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For any pair of division rings K and F with K> F and dim, K = r we determinc
all the overgroups of SL(n, K) in GL(nr, F), as well as the overgroups of Sp(n, K)
in GL(nr, F) (for commutative K and even n). The overgroups of SU(n, K, /) and
Q(n, K, Q) in GL(nr, F) will be dctermined in another paper, “Overgroups in
GL(nr, F) of certain subgroups of SL(n, K), II". 1989 Academic Press, Inc.

Let K, F be division rings, with K> F, and dim,K=r<x when we
regard K as a left F-space. An n-dimensional left K-space V(n, K) can be
regarded as an nr-dimensional left space V= V(nr, F) over F; thus the
GL(n, K) acting on V(n, K) is embedded in the GL(rr, F) acting on
Vinr, F). The purpose of this paper is to determine the overgroups of
N=SL(n, K) in G=GL(nr, F), and the overgroups of N, =Sp(n, K, f} in
G =GL(nr, F) for commutative K, even »n, and any non-degeneratc
alternating K-form /. For finite fields K there has been some related
work. Kantor [2] determined the overgroups of GL{1,q") in GL(r, g4)
and thus determined the overgroups of GL(n,q") in GL(nr,q)} (since
GL(n,q")>GL(1, ¢™)). Dye [3], [4], [5] studied the maximality of the
normalizers of Sp(n, ¢") in Sp(nr, q) for prime r=2 or 3. In this paper we
shall settle all the cases for all the division rings and all dimensions n>2
(thus the only remaining task is to determine the overgroups of SL(1, K)
in GL(r, F)). Applying our main results to the special cases for finite K and
prime r we obtain the maximality of the subgroups in Aschbacher’s class
C, defined in [1].

I am indebted to G. M. Seitz for his helpful suggestions.

The main results of this paper are as follows.

THEOREM 1. Let N=SL(n, K)SXX<G=GL{(nr, F); then one of the
following holds
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(1) SL(nd, E)=2a X < GL(nd, E)x Aut E/F for a division ring E inter-
mediate between F and K, where d=dim K.

(i) »n=2, K is commutative, N= SL(2, K)=S8p(2, K, f) for any non-
degenerate alternating K-form f, and X = Sp(2d, E. f,) for an intermediate
field E (F< EC K and d=dim ;K) and an alternating E-form f,.= @ f with
0+# ¢ Hom (K, E).

(ili) N=SL(2,4)=As; and G=GL(4,2)= A, X=(Sp(4,2)) = 4,,
or X=A,.

COROLLARY 1. Let F be a maximal division subring of K, GL(nr, F) 2
G* = SL(nr, F), then the normalizer M of SL(n,K) (n=22) in G* is a
maximal subgroup of G*, provided G* =M -SL(nr, F), with an exception
SL(2, K)=Sp(2, K) and Normg,{det G*)< F* (where Normy, denotes
the norm mapping of K into F). When SL(2,K)=Sp(2,K) and
Norm g {det G*) = F* we have M < (GSp(2r, F)xAut K/F)nG*5 G*
thus M is not maximal in G*.

THEOREM 2. Let K and F be commutative fields with K> F and
dim.K=r<oc, n=2v be even, N,=Spn K, f)<X<G=GL(nr, F),
then we have an intermediate field E between F and K (with dim, K=d)
such that (i) SL(nd, E) S X < GL(nd, E)x Aut E/F, or (ii) Sp(nd, E, f,.) <
X <GSp(nd, E, f) 2 Aut EfF relative to an fr=qpf for a 0#q@€
Hom (K, E), except in the case (iii) N,=SL(2,4)=A; and G=
SL(4,2)=Ag, X=(Sp(4,2)) = Ag or X=A,.

COROLLARY 2. Let F be a maximal subfield of K, G Sp(2vr, F)=G* >
Sp(2vr, F), then the normalizer M of Sp(2v, K) in G* is a maximal subgroup
in G*, provided G* =M -Sp(2vr, F), except in the case G* =Sp(4,2) and
M =Sp(2, 4).

The proofs in this paper are mainly based on matrix techniques. We need
the following notations for vector spaces and matrices. For any division
ring E, E-spaces will mean left vector spaces over E. {S)  denotes the left
E-subspace spanned by a subset .S of an E-space; specifically, we write (5>
instead of {S),. For a ring R, we denote by Mat,,, , R the set of all mxn
matrices over R, and we write Mat,, R instead of Mat,,, ,, R. We write
A"m (resp. AY) to suggest that AeMat,,, , F (resp. AeMat,, F).
A"eMat, ., R denotes the transpose of 4eMat,,,, R. We denote by
diag(4,, ..., A;) the quasi-diagonal matrix with A, ..., 4, as its diagonal
blocks. I and 0 denote the identity matrix and zero matrix, respectively,
E,eMat,, ., R denotes the matrix in Mat,,,, R having a single 1 as its
(i, /)th entry and all other entries zcro. When k#/ we denote by
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P,,e GL(n, R) the matrix P,,=I—E,, — E,+ E,,— E,; in GL(n, R), and we
define P, =1, thus P,eSL(n R) anyway. For k#! and ceR,
T(c)e SL(n, R) denotes the matrix T, (c)=1I+ cE,, in Mat, R. When R is
a division ring, Ty(c)e SL(n, R) (with ¢#0) is a transvection of SL(n, R),
and all T,{c) (k+#1/, 0+ ce R) generate SL(n, R). When we write 7, ,(4"")
it suggests that T,(4"") e Mat,(Mat, F), namely, T;(4"") = (C{), ., with
the (&, /)th block C,,= A4, the blocks C,;=1 (1<i<n), and all other
blocks C;;=0. For cach A4e Mat,, ., F, Im 4 and Ker 4 denote the image
and the kernel, respectively, of the associated F-linear mapping
Mat,,,, F>Mat,,,F: x+—xA4; we have dim.Im A4=rank A and
m=rank A +dim, Ker 4.

Notations of group theory are as usual. For example, {S) denotes the
subgroup generated by a subset S of a group; X' x Y denotes a semi-direct
product of X by Y; X’ denotes the commutator group of X, generated by
all the commutators [ g;, g.1=g, '¢, ' g, &> with g,, g,€ X; for a group
X acting on a set S, X, 5 consists of all the elements in X stabilizing each
of the subsets 4, B, ... of S.

Now we come back to consider our F-space V = V(nr, F) obtained from
V(n, K). Take a left K-basis {e,,..e,} of V(n, K) and a left F-basis
{ki,..k } of K, then {e,=k,e,|1 <i<n, 1 <j<r} forms an F-basis of V.
With respect to this basis we write all vectors in V' = V{nr, F) as nr-dimen-
sional rows (ie., write ¥V as Mat, ., F) and write each ge GL(nr. F) as a
matrix in Mat,, F, sending each xe V' to xg. When v1ewmg K as a left
F-space we write K as K and denote each X =c¢, k, + --- +¢,k,e K (with
all ;e F) by x=(c,, .., ¢,}e Mat, ., F, thus xdenufymg K with Mat,, F.
On the other hand, each 9 € K can be viewed as an F-linear transformation
%+ x0 on K identified w1th the matrix 0" e Mat, F of this transformation
relative to the basis {k;,..k,}. In this point of view we have
Mat, K< Mat, (Mat, F)= Mat,,, F; thus each 4 € Mat, K=Mat,, F has a
rank A over F and a rank, 4 over K, and we have rank 4 =r - rank A.
We shall also write each 6 € Aut K/F= {oceAut K|a"=a for all ae F} as
the matrix ¢ of the F-linear transformation X+ %° on K relative to the
basis {k,,...k,}. We point out that the normalizer of K* in GL(r, F) is
K*x Aut K/F. We shall also regard Aut K/F as a subgroup of GL(nr, F),
cach geAut K/F sending each v=0,e,+ --- +6,¢,€ V(n, K} {with all
0.eK) to 07e,+ --- +6%,, having the matrix ¢’ =diag(c"”’, ..., ¢'").
One can see that thc normalizer of N=SL(n, K} in G=GL{(nr, F) is
I'=GL{n, K)x Aut K/F.

For each intermediate division ring E (i.e., a division ring E with
FC EcK), we can take a pair of bases {w,..,w,}, {&/..,¢&,) of
K/E, E/F, resp., to construct a basis {e;w,|1<i<d 1<j<h}=
{E1W s s EaW 1y E1Way cey E4Way ey 8y Wy ey €, Wy, oy E4W,) Of K/F. With
respect to this basis we have K< Mat, E, namely. each 6 e K has the form
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0= (2;)4xa With each a{" € E, where we regard E < Mat, F by identifying
each a € E with the matrix a) of the F-linear transformation x— xa on E
relative to the basis {e,, ..., &,} of E/F.

For each group X between N =SL(n, K) and G = GL(nr, F) we hope to
find an intermediate division ring E, such that SL(nd, E)sX<
GL(nd. E)x Aut K/E (where d=dim, K). The following lemma will be
useful in finding such E.

LEMMA 1. Let 0# AeMat, F, rank A<r, and for all 0e K assume
either ABA =0 or rank(A404)=rank A, then Ker A and Im 4 are subspaces
of K over the division subring E of K generated by all ff,"', with f€lm 4,
Sor any given 0# B, eIm A. We can choose suitable bases {w,, .., w,} and
{e1, &4} of KIE and E[F, tesp., to construct a basis {e;w; |l<l<d
1</<h} of K/F to replace {ki,..k,}, 10 reduce A to the form (*"™" ;)
(when A2 #0) or (; ") (when A2=0) with € GL(h, F).

Proof. Denote U= Ker 4, then 0 <dim, U <r. For each =4, 'ue K
with ue U, we have /J' ()—ueU thus [i 0A =0, which implies that the
F-linear mapping ¢:Im 4 > K defined by ¢(X)=Xx0A has Ker (paﬂl,
thus Ker ¢ #0, rank(404)=dimg(Im ¢)<dim,(Im 4)=rank 4. By our
assumption we must have 464 =0, Im ¢ =0, [)’/f,'lu—/}OEKerA for all
ﬁe Im A. This shows that fif, ' Ufor all [}elm A, EU< U for the ring
E generated by all 8, ([feIm A). Since FEF= K and dim.=r< oc we
know E is a division ring. U=Ker 4 is a left E-subspace of K, dim;U=
(1/h) dim U = (1/h)(r —dim {Im A))=d — (1/h) dim {Im A), where h=
dim, E and d=dim K. But 0#Im A< Ef,, thus 0 <(1/4) dim{(ImA) <
(1/h) dim {EB,) = (1/h) - h=1; since (1/h) dim {(Im A)=d —dim, U should
be an integer we must have (1/4)dim{Im A)=1. Im A =Ef, a 1-dimen-
sional E-space, and dim.(Ker A)=d— 1. Take an E-basis {w, .., w,} of
K, with Ew, @ --- @ Ew,_,=Ker A and Im A= Ew, (when A%#0; thus
ImA & Ker A) or Im A= Ew, (when A?=0; thus Im 4 < Ker 4), and
take any F-basis {¢,,..,¢,} of E; then replacing {k,..,k,} by
{e,w;|1<i<d, 1 <j<h} we reduce 4 to the needed form.

We shall also need the following lemma.

LEmMMmA 2. Let T, be a transvection of SL(n,K), n=3, and
T,=g,Tog, '€l'y, for a g €eGL(nr, F); then T, is a transvection of
SL(n, K).

Proof. T\ely,, thus T, =(8,0),,, for a ¢"”eAutK/F and a
(09),xn€GL(n, K) with all 6,;=0 (2<j<n). Since T, is a conjugate
of T, in GL(nr,F), from (T,—I1)*’=0 and rank(T,—I)=r we
know (7,—I1)*=0 and rank(7,—I)=r. If we can show o=1,
then 7T, e GL(n, K); from (T,—D>=0 and rank (T, —1I) =
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(t/r)rank(T, —I)=1 we know T, is a transvection of SL(n, K). If 6,#0
for some i#j and j=2, we have r=rank(T,—I)=rank(f,, 06 —1)+
rank(6,0)=rank(6,;,6 —I)+r, thus rank(8,,6-1)=0, 0,,6=1 o=1
as desired. Suppose 0,=0 for all i#,; and ;>2, then we
have r=rank(T,—1)2Y"_,rank(6,0—171). We cannot have all
rank(0,06 — I) = r/2, otherwise ¥ 7_, rank(8,0 —I)=nr/2>r, a contradic-
tion. So we have rank(fo — I) < r/2 for 8 =0,¢ K* for some i. The solution
space U= {xeK|X(0c —I)= 0} has dim,U =r—rank(f¢ —I) > r/2, thus
UnUb+#0 for any 0#£hbhe U, abe U for some non-zero a, he U. Note that
for each xe U< K we have %(fc —1)=0, (x8)° =x, xf =x° ', especially
abl = (ab)’ ' =a’"'b° '=abbh, § =1, thus U= {x° = x|xe K} is a division
subring of K with dim,K=dim K/dim, U <2, thus dim K=1, U=K,
o =1, as desired.

1. OVERGROUPS OF SL(n, K) IN GL(nr, F)

We statc and prove the following lemma and Lemma S in Section 2 in &
general way so that we can also usc them in somc other papers.

LemMa 3. Let R be a ring with 1, D a division ring lying in R as
a subring. Let n=23, I' be the normalizer of GL(n, D) in GL{n, R),
g1=1(a;),x,€GL(n, R\NI' with all a;=0 (2<j<n), Y=(SL(n, D),
g:SL(n, D) g, '>. Then Y contains Tc) for all i+ j and all ¢ in a subring
L of R containing D properly.

Proof. Let L={ceR|T,(c)eY}. Considering the conjugates of all
T,(c)eY(ceL)byall P,e SL(n,D)< Y weseeall T{c)eY (i#j,ceL)

For any a,belL, we have T,(a+b)=T,(a)T,(h)t'eY, thus
at+beL. And since n>=3 we have T, (ab)=[T,(a), Ty (b)]e Y, thus
ab e L. These entail that L is a subring of R.

L2 D trivially,. We need to show that L +# D, namely, to show the
existence of some T,,(c)e ¥ with c¢ D. Since g,=(a;),.,€GL(n, R\I
with all a,,=0 (j>2), we have g ' =(d;),.,€ GL(n, R\[" with @,, =a[}’
and all ,,=0 (j>2). For each 2</<n and 0 e D*, consider

1
b, 1

L= Tn0)g'= :2 . ey,
b, 1

with b,=a,0a;' for 2<i<n If we can choose / and § to make some
by, ¢ D, then replacing g, by P, g,P5'eY (for P, e SL(n, D)< Y) we
may assume that b,¢D, T,,(1)g,T(—1)g; ' =T, (b,)eY is just
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what we need. Suppose b,=a;0a;;' € D for all chosen i, j>2 and Oe D.
Putting 0=1 we see 0, =a,a,,'€ D for all i, j>2. Since g, is invertible
we must have some a,#0 (k>2), thus 6,=aa;'eD*
a,0a'=05"a,0a,,'eD for all feD. Now a,SL(n D)aj'=
SL(n, D), g, SL(n, D) g7 '=(g,a;,") SL(n, D)(g,a,,')”", we can replace
g, by ga,,' to reduce to the case a;; =1 without changing Y. Now we
have all a;=aga,' €D (i, j>2). Take B=(a;),<, <»€GL(n—1, D), and
take z=({ 5)€ SL(n, D) for a suitable /. € D*. Replacing g, by z "'g,, we
reduce to the case

with some a, ¢ D (k >2). Replacing such g, by P,, g, P;,' we may assume
a,¢ D, thus T, (1) g, T, (—1) g7 ' =T, (ayA)€ Y, with a,4¢ D, as desired.

Proof of Theorem 1 (for the case n23). Let SL(n, K)< X< GL(nr, F).
Choose a minimal intermediate division ring £ (between F and K) such
that X> SL(nd, E) (where d=dim;K). If E=F, the theorem holds
trivially. Suppose E2 F; then we can replace K by E. Namely, we may
assume that there is no SL(nd, E)< X with Ec K. It suffices to prove
SL(n, Ky=a X< I'=GL(n, K)»xAut K/F. Suppose X< I'; we try to find an
SL(nd, E)< X with E< K, thus obtaining a contradiction. To do this we
try to find an E-transvection T (i.e., a transvection T of SL(nd, E}) in X,
from which it may be seen that all the E-transvections lie in X, lcading to
SL(nd, E)< X as desired.

Take a g, =(AY"), ., € X¢ony, . eny\” With maximal k <r. We prove that
k =r. Suppose k <r—1; we try to obtain a contradiction. Denote by u,, the
((i—1)r+ j)th row of g, (ie., the jth row of (4;,,4,,---4,,)). We can take
ze SL(n, K), sending u,, to e,; thus g,ze X, \I, which says that k> 1.
Now we can take z € SL(n, K), fixing ¢, (thus fixing u,,, ..., ¥, lying in Ke,)
when sending u, ., , into Ke, ® Ke,. In g, z= (Bf.j”),,x,, the block B,, has
the first k + 1 rows zero, thus g,=(g,2) T,, (/"' )(£:2) "' € X (o, . crir >
By the maximality of £ wec must have g,el, g,=(0;0),,, for a
o’ e Aut K/F and a (8,), . ,€ GL(n, K). Since all the blocks 0,,6 (2<<n)
have the first k + 1 rows zero, thus are singular, we must have all 6,,=0
(2<j<n), gyelg,. By Lemma2 we know g, is a transvection of
SL(n, K), z,8,27'=T,,(I) for a z,eSL(n,K), T, (I”)=z,g,z, "=
§iT,(I7)g;" for §,=z,8,ze X\I', and we can see g, € Xy, from
(T, ,(I"Y=D g, =g (T, (I'")=1), k=r as desired.

So we have g,=(Af.jf’)"x,,eXKe,\1“. Applying Lemma 3 to the case
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R=Mat, F and D= K we know that T,,(4"”)e (N, g,Ng, > <X for all
A in a ring L =Mat, F with L2 K. For any Ae L\K we can take e K
having the same first row as A, thus 4 —0e L has the first row zero,
0 <rank(4 —0) <r. Choose an 4 €L with smallest rank 4 =h>0, then
h<r. We can choose an ze K* sending a non-zero row B, of 4 to
Bia¢Ker A, thus B,0d#0 AxAd+#0, (Ax)>#0, and rank(Ax)=rank 4;
replacing A by such Ax we may assume A?#0. For all 8¢ K we have
AO0A e L and rank(A404)<rank A; by the minimality of rank 4 we have
either rank(460A4)=rank 4 or A0A4=0. By Lemma 1 we know that Ker 4
and Im A are subspaces of K over the division ring E generated by all BB,
with Belm A4 (for a non-zero f,eIm A), with dim (Ker A)=dim, K~ 1
and dimg(Im 4)=1. And we can take a pair of bases {w,, .., w,} and
{¢y,...€4} of K/E and E/F, resp., with Ew, @ --- ® Ew,_; =Ker 4 and
Ew,=Im A, to construct a basis (¢;w,|1<i<d, 1<j<h} of K/F to
replace {k,, .., k,} and thus to reduce 4 to the form (° ;). We can choose
an « e E* having the same first row as 6, and can choose a
07 =(0;),.s€ KcMat, E with f,=2 and all 6,=0 (1<j<d—1)
Now 42— A0=(° ,)eL with §,=6(6—a) and rank(4*—A0)=
rank(é —a) < h. By the minimality of rank A =h we must have J, =0,
d=aeE* Now T, (4)=T,,((° ,)) € X is a transvection in SL(nd, E). For
each 1< p, g<d and se E* we can choose 0, = (2;)4.4 and 6, =(8,)yx
in K< Mat, E, with all a,,=f,=0 (i#p, j#q), a,,=s, and B, =2"";
thus 0,40,=E_ (s)e L, where we denote E,(s)=sE, eMat,E. X
contains all the E-transvections T,/(E,(s)) (k#/), and it contains
[Tkl(qu(S))’ le(qu(I))] = dlag(Dl PR Dn) when 4 # q, with DLr) =
T,,(s") and all other D{"’ =1 Now X contains enough E-transvections to
generate SL(nd, E), X = SL(nd, E), but E % K, contradicting our assump-
tion, as desired.

Proof of Theorem 1 (for the case n=2). The case K=F, (ie,
GL(nr, F)=SL(4,2)) can be settled by considering the isomorphism
SL(4, 2)= Aq; thus it will be excluded in the following discussion.

We still suppose X contains no SL(2d, E) (d=dim, K) with E< K, and
suppose XS I'=GL(2, K)x Aut K/F. When K is commutative we have
SL{2, K)=Sp(2, K, f) for any nondegenerate alternating K-form [ (we
choose f(e,,e;)=1), and we have Sp(2, K, f)<Sp(24, E, f) for each
intermediate field E (F< E< K, d=dim  K) and each alternating E-form
fe=@g f with 0 @€ Hom (K, E). Those X containing an Sp(2d, E, f¢)
with d = 2 will be determined in the proof of Theorem 2 in Section 2 of this
paper, which should normalize an Sp(2d,, E,, f,) or an SL(2d, E,) for a
field E, between E and K, with dimz K=d,. So we need only consider
those X containing no Sp(2d, E, f;) with Es K. Take any g, € X\[, then
g, does not stabilize the K-structure V(2, K); namely, (Ku) g, # K(ug,) for
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some u#0. Since N=SL(2, K) is transitive among non-zero vectors in
V(2, K), we can find z,, z,e N with u=e¢,,z, and ug,z,=e,,; replacing g,
by z, g,z,€ X\I', we may assume ¢,, g, = e,, and (Ke,,) g, # Ke,,, namely,
g1=(A4)2.2€X,, with 4,,#0 and rank 4, <r (since 4, has the first
row zero) So we can choose g —(A "), .2 € X with smallest rank 4,,=
h>0 and with h <r. Also, g —(A"’)“zeX has the block 4, #0. Con-
sider g,=g,(0)=g,(; ))& '=(B{),.,€ X with 6" e K; we can choose
8=0, to make B,2—A1290A12;é0 Since 0 <rank B, <rank A, =h we
know rank B,, =h by the minimality of rank A4,, =4, and we can replace
g, by g,(0,) to reduce to the case g, '=2/—g, (since g,(0,) '=
g2(—0,)=2I— g,(8,)), and especially 4,,= —A,,. Now for such g, we
have B,,= —A4,,0A4,, in g,(8); by the minimality of # we must have either
rank(A4 ;04 ;)=rank A, or A,,04,,=0, thus Lemma | applies, so we
can reduce to the case A,=4,=(; “ ") or 4=4,=(""" ) for a
3e€GL(h, F) by replacing the basis {k,,..k,} of K/F by the
{e;w,]1<i<d, 1<j<h} obtained from a pair of bases {w,,.., w,},
{1, ... &} of K/E, E/F, resp., for the division subring E generated by all
BB with ﬂeImA (for a ngen 0+#p,eIm A). For each (4. %eX
we have £,(C)=g(( 7)gr "= (5 5= L5504 (e X
Specifically, we have gz(()) e X for all 0 e K. We can choose 8 =0, € K with
A,004,,#0; replacing g, by g,(8,) we reduce to the cases 4,, = (", " )
and Ay, = (2 ;"n) (When A;;=4,) or Ay, =("," 7) (when 4,,=4,).
For each a € E we shall denote

x 0 0
Ma)y=w, 'aw, = * * ek,
* *
* *
Al@)=w; 'aw,= : ek
* *
0 0 «
* * o * *
. . . 0 : :
ey = -+ 1 [ ]eK, and npla)=w)'ow,=|" “lek.
: * *
* * 0 a 0 0

We prove that when E#F, we can always find an (] #”)e X with
0 <rank B<# (thus rank B=#h, by the minimality of /) to replace g,, to
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reduce to the case g, (5 “1). First we consider the case 4,,=(, °). Take

ag =8l Der'=(3 g,)eX for each

x 0 0
) x ... ¥ i
)= . . S ek
* * ),d/
with
I
! 0 ]
= An
B\ = - and BY) = . . ,
B I - '
a - /.(l () 1

and take g5=[(/ 9, g.1=1(5 9)eX with B=B3}'B,, -I=B,, — B, of
rank <h. If we can choose « to make B=#0, then (§ %)=
(, 59 ' HeX can replace g,. as desired. When char F#2 we
just take a =1, i(x) =1, B=(,; °)#0. Supposc char F=2 and suppose we
cannot choosc B #0, then B-—-O for all chosen x€ E, thus

Bzz:Bu: »
o I

all /._0 (2</<d—l) and s, =06ad"", dué~ '€ £ for all xe E. Now we
take [(:(s 7). g&21=1(( 9)e X for each

By o LauB) B

py=| . ) . |e K Mat,E,
* * 0

(where we denote by £,(f) (1 <j<d—1) the (1, j)th entry of {(f) e Mat E,
which is a function of §), with

Box
0
=C(x )= By,'E() B, —<(B) = : 0
0
Soff dx+ 6al () --- Oaf

481/125/t-15
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dependent on a, Be E. For cach B, se E* we choose =3 'f 'ds (note
that '8 '€ E*, thus 6 !B ! dse E*), thus f éa = s is independent of
the choice of f; we have () NV=0(cu ' 1onp Newry DEX, with
A=A(s,B)=C(6 'B '6s,8)+ C(s,1) dependent on s and fB, and
rank 4 < h. If we can choosec 4#0, () 7)€ X can replace g,. Suppose we
cannot do this; then for all chosen s, § we have 4=0, C(6 '8 'ds, )=
C(s, 1). Specifically, -6 'B='ds-=6-s-1, sps '=56""#J. This also
holds for s=1, thus 6 'B6=sBs '=p, E is a commutative ficld, and ¢
centralizes E and thus lies in E*. From C(B~'s, B)=C(6 'B 'ds, B)=
C(s,1) we also obtain %28 ' + dsp™'¢\(B) = 8%% + ds& (1),
Ss(B~ 4+ 1)=B 'E(By+E,(1)=8(B "+1), but when E#F, we can
choose s#1 and f#1, thus és(f~"'+1)#8(8 '+ 1), a contradiction as
desired. Now consider the case 4,,=(° ;). We take g,=g,(,5,, D &, '=
21 0)e X for each

By By
* ek n(2)
nla)= ) : € K< Mat,E,
* ke (2)
with
/ 1 ‘ “’71‘(0‘)5
Bll: .'. and Bzz= : .
Su / —Nu -11(05)‘)

then take g;=[(,{, 1), g21=(5 §) e X with

ni(a) & +1n,(1) o

0
B=B3"n(1) By —n(l)= . .
2 ! Mo 1(2) 8 +1,_1(1) 2

0 e 0

of rank <A, and we need only to choose B # 0. Since (1) e K* is invertible
we must have n,(1) #0 for an /. When char F#2 we take 2 =1, thus

2n,(1)
: 0

: £0
2n,- (1)

0 e 0

(sincc 2n,(1)6#0). Suppose char F=2 and suppose B=0, then all
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n(x)6=n,1)dx (1<j<d—1) for all xeE, and we see dad '=
n(1) 'm(2)eE for all ae E. Now we take [(4/5 ), £2]1=(/ §)eX for
each

* o AYp)
agy={ . A B e K < Mat £,
0o ... B

with

=C(x, B) = B3, A(B) B\, — A(B)

A(B)+n,(1) oxf) oa ni(1) oxf
: 0 :
- (Ay (B)+ny (1) 62B) dx nqg (1) 6a2f |
B ba 0o - 0

For each f,se E* we choose a=sf~", thus all n(1)dafi= 'I, ) ds
(1<j<d-1) as we have (} 9 e X for the A = A(s ﬁ)

C(sB ', B)+ C(s, 1) dependent on s and f and rank 4 <k, we need only to
choose 4 #0. Suppose all A(s, By=0, C(sp ', B)=C(s, 1), specifically
Bosp '=0s, & 'Bd=sBs '=1B1 '=§8, E is commutativc, and & cen-
tralizes £ and thus lies in I'* From C(sp ', B)=C(s, 1) we also obtain
(A, (ﬁ)*"h( 09)09/3 b= (A,(1) +n,(1 )5?)()v thus A,(B) =1+ 4,(1)=
(D) ds(B '+ 1)=n,(1 )61(/§" + 1), but when E # F, we can choose f§ # 1
and s#1 to makc 17,(1 Ss(B~"+1)#n,(1) (B~ ' + 1), a contradiction.

So when E # F, we can always reduce to the case g, = (! ). In this

case we also have (/ %) eX, thus ( b iy D g oy ‘,’)— I %ex
for all 0, 0, e K* with C=04,,0—-0,,and g,=g,(} ) g, ' =(5! 32)eX
with B, = —A4,,CA;, = — A ,(04,,0—0,) A,;. We can choose an o e E
having the same first row as ¢/, thus O<rank(d—2)<h When
Ap=(; °) we take

T (4 * .- % J
. .0

0=¢1)={: -~ ' [ JekK* thus 604,,0=
* * 0 \0

and we choose 6, =¢&(x), thus Bj,=(,; °) with 8, =—38(8—2)d,
rank B,, =rank(é —a) <h. By the minimality of # we must have B,,=0,
d=x€E* When A4,,=(° ;) we take 0=1"" and choose any 6,=
() o€ K* with oag=2 then B,=(°,) with §,=—58(6—a),
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rank B, =rank(0 —a) < h, leading to d =o€ E* again. So in g,=({ ?)
with 4,=(; %) or (° ;) we must have 6’ e E*, g, a transvection of
SL(nd, E). When K is commutative g, is the symplectic transvection p,,,, ,:
x> x4+ fe(x, we;)we, of the Sp(2d, E, f)>SL(2, K)=Sp(2, K, f),
relative to the alternating E-form f= ¢, f with ¢, € Hom (X, E) defined
by @g(w,w,)=0 and all ¢ (w,w,)=0 (1<i<d—1), wherc /=1 when
Ap=(;° or I=d when A;,=(",). All the g7'p,11 8= Puerp.1 €X
(g€Sp(2, K, f)) exhaust the conjugates of p,,.,, in Sp(2d, E, f) (since
w,e, g ranges over non-zero vectors); thus they generate Sp(2d, E, f),
X>=Sp(2d, E, f,;), a contradiction (since we assume X contdains no
Sp(24, E, f;;) with Ex K). When K is non-commutative, for each
(Bis s Ba_1)eMat,, , ,E we tdke a U={(a;)s..€ KcMat,E, with

(a11»~~s0‘1¢1)=(5_1/}1,~~-’ 'B4 1,0) when A=, %) or (ag, ... “dd)
(671, 6 By 1,0) when Alz—( 5); then WCha"ng—gl(o 1) g =
(3 g,)€X with
1
B, ,=1+A4,,0= ,
BiBs v 1

which says that for each E-transvection T= I+ v'ue SL(d, E) with

and u=(f,,..,B8,_,,0)eMat,,,E with uv’'=0 we have a (! %)eXx
and (> ,-)(T 97" )=(""%9eXx for all ieK* with ATi '=
I+ (+v')(ui ') ranging over all E-transvections in SL(d, E) (since
Av” ranges over non-zero columns in Mat,, ,E). The group
{AeGL(d, E)| some (7 %eX} contains all the E-transvections in
SL(d, F), thus contains SL(d E). Since K is non-commutative we can take
a commutator y of K* not centralizing K*, (* ,)e SL(2, K)< X, thus
the subgroup <(g(’ ) g 'lg=({ 9eXg,> of X contains a (£ 9) for
each Pe (AyA '|AeSL(d4, E)> SL(d, E) and X contains [(} 9
(£ NDI=(,", 9, thus X contains all (5 9), with B lying in the additive
group generated by all P— I with Pe SL(d, E). These B can range over all
sE;eMat, E with se E* and 1 <i, j<d; we can see X > SL(2d, E) as in
treating the case n> 3, a contradition as desired.

Now consider the remaining case, £E= F=F,. Excluding the settled case
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0

K=F,wehaver=d>3and d=1. When g, = (4! 12)with4,=(, )
we take g, =g (; N gr'=(5 o) e X with

1
Bn =Byp=

(Ao By) 18 Just the 2-transvection f, ., .., Of the sumplectic group
Sp(2r, F,, fy) relative to the f,=¢f, with ¢ e Hom(K, F,) defined by
o{w,w,)=1 and all @(w,w,)=0 (I1<i<r-—-1) (where we denotc by
t, . the 2-transvection in Sp(2r, F,, f,) sendling each x to
X+ folx, whu+ folx, u)w for any pair of vectors w, w with fi(u, w)=0).
For each 8e K* we have [(; D g] = [(JD (% 501 =
bserowiier + Oep) Lwyer,wies € X5 since r=3 we can choose 1+#0, € K* to make
fowi(es + 0ie,), wiey) = @(0w]) = 0, thus 7, s erenlurenine =

Lijerowe €X 18 @ 2-transvection of Sp(2r, F,, fy). We can sec that
<Sp(2* K’ ])’ twlt'|.01w;l'1> = Sp(2r3 FZ’ f())’ X2 Sp(zr’ F.’Z’./‘()?’ as deSired'
Now consider the case in which g, has the block 4,,= (%" " |); we take
gzzgl(mln (1)) g l——:(g; B(,):Z)GXfOI'
¥ o * a,
f(=w "'w,=" - lek*,
* e * d,
0o ..- 0
with
i 1 a,
B“= and Bzz'-: ] a’. l
1 1 ]

Definc ¢ e Hom(X, F,) by o(w?)=1 and all ¢(w;w,)=0 (1<i<r—-1),
and define f,=¢f. Note that for cach 1<i<r—1 we have ww 'w, =
win(1)=3"_ 1 nyw;+aw, (with all n,e Fy), wow, =377 nww, +aw),
thus @(w,w)=a; so we can see (' , V=1, ..,€Sp2r, Fs, fy),

(G Dy gd=10 D (B 5 )1=(L DeXSp(2r, Fy, /o) with
a, a,
=B,'B,—I=| - -,
¢ 27 a, a, '

1 0 - 0
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such an ([ 9) is a product p,, | wye; Pu,e, Of tWo symplectic transvections
Piwt v woe, @nd po . in Sp(2r, F,, f,) (Where we denote p,: x> x + fo(x, u)u
for each u e V). Considering the conjugates under N =Sp(2, X, f) we know
that X contains all p,p, with u#0 and x=w,w, '+1eK*\{1}. If
2’eF,® F,a, thus a*>=1+a, then we have F,[a]=F,, thus 2|r.
W={0eK|p(f)=¢p(x0)=0} is an F,[a]-space, we can writc
K=F,[a]f®W for a feK* with ¢(f)=1, and we can define
@, € Hom;,1(K, F,[2]) by ¢,(ef +w)=e for each ec F,[«] and we W
and define ¢, e Hom(F,[a], F5) by @,(e) = @(eff), thus ¢ = ¢,¢,. Now all
the p,, p,€ X act as symplectic transvections of Sp(r, F,, f,) relative to
fi=¢, f; all such symplectic transvections generate Sp(r, F,, 1)< X, a
contradiction. Now suppose a’¢ F,® F,x, then we can take a ie K*
with  @(4)=@(ia)=0#¢(4a’) and take T=p,,, P, X, thus
T "(0ue, Per) T=Pae 425, Pe, € X. Considering the conjugates under N we
KNOW  po0 Poy 0, €X for all 0€K, thus (pu, Pe) 'Paicy Pey-bes=
Per Per+oe,€X, and p, p e X for all u, v with f(u, v) #0. For non-zero u, w
with f(u, w)=0 we can choose v with both f(i, v) and f(u, w) non-zero,
thus (p, p)Np.p.)=p.p.€X. X contains all the conjugates of p,, p,, in
Sp(2r, F,, f,), thus contains the whole Sp(2r, F,, /), a contradiction again.

2. OVERGROUPS OF Sp(2v, K) IN GL(2vr, F)

LEMMA 4. Let X be an overgoup of any symplectic group Sp(2m, E) in
I'L(2m, EY); then we have X == Sp(2m, E) or X = SL(2m, E).

Proof. Each  transvection in  SL(2m,E) has the form
7,.. X x4+ (x, v)u, associated with a pair of non-zero vectors u, v with
(4, v) =0 (where (x, y) denotes the alternating inner product of any pair of
vectors x, y in the underlying space of Sp(2m, E)). We scc that
T,.,€Sp(2m, E) if and only if # and v are collincar. If X &= Sp(2m, E), then
X contains a t,,, , ¢ Sp(2m, E), with u,, v, non-collinear, and X contains all
€ 0 8 =Tu gmz With g€Sp(2m, E). Since {u, g,v, g} (geSp(2m, E))
ranges over all the non-collinear and orthogonal pairs of vectors, we know
Ty g0 ¢ TAnges over all transvections in SL(2m, E) not lying in Sp(2m, E);
X contains all the transvections of SL(2m, E), thus contains the whole of
SL(2m, E).

In Lemma 5 we shall write 4,,, to suggest that 4 € Mat, R.

LemMma 5. Let R be a ring with 1, D a field lying in R as a subring.
Let n=2v=4, I' be the normalizer of GL(n,D) in GL(n, R), and
81=(ay)nxn€ GL(n, R\\NI" with all a,;=0 (j=2). Let Sp(n, D)=
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{(A€GL(n, D) AHA'=H} for H=( 9 ')€GL(n, D), ¥=<Sp(n. D)
£, Sp(n, D) g, ). Then

(1) Y contains a

with §= (¢ b)e (Mat, R)\Mat, D);
(2) for each S=(° ’)e Mat, R with

I, ' 0
IR
S R P

0

€Y,

Y contains all T,,, (8c+b0) (8€D) and Y contains T, (a) and all
T,..,,(b0c) (0 D) when D#F, or v=3;

(3) when D#F, or v=3 we have T, , (aa,a)eY for any
T,.ia(a), T,y (a)eY.

Proof. (1) We point out that we can replace g, by any gg,z with ge ¥
and z Sp(n, D)z '=Sp(n, D), without changing Y. We can also replace g,
by a ge Y, thus replace ¥ by a Y, < Y, provided that we can find a needed
TinY,.

For cach 0 e D*, consider

=T, 1 .(0)g =] . . eY

with b,=a;,, ,0a;' (i=2). Consider [T,,, 1), g:1=T.,,,(b))e Y for
each i¢ {1, v+ 1} (where

. i+v when i<v
[+v=q. L
i—v when i>v

thus 1<i+v<2v) If we can choose 6eD* to make b,¢ D for an
i¢{1,v+1’, then [T, ,+.(1)Ty(F1), Titv,l(bi)]va+l.l(bi)€Y is
just the nceded 7. Suppose b,=a,,, ,0a;,'eD for all 0eD and all
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ig{l,v+1}. If for an i¢{1,v+1} we have a,,_,#0, thus b,e D*
T,,..(b) € SL(n, D)\Sp(n, D), Y><{Sp(n, D), T;y,,(b)>=SL(n, D) by
Lemma 4, we can replace g, by zg, to annihilate all @, , , (i#v+1) for a
suitable z = (a;), , € SL(n, D) < Y with all ) ;=0 (j >2). So we may begin
by assuming all a,,,,=0 (i#v+1). Since g, is invertible we have
a,,1,1#0and g,=T,.,,(h,.))eY with b, _,=a,,,,, 0a,,'#0 for
all 0€ D*. If we can choose 8 to make b,, ,¢D, T=T,,,,(b,,,) is just
what we nced. Suppose b, ,, € D* for all chosen 6 e D*. Specifically, wec
have a,,,,.,a;;'eD* thus a,6a,'=(a,,,,, a,,") "a,,\,, . 0a,,
€ D* for all e D* Now, for each AeSp(n, D) we have a,,Aa,'e
GL(n, D) and (a,,Aaj,') H(a),Aa})'Y =a, A(a;,"Ha,,) A'a;,' = H, thus
A € Sp(n, D). This shows that a,,Sp(n, D)a,," =Sp(n,D), g, Sp(n, D) g, ' =
(g,4,,")Sp(n, D)(g,a,;")~", we can replacc g, by g,a;;' to reduce to the
case aj,=1,and a, .., €D* Since g, ¢ I' we have some a,; ¢ D. If u;e D
for all i#v+ 1, we have some a,,, ;¢ D; since (a,,..,a,,)=(1,0,..,0)
and a,,_, =0 we can take a ze Sp(n, D) having the same first two rows
as g, and can replace g, by g,z ' to reduce to the case (dy, ..., a5,) =
(0,1,0,..,0). Still we have some a, ., ;¢D and can replace g, by
PuP,ivi2 8 (PP, 1 ,42) ! to reduce to the case in which some
a,.,,¢D. So we may start by assuming that there exists an a,,¢ D with
k#v+1 (and, of course, k # 1). When k> v + 2 we replace g, by P, -, . g,
to reduce to the case 2<k <v. Suppose k<v; then we replacc g, by
(Py P, 2. .+4) g toreduce to the case k =2. So we suppose some a5, ¢ D.
If a,¢ D for an /#1 (of course /#v+1, since a,,,,=0), we replacc
g by gT,()T,. . (Flyg '= (by)uxn€Y With by =by=1,
byy=ay¢D,and b, =b,;,=0 for all j,>2 and j, > 3. Suppose all ayeD
(/=2) but a, ¢D; then we can choose a z=(0,),,,€Sp(n, D) with
(0,1, ...8.,)=(1,0,..,0) and (0,,, .., 8,,) = (0, ay,, ..., a5,), and can replace
g, by g,z7' to reduce to the case (ay, ..., ay,)=(ds, 1,0, .., 0) with
ay ¢ D. Anyway, we may reducc to the case in which (ay, .., a,,)=
(as, 1,0, ..,0) with a,, ¢ D. Now we take

1
0 1

g2=glTviZ.Z(l)gl_lz(hnj)nxnz by, by 1 ey,
bnl an 1
with b, =a,,,,and b, = —a,,_,a,, for 3<i<n. Since g, is invertible we
have some a, ,,,#0 (k > 3). For each such k, if b,, =a,, ., D* we have

biy= —ax.. a5 ¢ D (since a,, ¢ D). Namely, we have either b,,¢ D or
b €D, g,¢ I'in any case. If b, #0 fora k¢ {v+1,v+2}, we have
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S=0g T, ()T, i, (-1)]

[ )
0 1
b+, 1
= : . ey,
beir2tbiiar biian !
L b 1]

thus [Ty, x(1), &:]=Ty,.1(bia)eY. When b,,eD* we have
Y2 {Sp(n, D), T\, (b)) =SL(n, D) by Lemma 4. Applying Lemma 3
we know Y><(SL(n, D), g,SL(n,D)g;'>>T,,, (c) for a ce R\D, as
desired. When b, ¢ D, take T=[T,, - D) T (F1) Tpy, 1 (bi2)]=
T..1.1(ba)e Y, still we are done. Now we suppose b,,=0=5,, for ali
i¢(v+ 1 v+2)
I, : 0
——————
&= C l I ey
0

with C=(}1! pri)¢Mat, D. If b, ,,e D we have T, ,55(—h, ;,)€

bi22

Sp(n, D), thus can take T=g¢,T,,, ,(—b,..,)e Y. When b  ,,¢D we
have

- B e
T=[T5()T,, . a(=1), 8] = | ey

with S= (5 ) C(} )= C=1(,,7,, "*") ¢ Mat, D, as required.
(2) Denote

and

S
Lzz{SeMatzRK >6L}.
0(\» 2)



232 SHANGZHI LI

Onc can see that L and L, are additive groups. For each

Ay |0
g= ———:———— ey and Sel
* I' B,
we have g({ D g '=(J NeY with S,=BS4 ', thus BS4 'eL. In

particular, for each AeGL(» D) we have diag(A4’ ', A)e Sp(n, D); thus
ASA’e L for all Se L. And wec have ASA’e L, for all Ae GL(2, D) and
SeL,. Now, for cach S=(¢ §)e L, and 8e D, we have (} ?) S(} 9)-S=
(Ocro? 0)ELZ, ie, T,,,(0c+b0)eY. When D # F, we can takc 1#£0¢
D*, thus (¢ g)e L, 1mplles (! w 1 o )& D)o g) — e G—1-1) =
(2 9)eL; and (¢ )= - DEL,, ie, T,,1.1(a)e Y. When v>3,
(¢ bye L, implies

1 l a b
0 1 10 ¢ 0
10 1
! i 0
1 a b I 0 b
11 ¢ 0 0 1 c 0
I o1 |” 10 |0 eL;
I 0 I 0

thus (¢ §)e L, and (“ ,)e L, again. Now, (¢ $)e L, implies

I

I, |

S T
|

P7v1+2 0 b | PZ\O"

¢ 0 iy
0,
1 | )

=diag —c 1 , [ ;

Iy Io. 2
thus () )S( N e L, for all Se L,. In particular, for each § e D* we have
o DD = C " o) = (*" eLy, T,., (bbc)e Y.

(3) T,,,,(a)eY implies ( )( )(01) (“ o) (10)( 0)(01)
(06 eLy; thus (§)S(L9)eL, for all SeL, (by thc proof of (2)).
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(“ o)el, leads to (§o)( O =(° ,)eL, thus (39 (Y=

(! §') € Ly, leading to (““* ()eL, (ic, T,,, ((aa,a)e Y) when D#F,
orvz=3i.

Proof of Theorem2. Let N, =Sp(n, K, /)< X< G=GL(nr, F). Choose
a minimal intermediate field F between F and K such that
X =Sp(nd, E, f.) (where d=dim; K) for an f,. If E=F, X=Sp(nr, F),
apply Lemma 4. So we suppose E 2 F and replace K by E to reduce to the
case in which X contains no Sp(nd, E) with EcK If X<I'=
GL(n, K)xAul K/F, by Lemmad4 we know Xo=Sp(n K, f) or
X= SL(n, K), so Theorem 2 holds. So we suppose X</, and try to
find an Sp(nd, E)< X with E< K, thus obtaining a contradiction and
completing the proof of Theorem 2.

When »n =2, by the proof of Theorem 1 in Section 1 we know X contains
an Sp(nd, E) with E5 K, a contradiction already. So we suppose n=2v >4
in the following. We shall choose the basis {e,, .., e, } of V(2v, K) such
that the inner products f(e,, e;,,)=1=—f(e;,,.e;) for 1<i<v, and
Sfle.. e)=0 for 1<i, j<2v and i# j+v. Relative to this basis we have
Ni={AeGL(n, K)|AHA'=H} for H=(_9 4} (where 4’ is the trans-
posc of 4 in Mat, K and the identity /,,€ GL(v, K)).

Take a g, = A(’ )rxn€ X ceny. ey with maximal k<r. We want to
prove that k=r. Suppose k<r—1; we try to obtain a contradiction.
Denote by u,; the ((i—1)r+ j)th row of g,. We can take ze N, sending
ey and ., into the K-space Ke, ® Ke,®Ke, .. In g,z=(B[’), ., the
block B, , .. has the first k + 1 rows zero, thus g, = (g,2) T, , . ,(I")(g,z) '
€X (e .. e1s. 1>~ By the maximality of k& we must have g,e 7, and we see
g8:€1 k.. Applying Lemma2 we know that g, is a transvection of
SLn, K). If g,¢ N, we have X = <N, g,>=SL(n, K) by Lemma 4; X is
known by Theorem 1. Suppose g,€ N,; we have some z, € N, such that
21822, =T, (2)forana Ve K* T, ()=, T, (1) g "for g, =
zy gze XN From §(T, (D) —1)=(T,,; (x)—1) &, wesee §,€Xy,,
k =r as desired.

So we can always find a g, = (Af.jf’),,x,,eXKpl"-.,l'. Applying Lemma 5 to
the case D= K # F, and R=Mat, F we know X contains a

I(vr) |
== =
T=lsg

|
01 I

with

A B(r)
S=< e, >¢Mat K,
CO
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and X contains T, , (4Y), alt T, ., (0Cy+ By8) and all T, ,, (B,0C,)
(Pe K). We claim that X contains a T,=T,,,,(4”) with 4, ¢K.
When A4,¢ K resp. Co+ B¢ K we can take T,=T7,_,(A,) resp.
T, 1.1(Co+ By). Supposc both A, and Cy+ B, lie in K; since S¢ Mat, K
we must have B,¢ K and Cy¢ K. We can choosc an 2 e K having the
same first row as B,, and can replace T by TT, ,,,(—2) T, (—2)e X,
thus replacing S=(& %) by S—(§ §)=(", #5 7). to annihilate the
first row of By, thus reducing to the case in which B, is singular. So we
supposc B, is singular, and B, and C, are non-zero (since they are not in
K). We can choose a 0} € K* sending a non-zero row u of B, to ufl ¢ Ker C,
thus B,0C,#0. But By0C, is singular (since B, is singular), thus
B,0C,¢ K, T,=T,,, ,(B,6C,)€ X is just what we nced.

So we can always find a T, =T, ,(4{’)e X with A, ¢ K. We can take
a 0,eK having the same first row as A, and replace 7, by
T\ T,,,,(—0,)eX, thus replacing 4; by A, —@,, to annihilate the first
row of 4,. We have 0 <rank 4, <r for such 4,. Choose a T, , , ,(A4) with
smallest A=rank 4 >0, then A<r. By Lemma5(3) we know that
T,...(A04)e X for all 6e K. Since rank (404)<rank A=h, we must
have either rank (464)=Hh or 484 =0. By Lemma | we know that Im 4
and Ker A are subspaces of K over the field E gencrated by all f, '
(BeIm A) for a given non-zero f,elm 4, with dim,(Im 4)=1 and
dim . (Ker A)=d—1 (where d=dim; K=r/h). We can choose a basis
{wy,..,w,} of K/E and a basis {¢,..,¢,} of E/F to construct a basis
{e,w,|1<i<d, 1<j<h} of K/F to replace {k,, .., k,}, to reduce 4 to the
form (5 °) or (° ;) with € GL(h, F) and K< Mat, E. We can choose an
a™ e E having the samc first row as 6, thus rank (6 —«)<h When
A=(; "), take

*  o.oox W
. .0

n={: - : . |eK*<Mat,E
* * 0

By Lemma 5 (3) we have T, (ndAn)e X with

* ..o % 0

0
nAdn =

0

Take a 0, =(x,),.4€ K* with a,,=a, then by Lemma 5(3) we have
T,o1.(4)eX for A,=A(nAn—0)A=(5 ") with §, =8(5—a)d,
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rank A, =rank (6 — ) < h; by the minimality of # we must have 6 —ax =0,
0=aeE* When A=(",) we take 2 =diag(2"", .., «'")e K*. Since
T, {A)and T, | | (A—2) liein X, we know T, ((4(4A—2)4)e X by
Lemma 5 (3), with A(A—~a)d=(° ,), &, =0(5—2), still leading to &
=gye [* So wc have e E* anyway, T,.,,(4)e X is a transvection of
SL(nd, E). Furthermore, T,,,,(A) is just thc symplectic transvection
Pue1:s XX+ flx, we)we; of the symplectic group Sp(2vd, E. f;)
relative to the alternating E-form f,. = ¢, f, with ¢ .€ Hom (K, E) defined
by

o 0 when i#d
(p"(“"w')—{é when i=d,
where =1 when A= (s °), t=d when A=(" ,). X contains the con-
jugates g 'pue 8=Puergt Of pPuo =T, 11 (A)eX by all geN, <
Sp(2vd, E, f,). Since w,e, g (g€ N,) ranges over all the non-zero vectors
we know p, . ., ranges over all the conjugates of p,. .., in Sp(2vd, E, f..);
all such p, ., ., gencratc a normal subgroup of Sp(2vd, E, f) which must
coincide with Sp(2vd, E, /), X = Sp(2vd, E, /), contradicting our assump-
tion (remember that we assume X contains no Sp(2vd, E) with E< K), thus
completing the proof of Theorem 2.
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