blood pH < 7.35; alkalosis indicates that an arterial blood pH > 7.45. Acid–base balance
disturbances that result from a change in the [HCO−

3 ] are termed metabolic acid–base disorders, whereas those that result
from a change in the PCO2 are termed respiratory acid–base disorders.

The analysis of acid–base balance in the clinical setting has been intensively studied for the practice of critical care
medicine. Considering clinical implications, Kellum revealed three independent variables that regulate pH in blood plasma
as: carbon dioxide, relative electrolyte concentrations, and total weak acid concentrations [12]. Gilfix et al. [8] evaluated the
clinical application of Stewart model, which is based on quantitative physical chemical principles. Four systems, which de-
termine H+ , are identified as follows. The first system is the difference in concentration between strong anions and cations
and the second is PCO2, which is tightly regulated by the ventilatory system. The third system is the concentration of weak
acids; serum proteins and the fourth system is the presence of other acids or bases that are not normally present in signif-
icant quantities. Local or regional acid–base balance has been incompletely understood. The human respiratory system—the
main controller of carbon dioxide transport has been monitored and has been modeled [1]. These studies showed that de-
creased blood flow increases CO2 storage in the pulmonary blood (high PCO2; factor 2) and H+ as a counteract (acidosis),
and then the respiratory center stimulated by acidosis increases the ventilation rate to increase blood pH by means of in-
creasing clearance of CO2 by lungs (respiratory compensation). This is an example of acid–base balance mechanism in the
closed condition.

On the other hand, acid–base balance mechanism is also studied in the open condition. In the paper [19], it has been
observed that exercising muscles may produce a large amount of lactic acid (extra acid out of bicarbonate buffer; factor 4)
so that it can induce acidosis, and this acidic change can also stimulate the respiratory center to increase the ventilation
rate for respiratory compensation as above. The mentioned studies can be examples of metabolic acidosis with respiratory
compensation. The compensation mechanism under the open condition has more complexity than that under the closed
condition. Consequently, it is hard to observe that the compensated pH is achieved only by respiration. The combination of
several changes, for example, the combination of an initial pH disturbance and compensatory change can be one of factors
to analyze acid–base balance in the clinical settings through the mathematical model. The present work focuses on the
long time evolution of the mechanisms of the bicarbonate reaction, under the open condition, responsible for systematic
acid–base balance in the blood. Our developed model aims to predict stability or instability of the bicarbonate system under
this condition.

An outline of the paper is as follows. Section 2 describes the experimental background of the bicarbonate buffer system.
The motivation and the result of this study are explained from the physiological point of view. In Section 3, a comprehensive
mathematical model incorporating reaction–diffusion effect is described. In Section 4, we restate the main result with
calculations to reduce the system of equations. Section 5 discusses the dynamics of kinetics differential equations, such
as equilibrium solutions and stability. Section 6 proves the stability of the system of reaction–diffusion equations.

2. Experimental motivation and main result

The bicarbonate buffer system that plays a key role in regulating blood pH is

H+ + HCO−
3

k1�
k2

H2CO3,

H2CO3
k3�
k4

CO2(d) + H2O. (2)

The first step is an ionic reaction and proceeds very fast. Without a catalytic dehydration of H2CO3 the second step is
slower and can be observed [16]. When the blood reaches the lungs, CO2(d) in the plasma at a partial pressure of 46 mmHg
equilibrates with the lower CO2 tension of the alveoli (40 mmHg) to bring the arterial PCO2 to 40 mmHg [18]. Most of CO2
is present as CO2(d) and very little as H2CO3. The ratio of CO2(d) to H2CO3 in the plasma is approximately 700 to 1 [18].
At 37 ◦C, the half-time of the uncatalyzed CO2–HCO−

3 reaction under physiological conditions with sufficient buffer power
in reacting solution to hold pH relatively constant is less than 3.5 sec [4].

In the theoretical studies, analysis of pH changes in blood has been partly obtained by focusing on gas exchange
[1,3,6,10,11]. The importance of these studies can be found in the fact that the respiratory system is one of the two main
control systems that maintains a constant pH environment in the body. In order to reach a deeper understanding of CO2
transfer, several mathematical models have been constructed with a set of ordinary differential equations. For example,
Geers and Gros [6], a theoretical model represents CO2 diffusion into blood with plasma and erythrocytes. It predicted the
complex interdependence of reactions and transport processes involved in CO2 exchange. A buffering mechanism through
hemoglobin has been investigated for finding the functions of the regulation of ventilation [1]. Their studies focused on how
diffusion and blood flow are related with the reaction in the theoretical model.

All of the previous models predicted local and regional acid–base balance in the theoretical setting. Some of them ana-
lyzed the acid–base balance through theoretical models, incorporating the spatial effect of diffusion during the bicarbonate
reactions. K. Uchida et al. [20] questioned what the effect of diffusion process in acid–base balance is: the pH change is
accelerated and determined only by the diffusion process of CO2 within a layer of hemoglobin solution. They found that the
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Table 1
At 37 ◦C, the reaction constants and initial values used in the simulations.

Constants/inital values Value Reference

k1 89 M−1 sec−1 [10]
k2 0.03 sec−1

k3 49.6 sec−1 [7]
k4 0.145 sec−1 [7]
[H+] 48 nM/l pH = 7.316
[HCO−

3 ] 30 mM/l
[H2CO3] 0.0026 mM/l
[CO2(d)] 1.836 mM/l PCO2 = 60 mmHg

pH rise observed in the CO2 diffusion out of the layer was slower than the pH fall caused by inward diffusion. As experi-
mental results, the diffusion coefficients of CO2 and [HCO−

3 ] of 100% hemolysate were 0.34 × 10−5 and 0.14 × 10−5 cm2/sec,
respectively.

The motivation behind developing our model is to explore a complicated mechanism of acid–base regulation, consider-
ing the bicarbonate buffer reactions with diffusion in the general domain, instead of the local and regional domain. The
model consists of four chemical concentrations [H+], [HCO−

3 ], [H2CO3], [CO2(d)] with six rate constants as variables and
parameters. Our assumption is that the chemical reactions occur under the closed condition. More precisely, it is assumed
that the total amount of [CO2(d)] is conserved by mass action law and the difference between the concentrations of cations
and anions is constant by law of conservation of charges. The resulting system of reaction–diffusion equations is formulated
by mass action law. This approach allows us to both qualitatively and quantitatively deal with the model that describes
the chemical reactions with diffusion. Compared to the previous models in the form of ordinary differential equations, our
model, established partial differential equations, makes it possible to predict the evolution and the spatial effect of the
dynamic behavior. The kinetic parts of our model are similar to those of the previous one, except the local compartment,
such as erythrocytes [6]. In their model, the elements of the reaction are [H+], [HCO−

3 ], and [CO2(d)], which are slightly
different from the elements of our model. Stability analysis of the developed model is carried out with the theory of partial
differential equations.

The parameters in the reactions are defined and are quantitatively illustrated with the relations to the directions of
reactions as follows. The forward (backward) velocity constants are denoted by k1, k3 (k2, k4). For the second reaction, the
average value of the constant k4/k3 is 1/440 [4]. Table 1 lists the values for all the constants and parameters used in the
simulation of our model. The constant k2 is computed optimally with the experimental result described before.

Our aim of the current work is to analyze whether our model is stable or not stable depending on reaction kinetics. Our
analytical treatment allows us to get two main results of the model. First, without diffusion, under the specific condition for
a rate constant, each concentration approaches its equilibrium concentration that we calculated explicitly. The specific con-
dition that we imposed is that amount of initial concentrations, which is perturbed around the equilibrium concentrations,
is strictly less than a certain constant depending on the velocity constant k1. Secondly, with diffusion effect, we obtain the
same result as before. In the case of non-diffusion, the theoretical finding agrees very nicely with the numerical simulations
of the model. The simulations is calculated by using Matlab solver ode23s with an appropriate choice of parameters and
initial values illustrated in Table 1. Initial concentrations is chosen in the set of values that satisfy the specific condition. The
initial values are chosen slightly outside of the normal range of acid–base balance; they represent acute respiratory acidosis
according to Fig. 51-1 in [21] (p. 591) or Fig. 32-15 in [2].

Figs. 1 (a) and (b) show the equilibrium state of [CO2(d)] and PCO2 in short time. In (c), pH is computed directly by
taking logarithm of the concentration hydrogen ion that we solved numerically, whereas in (d) blood pH computed by
the Henderson–Hasselbalch equations is implemented with the numerical solutions [HCO−

3 ] and [CO2(d)]. The difference
between them probably came from the equilibrium constant fixed to 6.103. The second graph was able to reach up to the
equilibrium state with the value 7.317 and went up only the value of 0.001. From the explicit formula that we suggest for
the equilibrium point, we find that the equilibrium constant K ′ , as shown in (1), is closely related to rate constants. In
other words, the constant K′ = u∞

1 u∞
2 /u∞

4 is equal to the ratio k2k4/k1k3 (u∞
i will be discussed in the next section). With a

choice of the parameter values in Table 1, the value of pK′ is computed as 6.18, which is close to the value 6.103 as shown
in Henderson–Hasselbalch equation.

Our findings show that the regulation of the bicarbonate system through the reaction–diffusion process under the closed
condition is very quickly achieved the equilibrium. This current theoretical work gives us the new insights into the physio-
logical mechanisms, and the prospects of the future experimental and clinical studies. Moreover, this result can be applied
to other problems containing diffusion phenomena with very similar diffusion rates in any one-dimensional space. Our find-
ing might be observed in experimental study. We thus propose to test how effectively the velocity constants are involved in
the change of the equilibrium constant K ′ in experiments.

Our assumption—the closed condition make it difficult to apply to the case where patients have a failure in respiratory
center or where patients have the presence of other acids or bases in significant quantities. The latter case can be produced
from certain poison, such as methyl alcohol, or salicylates. The limitations of the current study might be illustrated; (1) in
vivo is not fully replaced by in vitro; (2) other chemical buffer reaction mechanisms, such as Hb−/HHb, HPO=/H2PO4,
4
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(a) (b)

(c) (d)

Fig. 1. (a) Computed evolution of CO2. (b) Computed evolution of PCO2. (c) Blood pH (= − log10 [H+]). (d) Blood pH by Henderson–Hasselbalch equation
with computed [HCO−

3 ] and [CO2].

are not involved. We thus suggest that the future work should provide a more developed model containing other several
chemical buffers under the open condition. It is needed to discuss the regulation mechanism of the bicarbonate system in a
specific clinical setting.

3. Model description

This section develops a new model incorporated reaction–diffusion effect in the bicarbonate buffer system that we
mentioned earlier. The purpose of the present model is to describe the pH related to the bicarbonate reactions in the
closed condition. Brief explanation of model procedure is described below.

Suppose we have a complex chemical reaction containing N chemical species X1, X1, . . . , XN . Assume that M reaction
steps are taking place as follows:

N∑
i=1

α(i, j)Xi
k j−→

N∑
i=1

β(i, j)Xi ( j = 1, . . . , M). (3)

Here the positive values of k j are the reaction rate constants, and the nonnegative integers α(i, j), and β(i, j) are the
stoichiometric coefficients.

The reaction (3) is said to be mass conserving if there exist positive real numbers θi (i = 1, . . . , N) for which

N∑
i=1

α(i, j)θi =
N∑

i=1

β(i, j)θi ( j = 1, . . . , M).

We define the concentrations of species xi ≡ [Xi] as dependent variables and time as an independent variable. The mass
action type model of the reaction (3) is formulated as
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dxi

dt
=

M∑
j=1

(
β(i, j) − α(i, j)

)
k j

N∏
p=1

xα(p, j)
p (i = 1, . . . , N).

Based on mass action law, we present a working model including diffusion phenomena for the chemical reactions (2).
The model consists of four chemical concentrations. We define variables ui (i = 1, . . . ,4) as u1 ≡ [H+], u2 ≡ [HCO−

3 ],
u3 ≡ [H2CO3], u4 ≡ [CO2(d)]. With spatial coordinate x, the system of reaction–diffusion equations for the concentrations
ui(x, t) is

∂u1

∂t
= D1

∂2u1

∂x2
+ k2u3 − k1u1u2,

∂u2

∂t
= D2

∂2u2

∂x2
+ k2u3 − k1u1u2,

∂u3

∂t
= D3

∂2u3

∂x2
+ k1u1u2 + k4u4 − (k2 + k3)u3,

∂u4

∂t
= D4

∂2u4

∂x2
+ k3u3 − k4u4, (4)

where Di (i = 1, . . . ,4) are the diffusion coefficients of ui , respectively. It is assumed that all the diffusion coefficients are
equal: D1 = · · · = D4.

It is assumed that the nonnegative initial conditions

ui(x,0) = gi(x) (i = 1, . . . ,4)

are given and gi(x) ∈ L1(U ).
The carbonate system in natural water has been analyzed with a set of differential equation (Li and Wright [13]). This

model consists of six chemical species ([CO2], [H2CO3], [HCO−
3 ], [CO=

3 ], [H+]), which they participate in five chemical reac-
tions. Due to all species are in natural waters, they are subjected to both advection and diffusion influences. They proved a
global existence and uniform boundedness of the solutions to the carbonate system of parabolic partial differential equations
(Li and Wright [14]).

4. Main theorem

Before we present the main theorem, we make an important observation from our model under non-diffusive influence.
For the state equations, we find equations

∂(u2 + u3 + u4)

∂t
= 0,

∂(u2 − u1)

∂t
= 0.

The positive constants C1 and C2 are given by

C1 = u2(t) + u3(t) + u4(t),

C2 = u2(t) − u1(t) (5)

for all t � 0. Here C1 states that the total mass of carbon is conserved and C2 states that difference in concentrations of ion
and proton is conserved. We naturally assume that for the state equations

C1 = u2,0 + u3,0 + u4,0,

C2 = u2,0 − u1,0. (6)

For the reaction–diffusion system (4), the two constants are given by the average of corresponding initial conditions

C1 = 1

|U |
∫
U

[
g2(x) + g3(x) + g4(x)

]
dx,

C2 = 1

|U |
∫
U

[
g2(x) − g1(x)

]
dx. (7)

We introduce new variables z1, z2, z3 such that

z1 = u3 + u4, z2 = u4,

which reduce the system (4) to the two-dimensional system of the equations. Applying (7) to (4) and denoting Di = D yield
a set of the equations



150 S.J. Choi, J. Lim / J. Math. Anal. Appl. 356 (2009) 145–153
∂z1

∂t
= D

∂2z1

∂x2
− [

k1(2C1 − C2) + k2
]
z1 + k2z2 + k1z2

1 + k1C1(C1 − C2),

∂z2

∂t
= D

∂2z2

∂x2
+ k3z1 − (k3 + k4)z2.

This system can be simplified by introducing the dimensionless variable x̃ = 1√
D

x. Dropping the tilde, it becomes

∂z1

∂t
= ∂2z1

∂x2
− [

k1(2C1 − C2) + k2
]
z1 + k2z2 + k1z2

1 + k1C1(C1 − C2),

∂z2

∂t
= ∂2z2

∂x2
+ k3z1 − (k3 + k4)z2 (8)

with the initial conditions z1(x,0) = g3 + g4, z2(x,0) = g4.
We now state the main result for the stability analysis of this initial value problem. Here, we denote the equilibrium

point by z∞
i (i = 1,2), which these values are explicitly given in terms of C1, C2 in the next section.

Theorem 1. Let z1(x, t), z2(x, t) be the solutions of the initial value problem (8). Assume a vector y = (y1, y2) ∈ R3 such that z1 =
y1 + z∞

1 , z2 = y2 + z∞
2 .

Suppose that∣∣y(·,0)
∣∣ < σ/k1

with σ = min{|λ1|, |λ2|}, λi the eigenvalues of A, satisfying the following equation

∂y

∂t
= �y + Ay + f (y), (9)

where the matrix A = [ −[k1(2u∞
2 −C2)+k2] k2

k3 −(k3+k4)

]
and the function f (y) = [k1 y2

1,0]T .

Then

lim
t→∞ z1(x, t) = z∞

1 , lim
t→∞ z2(x, t) = z∞

2 .

As a result, it has been shown that using two conditions for C1 and C2,

u1(x, t) → C1 − C2 − z∞
1 = u∞

1 ,

u2(x, t) → C1 − z∞
1 = u∞

2 ,

u3(x, t) → z∞
1 − z∞

2 = u∞
3 ,

u4(x, t) → z∞
2 = u∞

4

as time goes to infinity.

5. The kinetics differential equations

Analysis of the model without diffusion is carried out by finding equilibrium points to the state system. This section
formulates a stable equilibrium solution in terms of C1 and C2 and investigates the stability of the state equations model.

5.1. Equilibrium solutions

The state equations become

du1

dt
= k2u3 − k1u1u2,

du2

dt
= k2u3 − k1u1u2,

du3

dt
= k1u1u2 + k4u4 − (k2 + k3)u3,

du4

dt
= k3u3 − k4u4. (10)

To formulate the equilibrium solutions to the system (4) (or (8)), let us write the equilibrium points as E0 =
(u∞, u∞, u∞, u∞) to the system of equations.
1 2 3 4
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The equilibrium point is

u∞
2 = 1

2

[(
C2 − 1

d

)
+

√(
C2 − 1

d

)2

+ 4C1

d

]
, (11)

which is stable, where d = k1
k2

(1 + k3
k4

). We skip the details for calculations.
Consequently, using (5) we find one positive equilibrium point E0 in terms of u∞

2 :

E0 =
(

u∞
2 − C2, u∞

2 ,
k1

k2

(
u∞

2 − C2
)
u∞

2 ,
k1k3

k2k4

(
u∞

2 − C2
)
u∞

2

)
.

These points can be rewritten for the reduced system

dz1

dt
= −[

k1(2C1 − C2) + k2
]
z1 + k2z2 + k1z2

1 + k1C1(C1 − C2),

dz2

dt
= k3z1 − (k3 + k4)z2. (12)

The equilibrium points are defined as z∞
1 = u∞

3 + u∞
4 , z∞

2 = u∞
4 . We thus have the following result.

Proposition 1. There exists a unique stable equilibrium point to Eqs. (12) (or (10)).

5.2. Stability

We prove the stability of the equilibrium solutions to the reduced system (12). The idea of proof is based on an earlier
result (Lim [15]) regarding the general chemical reaction X1 + X2 � X3. We will utilize the Liapunov function [9, p. 293] to
derive the global stability for the ordinary differential equations model.

Theorem 2. Assume that z1 , z2 are the solutions of the initial value problem (12). Assume a vector y = (y1, y2) ∈ R2 such that
z1 = y1 + z∞

1 , z2 = y2 + z∞
2 .

Assume that∣∣y(0)
∣∣ < σ/k1

with σ = min{|λ1|, |λ2|}, λi the eigenvalues of A, satisfying the following equation

dy

dt
= Ay + f (y), (13)

where A and f are the same as before.
Then

lim
t→∞ z1(t) = z∞

1 , lim
t→∞ z2(t) = z∞

2 .

Proof. We outlines our proof as follows. We first perturb the equilibrium point of (12) and find the linear part of the new
system, called a matrix A. We observe that A has negative eigenvalues and prove that by applying Liapunov’s method, the
diagonalized system is stable.

We introduce new variables yi (i = 1,2) to perturb the equilibrium point in the system (12) with

z1 = y1 + z∞
1 , z2 = y2 + z∞

2 .

Thus a new system takes the form of the equations

dy1

dt
= −[

2k1
(
C1 − z∞

1

) − k1C2 + k2
]

y1 + k2 y2 + k1 y2
1 = −[

k1
(
2u∞

2 − C2
) + k2

]
y1 + k2 y2 + k1 y2

1,

dy2

dt
= k3 y1 − (k3 + k4)y2. (14)

The condition C1 = u∞
2 + z∞

1 is used to derive the first equation.
Finally we rewrite the system in the form of matrix equations

dy

dt
= Ay + f (y), (15)

where the matrix A = [ −[k1(2u∞
2 −C2)+k2] k2

k3 −(k3+k4)

]
and the function f (y) = [k1 y2

1,0]T . We note that the system is asymptoti-

cally stable if all eigenvalues of A have negative real parts.
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We begin the stability analysis by checking that all eigenvalues of A have negative real parts.
The characteristic equation to the matrix A is

h(λ) = λ2 + Eλ + F = 0,

where E(= − tr(A)) = k1(2u∞
2 − C2) + k2 + k3 + k4, and F (= det(A)) = k1(2u∞

2 − C2)(k1(k3 + k4) + k2k4). We observe that
the constants E and F are positive provided that the inequality 2u∞

2 − C2 > 0. It is easy to check that since C2 � 2C1. Thus,
the equation has negative real parts of all the roots and then all the eigenvalues of A have negative real parts. We note that
A is diagonally dominant and thus A is nonsingular.

To diagonalize the system (15) we change the variable y = P ỹ. We drop the tilde and obtain a new equation

dy

dt
= P T A P y + g(y), (16)

where P T A P = diag(λ1, λ2), P T = P−1 and g(y) = P T f (P y).
Thus the system above can be expressed in the form of[ dy1

dt
dy2
dt

]
=

[
λ1 0
0 λ2

][
y1
y2

]
+ k1

[
p11 y2

p

p12 y2
p

]
. (17)

Define a positive definite function V : U ⊂ R2 → R as

V (y) = y2
1 + y2

2.

We claim that V is a Liapunov function.
To show that dV

dt < 0, we compute

dV

dt
= 2

[
y1

(
λ1 y1 + k1 p11 y2

p

) + y2
(
λ2 y2 + k1 p12 y2

p

)] = 2
(
λ1 y2

1 + λ2 y2
2

) + 2k1(p11 y1 + p12 y2)
3

� −2σ
(

y2
1 + y2

2

) + 2k1
(

y2
1 + y2

2

)3/2 = −2σ
(

y2
1 + y2

2

)(
1 − k1|y|

σ

)
< 0, (18)

where σ = min{|λ1|, |λ2|}, provided |y| < σ/k1. Here the first inequality is obtained by applying Minkowski’s inequality.
More precisely,

(p11 y1 + p12 y2)
3 �

(
p2

11 + p2
12

)3/2(
y2

1 + y2
2

)3/2 = (
y2

1 + y2
2

)3/2

since P is an orthogonal matrix.
Thus we conclude that y1 → 0 and y2 → 0 as t → ∞. That is,

z1 → z∞
1 , z2 → z∞

2 ,

as t → ∞, where z∞
1 , z∞

2 are shown before. �
6. Stability of the reaction–diffusion equations

Proof of Theorem 1. It is enough to prove that the reaction–diffusion system corresponding to (17) is stable for all times.
The reaction–diffusion system takes the form of

∂ y1

∂t
= ∂2 y1

∂x2
+ λ1 y1 + k1 p11 y2

p,

∂ y2

∂t
= ∂2 y2

∂x2
+ λ2 y2 + k1 p12 y2

p (19)

in a domain Ω = U ×[0,∞). Here the values λi (i = 1,2) are eigenvalues of the matrix A, as shown in (15), and the variable
yp and constants p11, p12 are defined in the previous proof. The nonnegative initial conditions are given by gi(x) = yi(x,0)

(i = 1,2) and gi ∈ L1(U ).

We use the same positive definite function V (y) = y2
1 + y2

2, as shown in the previous proof.
We first show that

Vt � V xx − mV (m > 0). (20)

Direct calculations yield

V x = 2[y1∂x y1 + y2∂x y2],
V xx = 2

[
(∂x y1)

2 + (∂x y2)
2 + y1∂xx y1 + y2∂xx y2

]
.
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Using these equations, we obtain

Vt = 2
[

y1
(
∂xx y1 + λ1 y1 + k1 p11 y2

p

) + y2
(
∂xx y2 + λ2 y2 + k1 p12 y2

p

)]
= V xx − 2

[
(∂x y1)

2 + (∂x y2)
2] + 2

(
λ1 y2

1 + λ2 y2
2

) + 2k1 y3
p

� V xx − mV ,

where m = 2σ(1 − k1|y(·,0)|
σ ) > 0 provided |y(·,0)| < σ/k1. The last inequality is obtained from the result in the proof of

Theorem 2.
Now, applying the Weak Maximum Principle [5, p. 369], we have

0 � V � C,

where C = max V on the parabolic boundary Γt = Ū T − U T with U T = U × (0, T ].
Remembering m > 0, we see that in shorter periods of time, Vt � V xx.

Thus,

V (x, t) <
∥∥V (·,0)

∥∥
L∞ <

(
σ

k1

)2

.

Since V = |y|2, we have |y(x, t)| < σ/k1 for all t � 0.
Let Ṽ = emt V . Then we see that Ṽ satisfies Ṽ t � Ṽ xx by (20). Thus we have emt V � ( σ

k1
)2, which leads to

V � e−mt( σ
k1

)2 → 0, as t → ∞. Consequently, y1(x, t) and y2(x, t) converge to zero as t → ∞. Hence our assertion is
proven. �
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