JOURNAL OF ALGEBRA 125, 215-235 (1989)

Overgroups in GL(nr, F) of Certain Subgroups of SL(n, K), 1

Shangzhi Li

Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, China

Communicated by Walter Feit

Received February 16, 1988

For any pair of division rings K and F with $K \supset F$ and $\dim_F K = r$ we determine all the overgroups of SL(n, K) in GL(nr, F), as well as the overgroups of Sp(n, K)in GL(nr, F) (for commutative K and even n). The overgroups of SU(n, K, f) and $\Omega(n, K, Q)$ in GL(nr, F) will be determined in another paper, "Overgroups in GL(nr, F) of certain subgroups of SL(n, K), II". If 1989 Academic Press, Inc.

Let K, F be division rings, with $K \supset F$, and $\dim_F K = r < \infty$ when we regard K as a left F-space. An n-dimensional left K-space V(n, K) can be regarded as an *nr*-dimensional left space V = V(nr, F) over F; thus the GL(n, K) acting on V(n, K) is embedded in the GL(nr, F) acting on V(nr, F). The purpose of this paper is to determine the overgroups of N = SL(n, K) in G = GL(nr, F), and the overgroups of $N_1 = Sp(n, K, f)$ in G = GL(nr, F) for commutative K, even n, and any non-degenerate alternating K-form f. For finite fields K there has been some related work. Kantor [2] determined the overgroups of GL(1, q') in GL(r, q)and thus determined the overgroups of $GL(n, q^r)$ in GL(nr, q) (since $GL(n, q^r) > GL(1, q^{nr})$). Dye [3], [4], [5] studied the maximality of the normalizers of $Sp(n, q^r)$ in Sp(nr, q) for prime r = 2 or 3. In this paper we shall settle all the cases for all the division rings and all dimensions $n \ge 2$ (thus the only remaining task is to determine the overgroups of SL(1, K)in GL(r, F)). Applying our main results to the special cases for finite K and prime r we obtain the maximality of the subgroups in Aschbacher's class C_1 defined in [1].

I am indebted to G. M. Seitz for his helpful suggestions. The main results of this paper are as follows.

THEOREM 1. Let $N = SL(n, K) \le X \le G = GL(nr, F)$; then one of the following holds:

SHANGZHI LI

(i) $SL(nd, E) \leq X \leq GL(nd, E) \rtimes \text{Aut } E/F$ for a division ring E intermediate between F and K, where $d = \dim_E K$.

(ii) n = 2, K is commutative, N = SL(2, K) = Sp(2, K, f) for any nondegenerate alternating K-form f, and $X \succeq Sp(2d, E, f_E)$ for an intermediate field E ($F \subseteq E \subseteq K$ and $d = \dim_E K$) and an alternating E-form $f_E = \varphi_E f$ with $0 \neq \varphi_E \in \operatorname{Hom}_E(K, E)$.

(iii) $N = SL(2, 4) \cong A_5$ and $G = GL(4, 2) \cong A_8$, $X = (Sp(4, 2))' \cong A_6$, or $X \cong A_7$.

COROLLARY 1. Let F be a maximal division subring of K, $GL(nr, F) \ge G^* \ge SL(nr, F)$, then the normalizer M of SL(n, K) $(n \ge 2)$ in G^* is a maximal subgroup of G^* , provided $G^* = M \cdot SL(nr, F)$, with an exception $SL(2, K) = \operatorname{Sp}(2, K)$ and $\operatorname{Norm}_{K/F}^{-1}(\det G^*) \subseteq F^*$ (where $\operatorname{Norm}_{K/F}$ denotes the norm mapping of K into F). When $SL(2, K) = \operatorname{Sp}(2, K)$ and $\operatorname{Norm}_{K/F}^{-1}(\det G^*) \subseteq F^*$ we have $M \leqq (\operatorname{GSp}(2r, F) \rtimes \operatorname{Aut} K/F) \cap G^* \leqq G^*$ thus M is not maximal in G^* .

THEOREM 2. Let K and F be commutative fields with $K \supset F$ and $\dim_F K = r < \infty$, n = 2v be even, $N_1 = \operatorname{Sp}(n, K, f) \leq X \leq G = GL(nr, F)$, then we have an intermediate field E between F and K (with $\dim_E K = d$) such that (i) $SL(nd, E) \leq X \leq GL(nd, E) \rtimes \operatorname{Aut} E/F$, or (ii) $\operatorname{Sp}(nd, E, f_E) \leq X \leq \operatorname{GSp}(nd, E, f_E) \rtimes \operatorname{Aut} E/F$ relative to an $f_E = \varphi_E f$ for a $0 \neq \varphi_E \in \operatorname{Hom}_E(K, E)$, except in the case (iii) $N_1 = SL(2, 4) \cong A_5$ and $G = SL(4, 2) \cong A_8$, $X = (\operatorname{Sp}(4, 2))' \cong A_6$ or $X \cong A_7$.

COROLLARY 2. Let F be a maximal subfield of K, $G \operatorname{Sp}(2vr, F) \ge G^* \ge$ Sp(2vr, F), then the normalizer M of Sp(2v, K) in G* is a maximal subgroup in G*, provided $G^* = M \cdot \operatorname{Sp}(2vr, F)$, except in the case $G^* = \operatorname{Sp}(4, 2)$ and $M = \operatorname{Sp}(2, 4)$.

The proofs in this paper are mainly based on matrix techniques. We need the following notations for vector spaces and matrices. For any division ring *E*, *E*-spaces will mean left vector spaces over *E*. $\langle S \rangle_F$ denotes the left *E*-subspace spanned by a subset *S* of an *E*-space; specifically, we write $\langle S \rangle$ instead of $\langle S \rangle_F$. For a ring *R*, we denote by $\operatorname{Mat}_{m \times n} R$ the set of all $m \times n$ matrices over *R*, and we write $\operatorname{Mat}_m R$ instead of $\operatorname{Mat}_{m \times n} R$. We write $A^{(m \times n)}$ (resp. $A^{(m)}$) to suggest that $A \in \operatorname{Mat}_{m \times n} F$ (resp. $A \in \operatorname{Mat}_m F$). $A' \in \operatorname{Mat}_{n \times m} R$ denotes the transpose of $A \in \operatorname{Mat}_{m \times n} R$. We denote by diag $(A_1, ..., A_k)$ the quasi-diagonal matrix with $A_1, ..., A_k$ as its diagonal blocks. *I* and 0 denote the identity matrix and zero matrix, respectively. $E_{ij} \in \operatorname{Mat}_{m \times n} R$ denotes the matrix in $\operatorname{Mat}_{m \times n} R$ having a single 1 as its (i, j)th entry and all other entries zero. When $k \neq l$ we denote by

OVERGROUPS, I

 $P_{kl} \in GL(n, R)$ the matrix $P_{kl} = I - E_{kk} - E_{ll} + E_{kl} - E_{lk}$ in GL(n, R), and we define $P_{kk} = I$, thus $P_{kl} \in SL(n, R)$ anyway. For $k \neq l$ and $c \in R$, $T_{kl}(c) \in SL(n, R)$ denotes the matrix $T_{kl}(c) = I + cE_{kl}$ in Mat_n R. When R is a division ring, $T_{kl}(c) \in SL(n, R)$ (with $c \neq 0$) is a transvection of SL(n, R), and all $T_{kl}(c)$ ($k \neq l, 0 \neq c \in R$) generate SL(n, R). When we write $T_{kl}(A^{(r)})$ it suggests that $T_{kl}(A^{(r)}) \in Mat_n(Mat_r F)$, namely, $T_{kl}(A^{(r)}) = (C_{ij}^{(r)})_{n \times n}$ with the (k, l)th block $C_{kl} = A$, the blocks $C_{ii} = I$ ($1 \leq i \leq n$), and all other blocks $C_{ij} = 0$. For each $A \in Mat_{m \times n} F$, Im A and Ker A denote the image and the kernel, respectively, of the associated F-linear mapping $Mat_{1 \times m} F \to Mat_{1 \times n} F$: $x \mapsto xA$; we have dim_F Im A = rank A and m = rank A + dim_F Ker A.

Notations of group theory are as usual. For example, $\langle S \rangle$ denotes the subgroup generated by a subset S of a group; $X \rtimes Y$ denotes a semi-direct product of X by Y; X' denotes the commutator group of X, generated by all the commutators $[g_1, g_2] = g_1^{-1}g_2^{-1}g_1g_2$ with $g_1, g_2 \in X$; for a group X acting on a set S, $X_{A,B,\ldots}$ consists of all the elements in X stabilizing each of the subsets A, B, ... of S.

Now we come back to consider our F-space V = V(nr, F) obtained from V(n, K). Take a left K-basis $\{e_1, ..., e_n\}$ of V(n, K) and a left F-basis $\{k_1, ..., k_r\}$ of K, then $\{e_{ij} = k_j e_i | 1 \le i \le n, 1 \le j \le r\}$ forms an F-basis of V. With respect to this basis we write all vectors in V = V(nr, F) as nr-dimensional rows (i.e., write V as $Mat_{1 \times nr} F$) and write each $g \in GL(nr, F)$ as a matrix in Mat_n, F, sending each $x \in V$ to xg. When viewing K as a left *F*-space we write *K* as \vec{K} and denote each $\vec{x} = c_1 \vec{k}_1 + \cdots + c_r \vec{k}_r \in \vec{K}$ (with all $c_i \in F$ by $\vec{x} = (c_1, ..., c_r) \in Mat_{1 \times r} F$, thus identifying \vec{K} with $Mat_{1 \times r} F$. On the other hand, each $\theta \in K$ can be viewed as an F-linear transformation $\vec{x} \mapsto x\theta$ on \vec{K} identified with the matrix $\theta^{(r)} \in Mat_r F$ of this transformation relative to the basis $\{k_1, ..., k_r\}$. In this point of view we have $\operatorname{Mat}_n K \subset \operatorname{Mat}_n(\operatorname{Mat}_r F) = \operatorname{Mat}_n F$; thus each $A \in \operatorname{Mat}_n K \subset \operatorname{Mat}_n F$ has a rank A over F and a rank A over K, and we have rank $A = r \cdot \operatorname{rank}_K A$. We shall also write each $\sigma \in \operatorname{Aut} K/F = \{\sigma \in \operatorname{Aut} K \mid a^{\sigma} = a \text{ for all } a \in F\}$ as the matrix $\sigma^{(r)}$ of the F-linear transformation $\vec{x} \mapsto \vec{x}^{\sigma}$ on \vec{K} relative to the basis $\{\vec{k}_1, ..., \vec{k}_r\}$. We point out that the normalizer of K^* in GL(r, F) is $K^* \rtimes \operatorname{Aut} K/F$. We shall also regard $\operatorname{Aut} K/F$ as a subgroup of GL(nr, F), each $\sigma \in \operatorname{Aut} K/F$ sending each $v = \theta_1 e_1 + \cdots + \theta_n e_n \in V(n, K)$ (with all $\theta_i \in K$) to $\theta_1^{\sigma} e_1 + \cdots + \theta_n^{\sigma} e_n$, having the matrix $\sigma^{(nr)} = \text{diag}(\sigma^{(r)}, ..., \sigma^{(r)})$. One can see that the normalizer of N = SL(n, K) in G = GL(nr, F) is $\Gamma = GL(n, K) \rtimes \operatorname{Aut} K/F.$

For each intermediate division ring E (i.e., a division ring E with $F \subseteq E \subseteq K$), we can take a pair of bases $\{w_1, ..., w_d\}$, $\{\varepsilon_1, ..., \varepsilon_h\}$ of K/E, E/F, resp., to construct a basis $\{\varepsilon_j w_i | 1 \le i \le d, 1 \le j \le h\} = \{\varepsilon_1 w_1, ..., \varepsilon_h w_1, \varepsilon_1 w_2, ..., \varepsilon_h w_2, ..., \varepsilon_1 w_d, ..., \varepsilon_h w_d\}$ of K/F. With respect to this basis we have $K \subset \text{Mat}_d E$, namely, each $\theta \in K$ has the form

SHANGZHI LI

 $\theta = (\alpha_{ij})_{d \times d}$ with each $\alpha_{ij}^{(h)} \in E$, where we regard $E \subset \operatorname{Mat}_h F$ by identifying each $\alpha \in E$ with the matrix $\alpha^{(h)}$ of the *F*-linear transformation $x \mapsto x\alpha$ on *E* relative to the basis $\{\varepsilon_1, ..., \varepsilon_h\}$ of E/F.

For each group X between N = SL(n, K) and G = GL(nr, F) we hope to find an intermediate division ring E, such that $SL(nd, E) \leq X \leq GL(nd, E) \rtimes Aut K/E$ (where $d = \dim_E K$). The following lemma will be useful in finding such E.

LEMMA 1. Let $0 \neq A \in \operatorname{Mat}_r F$, rank A < r, and for all $\theta \in K$ assume either $A\theta A = 0$ or rank $(A\theta A) = \operatorname{rank} A$, then Ker A and Im A are subspaces of K over the division subring E of K generated by all $\beta\beta_1^{-1}$, with $\vec{\beta} \in \operatorname{Im} A$, for any given $0 \neq \vec{\beta}_1 \in \operatorname{Im} A$. We can choose suitable bases $\{w_1, ..., w_d\}$ and $\{\varepsilon_1, ..., \varepsilon_h\}$ of K/E and E/F, resp., to construct a basis $\{\varepsilon_i w_i | 1 \leq i \leq d, 1 \leq j \leq h\}$ of K/F to replace $\{k_1, ..., k_r\}$, to reduce A to the form $\binom{0^{(r-h)}}{\delta}$ (when $A^2 \neq 0$) or $\binom{\delta}{\delta}$ (when $A^2 = 0$) with $\delta \in GL(h, F)$.

Proof. Denote $\tilde{U} = \text{Ker } A$, then $0 < \dim_F U < r$. For each $\theta = \beta_1^{-1} u \in K$ with $u \in U$, we have $\vec{\beta}_1 \theta = \vec{u} \in \vec{U}$ thus $\vec{\beta}_1 \theta A = 0$, which implies that the F-linear mapping $\varphi: \operatorname{Im} A \to \vec{K}$ defined by $\varphi(\vec{x}) = \vec{x} \theta A$ has Ker $\varphi \ni \vec{\beta}_1$, thus Ker $\varphi \neq 0$, rank $(A\theta A) = \dim_F(\operatorname{Im} \varphi) < \dim_F(\operatorname{Im} A) = \operatorname{rank} A$. By our assumption we must have $A\theta A = 0$, Im $\varphi = 0$, $\overline{\beta\beta_1^{-1}u} = \overline{\beta}\theta \in \text{Ker } A$ for all $\vec{\beta} \in \text{Im } A$. This shows that $\beta \beta_1 \, {}^1 U \subseteq U$ for all $\vec{\beta} \in \text{Im } A$, $EU \subseteq U$ for the ring E generated by all $\beta \beta_1^{-1}$ ($\hat{\beta} \in \text{Im } A$). Since $F \subseteq E \subseteq K$ and $\dim_F = r < \infty$ we know E is a division ring. $\hat{U} = \text{Ker } A$ is a left E-subspace of K, dim_E U = $(1/h) \dim_F U = (1/h)(r - \dim_F (\operatorname{Im} A)) = d - (1/h) \dim_F (\operatorname{Im} A), \text{ where } h =$ $\dim_F E$ and $d = \dim_F K$. But $0 \neq \operatorname{Im} A \subseteq E\beta_1$, thus $0 < (1/h) \dim_F (\operatorname{Im} A) \leq 1$ $(1/h) \dim_{F}(E\beta_{1}) = (1/h) \cdot h = 1$; since $(1/h) \dim_{F}(Im A) = d - \dim_{F} U$ should be an integer we must have $(1/h) \dim_{E}(\operatorname{Im} A) = 1$. Im $A = \overline{E\beta_{1}}$ a 1-dimensional E-space, and dim_E(Ker A) = d-1. Take an E-basis $\{w_1, ..., w_d\}$ of K, with $Ew_1 \oplus \cdots \oplus Ew_{d-1} = \text{Ker } A$ and $\text{Im } A = Ew_d$ (when $A^2 \neq 0$; thus Im $A \not\subseteq \text{Ker } A$) or Im $A = Ew_1$ (when $A^2 = 0$; thus Im $A \subseteq \text{Ker } A$), and take any F-basis $\{\varepsilon_1, ..., \varepsilon_h\}$ of E; then replacing $\{k_1, ..., k_r\}$ by $\{\varepsilon_i w_i | 1 \le i \le d, 1 \le j \le h\}$ we reduce A to the needed form.

We shall also need the following lemma.

LEMMA 2. Let T_0 be a transvection of SL(n, K), $n \ge 3$, and $T_1 = g_1 T_0 g_1^{-1} \in \Gamma_{Ke_1}$ for a $g_1 \in GL(nr, F)$; then T_1 is a transvection of SL(n, K).

Proof. $T_1 \in \Gamma_{Ke_1}$, thus $T_1 = (\theta_{ij}\sigma)_{n \times n}$ for a $\sigma^{(r)} \in \operatorname{Aut} K/F$ and a $(\theta_{ij}^{(r)})_{n \times n} \in GL(n, K)$ with all $\theta_{1j} = 0$ $(2 \leq j \leq n)$. Since T_1 is a conjugate of T_0 in GL(nr, F), from $(T_0 - I)^2 = 0$ and $\operatorname{rank}(T_0 - I) = r$ we know $(T_1 - I)^2 = 0$ and $\operatorname{rank}(T_1 - I) = r$. If we can show $\sigma = 1$, then $T_1 \in GL(n, K)$; from $(T_1 - I)^2 = 0$ and $\operatorname{rank}_K(T_1 - I) = r$

 $(1/r) \operatorname{rank}(T_1 - I) = 1$ we know T_1 is a transvection of SL(n, K). If $\theta_{ii} \neq 0$ for some $i \neq j$ and $j \ge 2$, we have $r = \operatorname{rank}(T_1 - I) \ge \operatorname{rank}(\theta_{11}\sigma - I) + I$ $\operatorname{rank}(\theta_{ij}\sigma) = \operatorname{rank}(\theta_{11}\sigma - I) + r$, thus $\operatorname{rank}(\theta_{11}\sigma - I) = 0$, $\theta_{11}\sigma = I$, $\sigma = 1$ desired. Suppose $\theta_{ii} = 0$ for all $i \neq j$ and $j \ge 2$, then as we $r = \operatorname{rank}(T_1 - I) \ge \sum_{i=1}^{n} \operatorname{rank}(\theta_{ii}\sigma - I).$ We cannot have have all $\operatorname{rank}(\theta_{ii}\sigma - I) \ge r/2$, otherwise $\sum_{i=1}^{n} \operatorname{rank}(\theta_{ii}\sigma - I) \ge nr/2 > r$, a contradiction. So we have rank $(\theta \sigma - I) < r/2$ for $\theta = \theta_{ii} \in K^*$ for some *i*. The solution space $U = \{x \in K | \vec{x}(\theta \sigma - I) = \vec{0}\}$ has $\dim_{F} U = r - \operatorname{rank}(\theta \sigma - I) > r/2$, thus $U \cap Ub \neq 0$ for any $0 \neq b \in U$, $ab \in U$ for some non-zero $a, b \in U$. Note that for each $x \in U \subseteq K$ we have $\vec{x}(\theta \sigma - I) = \vec{0}$, $(x\theta)^{\sigma} = x$, $x\theta = x^{\sigma^{-1}}$, especially $ab\theta = (ab)^{\sigma^{-1}} = a^{\sigma^{-1}}b^{\sigma^{-1}} = a\theta b\theta, \ \theta = 1$, thus $U = \{x^{\sigma} = x \mid x \in K\}$ is a division subring of K with $\dim_U K = \dim_F K / \dim_F U < 2$, thus $\dim_U K = 1$, U = K, $\sigma = 1$, as desired.

1. Overgroups of SL(n, K) in GL(nr, F)

We state and prove the following lemma and Lemma 5 in Section 2 in a general way so that we can also use them in some other papers.

LEMMA 3. Let R be a ring with 1, D a division ring lying in R as a subring. Let $n \ge 3$, Γ be the normalizer of GL(n, D) in GL(n, R), $g_1 = (a_{ij})_{n \times n} \in GL(n, R) \setminus \Gamma$ with all $a_{ij} = 0$ $(2 \le j \le n)$, $Y = \langle SL(n, D),$ $g_1 SL(n, D) g_1^{-1} \rangle$. Then Y contains $T_{ij}(c)$ for all $i \ne j$ and all c in a subring L of R containing D properly.

Proof. Let $L = \{c \in R \mid T_{n1}(c) \in Y\}$. Considering the conjugates of all $T_{n1}(c) \in Y$ ($c \in L$) by all $P_{ij} \in SL(n, D) < Y$ we see all $T_{ij}(c) \in Y$ ($i \neq j, c \in L$).

For any $a, b \in L$, we have $T_{n1}(a \pm b) = T_{n1}(a) T_{n1}(b)^{\pm 1} \in Y$, thus $a \pm b \in L$. And since $n \ge 3$ we have $T_{n1}(ab) = [T_{n2}(a), T_{21}(b)] \in Y$, thus $ab \in L$. These entail that L is a subring of R.

 $L \supseteq D$ trivially. We need to show that $L \neq D$, namely, to show the existence of some $T_{n1}(c) \in Y$ with $c \notin D$. Since $g_1 = (a_{ij})_{n \times n} \in GL(n, R) \setminus \Gamma$ with all $a_{1j} = 0$ $(j \ge 2)$, we have $g_1^{-1} = (\tilde{a}_{ij})_{n \times n} \in GL(n, R) \setminus \Gamma$ with $\tilde{a}_{11} = a_{11}^{-1}$ and all $\tilde{a}_{1j} = 0$ $(j \ge 2)$. For each $2 \le l \le n$ and $\theta \in D^*$, consider

$$g_2 = g_1 T_{I1}(\theta) g_1^{-1} = \begin{pmatrix} 1 & b_2 & 1 \\ b_2 & 1 & \vdots \\ \vdots & \ddots & \vdots \\ b_n & & 1 \end{pmatrix} \in Y,$$

. .

with $b_i = a_{il}\theta a_{11}^{-1}$ for $2 \le i \le n$. If we can choose l and θ to make some $b_k \notin D$, then replacing g_2 by $P_{2k} g_2 P_{2k}^{-1} \in Y$ (for $P_{2k} \in SL(n, D) < Y$) we may assume that $b_2 \notin D$, $T_{n2}(1) g_2 T_{n2}(-1) g_2^{-1} = T_{n1}(b_2) \in Y$ is just

what we need. Suppose $b_i = a_{ij} \partial a_{11}^{-1} \in D$ for all chosen $i, j \ge 2$ and $\theta \in D$. Putting $\theta = 1$ we see $\theta_{ij} = a_{ij} a_{11}^{-1} \in D$ for all $i, j \ge 2$. Since g_1 is invertible we must have some $a_{k2} \ne 0$ $(k \ge 2)$, thus $\theta_{k2} = a_{k2} a_{11}^{-1} \in D^*$, $a_{11} \theta a_{11}^{-1} = \theta_{k2}^{-1} a_{k2} \theta a_{11}^{-1} \in D$ for all $\theta \in D$. Now $a_{11} SL(n, D) a_{11}^{-1} = SL(n, D), g_1 SL(n, D) g_1^{-1} = (g_1 a_{11}^{-1}) SL(n, D)(g_1 a_{11}^{-1})^{-1}$, we can replace g_1 by $g_1 a_{11}^{-1}$ to reduce to the case $a_{11} = 1$ without changing Y. Now we have all $a_{ij} = a_{ij} a_{11}^{-1} \in D$ ($i, j \ge 2$). Take $B = (a_{ij})_{2 \le i, j \le n} \in GL(n-1, D)$, and take $z = (\lambda_0^{-1} B) \in SL(n, D)$ for a suitable $\lambda \in D^*$. Replacing g_1 by $z^{-1}g_1$, we reduce to the case

$$g_{1} = \begin{pmatrix} \hat{\lambda}^{-1} & & \\ a_{2} & 1 & \\ \vdots & \ddots & \\ a_{n} & & 1 \end{pmatrix},$$

with some $a_k \notin D$ $(k \ge 2)$. Replacing such g_1 by $P_{2k} g_1 P_{2k}^{-1}$ we may assume $a_2 \notin D$, thus $T_{n1}(1) g_1 T_{n1}(-1) g_1^{-1} = T_{n1}(a_2 \lambda) \in Y$, with $a_2 \lambda \notin D$, as desired.

Proof of Theorem 1 (for the case $n \ge 3$). Let $SL(n, K) \le X \le GL(nr, F)$. Choose a minimal intermediate division ring E (between F and K) such that $X \ge SL(nd, E)$ (where $d = \dim_E K$). If E = F, the theorem holds trivially. Suppose $E \supseteq F$; then we can replace K by E. Namely, we may assume that there is no $SL(nd, E) \le X$ with $E \subsetneq K$. It suffices to prove $SL(n, K) \le X \le \Gamma = GL(n, K) \rtimes \text{Aut } K/F$. Suppose $X \leqq \Gamma$; we try to find an $SL(nd, E) \le X$ with $E \subsetneq K$, thus obtaining a contradiction. To do this we try to find an E-transvection T (i.e., a transvection T of SL(nd, E)) in X, from which it may be seen that all the E-transvections lie in X, leading to $SL(nd, E) \le X$ as desired.

Take a $g_1 = (A_{ij}^{(r)})_{n \times n} \in X_{\langle e_{11}, \dots, e_{1k} \rangle} \backslash \Gamma$ with maximal $k \leq r$. We prove that k = r. Suppose $k \leq r-1$; we try to obtain a contradiction. Denote by u_{ij} the ((i-1)r+j)th row of g_1 (i.e., the *j*th row of $(A_{i1}A_{i2}\cdots A_{in})$). We can take $z \in SL(n, K)$, sending u_{11} to e_{11} ; thus $g_1 z \in X_{e_{11}} \backslash \Gamma$, which says that $k \geq 1$. Now we can take $z \in SL(n, K)$, fixing e_1 (thus fixing u_{11}, \dots, u_{1k} lying in Ke_1) when sending $u_{1,k+1}$ into $Ke_1 \oplus Ke_2$. In $g_1 z = (B_{ij}^{(r)})_{n \times n}$ the block B_{1n} has the first k+1 rows zero, thus $g_2 = (g_1 z) T_{n1}(I^{(r)})(g_1 z)^{-1} \in X_{\langle e_{11}, \dots, e_{1,k+1} \rangle}$. By the maximality of k we must have $g_2 \in I$, $g_2 = (\theta_{ij}\sigma)_{n \times n}$ for a $\sigma^{(r)} \in \operatorname{Aut} K/F$ and a $(\theta_{ij})_{n \times n} \in GL(n, K)$. Since all the blocks $\theta_{1,j}\sigma$ ($2 \leq j \leq n$) have the first k+1 rows zero, thus are singular, we must have all $\theta_{1j} = 0$ $(2 \leq j \leq n), g_2 \in \Gamma_{Ke_1}$. By Lemma 2 we know g_2 is a transvection of $SL(n, K), z_1 g_2 z_1^{-1} = T_{n1}(I^{(r)})$ for a $z_1 \in SL(n, K), T_{n1}(I^{(r)}) = z_1 g_2 z_1^{-1} = \tilde{g}_1 T_{n1}(I^{(r)}) - I) \tilde{g}_1 = \tilde{g}_1(T_{n1}(I^{(r)}) - I), k = r$ as desired.

So we have $g_1 = (A_{ij}^{(r)})_{n \times n} \in X_{Ke_1} \setminus \Gamma$. Applying Lemma 3 to the case

 $R = \text{Mat}, F \text{ and } D = K \text{ we know that } T_{n1}(A^{(r)}) \in \langle N, g_1 N g_1^{-1} \rangle \leq X \text{ for all}$ A in a ring $L \subseteq Mat$, F with $L \supseteq K$. For any $A \in L \setminus K$ we can take $\theta \in K$ having the same first row as A, thus $A - \theta \in L$ has the first row zero, $0 < \operatorname{rank}(A - \theta) < r$. Choose an $A \in L$ with smallest rank A = h > 0, then h < r. We can choose an $\alpha \in K^*$ sending a non-zero row $\hat{\beta}_1$ of A to $\vec{\beta}_1 \alpha \notin \text{Ker } A$, thus $\vec{\beta}_1 \alpha A \neq \vec{0}$ $A \alpha A \neq 0$, $(A \alpha)^2 \neq 0$, and $\text{rank}(A \alpha) = \text{rank } A$; replacing A by such $A\alpha$ we may assume $A^2 \neq 0$. For all $\theta \in K$ we have $A\theta A \in L$ and rank $(A\theta A) \leq \operatorname{rank} A$; by the minimality of rank A we have either rank $(A\theta A)$ = rank A or $A\theta A = 0$. By Lemma 1 we know that Ker A and Im A are subspaces of K over the division ring E generated by all $\beta\beta_{\perp}^{-1}$ with $\overline{\beta} \in \text{Im } A$ (for a non-zero $\overline{\beta}_1 \in \text{Im } A$), with $\dim_E(\text{Ker } A) = \dim_E K - 1$ and dim_E(Im A) = 1. And we can take a pair of bases $\{w_1, ..., w_d\}$ and $\{\varepsilon_1, ..., \varepsilon_h\}$ of K/E and E/F, resp., with $Ew_1 \oplus \cdots \oplus Ew_{d-1} = \text{Ker } A$ and $Ew_d = \text{Im } A$, to construct a basis $(\varepsilon_i w_i | 1 \le i \le d, 1 \le j \le h)$ of K/F to replace $\{k_1, ..., k_r\}$ and thus to reduce A to the form $\begin{pmatrix} 0 \\ \delta \end{pmatrix}$. We can choose an $\alpha^{(h)} \in E^*$ having the same first row as $\delta^{(h)}$, and can choose a $\theta^{(r)} = (\theta_{ii})_{d \times d} \in K \subset \operatorname{Mat}_d E$ with $\theta_{dd} = \alpha$ and all $\theta_{di} = 0$ $(1 \le j \le d - 1)$. Now $A^2 - A\theta = \begin{pmatrix} 0 \\ \delta_1 \end{pmatrix} \in L$ with $\delta_1 = \delta(\delta - \alpha)$ and $\operatorname{rank}(A^2 - A\theta) =$ $\operatorname{rank}(\delta - \alpha) < h$. By the minimality of rank A = h we must have $\delta_1 = 0$, $\delta = \alpha \in E^*$. Now $T_{n1}(A) = T_{n1}(\begin{pmatrix} 0 \\ \alpha \end{pmatrix}) \in X$ is a transvection in SL(nd, E). For each $1 \le p$, $q \le d$ and $s \in E^*$ we can choose $\theta_1 = (\alpha_{ij})_{d \times d}$ and $\theta_2 = (\beta_{ij})_{d \times d}$ in $K \subset \operatorname{Mat}_{d} E$, with all $\alpha_{id} = \beta_{di} = 0$ $(i \neq p, j \neq q)$, $\alpha_{pd} = s$, and $\beta_{dq} = \alpha^{-1}$; thus $\theta_1 A \theta_2 = E_{pq}(s) \in L$, where we denote $E_{pq}(s) = s E_{pq} \in \text{Mat}_d E$. X contains all the *E*-transvections $T_{kl}(E_{pq}(s))$ $(k \neq l)$, and it contains $[T_{kl}(E_{pq}(s)), T_{lk}(E_{qq}(I))] = diag(D_1, ..., D_n)$ when $p \neq q$, with $D_k^{(r)} =$ $T_{pq}(s^{(h)})$ and all other $D_i^{(r)} = I$. Now X contains enough E-transvections to generate SL(nd, E), $X \ge SL(nd, E)$, but $E \subsetneq K$, contradicting our assumption, as desired.

Proof of Theorem 1 (for the case n=2). The case $K=F_4$ (i.e., GL(nr, F) = SL(4, 2)) can be settled by considering the isomorphism $SL(4, 2) \cong A_8$; thus it will be excluded in the following discussion.

We still suppose X contains no SL(2d, E) $(d = \dim_E K)$ with $E \subsetneq K$, and suppose $X \leqq \Gamma = GL(2, K) \rtimes \operatorname{Aut} K/F$. When K is commutative we have $SL(2, K) = \operatorname{Sp}(2, K, f)$ for any nondegenerate alternating K-form f (we choose $f(e_1, e_2) = 1$), and we have $\operatorname{Sp}(2, K, f) \leqslant \operatorname{Sp}(2d, E, f_E)$ for each intermediate field E $(F \subseteq E \subseteq K, d = \dim_E K)$ and each alternating E-form $f_E = \varphi_E f$ with $0 \neq \varphi_E \in \operatorname{Hom}_E(K, E)$. Those X containing an $\operatorname{Sp}(2d, E, f_E)$ with $d \ge 2$ will be determined in the proof of Theorem 2 in Section 2 of this paper, which should normalize an $\operatorname{Sp}(2d_1, E_1, f_{E_1})$ or an $SL(2d_1, E_1)$ for a field E_1 between E and K, with $\dim_{E_1} K = d_1$. So we need only consider those X containing no $\operatorname{Sp}(2d, E, f_E)$ with $E \subsetneq K$. Take any $g_1 \in X \setminus \Gamma$, then g_1 does not stabilize the K-structure V(2, K); namely, $(Ku) g_1 \neq K(ug_1)$ for

some $u \neq 0$. Since N = SL(2, K) is transitive among non-zero vectors in V(2, K), we can find $z_1, z_2 \in N$ with $u = e_{11}z_1$ and $ug_1z_2 = e_{11}$; replacing g_1 by $z_1 g_1 z_2 \in X \setminus \Gamma$, we may assume $e_{11} g_1 = e_{11}$ and $(Ke_{11}) g_1 \neq Ke_{11}$, namely, $g_1 = (A_{ij}^{(r)})_{2 \times 2} \in X_{e_{11}}$ with $A_{12} \neq 0$ and rank $A_{12} < r$ (since A_{12} has the first row zero). So we can choose $g_1 = (A_{ij}^{(r)})_{2 \times 2} \in X$ with smallest rank $A_{12} = h > 0$ and with h < r. Also, $g_1^{-1} = (\tilde{A}_{ij}^{(r)})_{2 \times 2} \in X$ has the block $\tilde{A}_{12} \neq 0$. Consider $g_2 = g_2(\theta) = g_1 \begin{pmatrix} I & 0 \\ \theta & I \end{pmatrix} g_1^{-1} = (B_{ij}^{(r)})_{2 \times 2} \in X$ with $\theta^{(r)} \in K$; we can choose $\theta = \theta_0$ to make $B_{12} = A_{12}\theta_0 \tilde{A}_{12} \neq 0$. Since $0 < \operatorname{rank} B_{12} \leq \operatorname{rank} A_{12} = h$ we know rank $B_{12} = h$ by the minimality of rank $A_{12} = h$, and we can replace g_1 by $g_2(\theta_2)$ to reduce to the case $g_1^{-1} = 2I - g_1$ (since $g_2(\theta_0)^{-1} =$ $g_2(-\theta_0) = 2I - g_2(\theta_0)$, and especially $\tilde{A}_{12} = -A_{12}$. Now for such g_1 we have $B_{12} = -A_{12}\theta A_{12}$ in $g_2(\theta)$; by the minimality of h we must have either $\operatorname{rank}(A_{12}\theta A_{12}) = \operatorname{rank} A_{12}$ or $A_{12}\theta A_{12} = 0$, thus Lemma 1 applies, so we can reduce to the case $A_{12} = \overline{\Delta}_1 = (\delta^{0(r-h)})$ or $A = \overline{\Delta}_2 = (\delta^{0(r-h)} \delta)$ for a $\delta \in GL(h, F)$ by replacing the basis $\{k_1, ..., k_r\}$ of K/F by the $\{\varepsilon_i w_i | 1 \le i \le d, 1 \le j \le h\}$ obtained from a pair of bases $\{w_1, ..., w_d\}$, $\{\varepsilon_1, ..., \varepsilon_h\}$ of K/E, E/F, resp., for the division subring E generated by all $\beta \beta_1^{-1}$ with $\vec{\beta} \in \text{Im } A$ (for a given $0 \neq \vec{\beta}_1 \in \text{Im } A$). For each $\begin{pmatrix} I & 0 \\ C & 0 \end{pmatrix} \in X$ we have $g_2(C) = g_1 \begin{pmatrix} I & 0 \\ C & 1 \end{pmatrix} g_1^{-1} = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \begin{pmatrix} I + A_{12}C(2I - A_{11}) & -A_{12}CA_{12} \\ A_{22}C(2I - A_{11}) & I - A_{22}CA_{12} \end{pmatrix} \in X$. Specifically, we have $g_2(\theta) \in X$ for all $\theta \in K$. We can choose $\theta = \theta_0 \in K$ with $A_{12}\theta_0 A_{12} \neq 0$; replacing g_1 by $g_2(\theta_0)$ we reduce to the cases $A_{11} = \begin{pmatrix} f^{(r-h)} & 0 \\ \bullet & \bullet \end{pmatrix}$ and $A_{22} = \begin{pmatrix} \bullet & 0 \\ f^{(r-h)} \end{pmatrix}$ (when $A_{12} = A_1$) or $A_{22} = \begin{pmatrix} f^{(r-h)} & \bullet \end{pmatrix}$ (when $A_{12} = A_2$).

For each $\alpha \in E$ we shall denote

$$\hat{\lambda}(\alpha) = w_1^{-1} \alpha w_1 = \begin{pmatrix} \alpha & 0 & \cdots & 0 \\ * & \cdots & * \\ \vdots & \cdots & * \\ * & \cdots & * \end{pmatrix} \in K,$$
$$\Lambda(\alpha) = w_d^{-1} \alpha w_d = \begin{pmatrix} * & \cdots & * \\ \vdots & \cdots & * \\ * & \cdots & * \\ 0 & \cdots & 0 & \alpha \end{pmatrix} \in K,$$
$$\binom{* & \cdots & * \\ 0 & \cdots & 0 & \alpha} (* & \cdots & *)$$

$$\zeta(\alpha)\begin{pmatrix} * & \cdots & * & \alpha \\ \vdots & \cdots & \vdots & 0 \\ \vdots & \cdots & \vdots & \vdots \\ * & \cdots & * & 0 \end{pmatrix} \in K, \text{ and } \eta(\alpha) = w_d^{-1} \alpha w_1 = \begin{pmatrix} * & \cdots & * \\ \vdots & \cdots & \vdots \\ * & \cdots & * \\ \alpha & 0 & \cdots & 0 \end{pmatrix} \in K.$$

We prove that when $E \neq F_2$ we can always find an $\begin{pmatrix} I & B^{(r)} \\ 0 & I \end{pmatrix} \in X$ with $0 < \operatorname{rank} B \leq h$ (thus rank B = h, by the minimality of h) to replace g_1 , to

reduce to the case $g_1 = \begin{pmatrix} I & A_{12} \\ 0 & I \end{pmatrix}$. First we consider the case $A_{12} = \begin{pmatrix} A_{12} \\ \delta & I \end{pmatrix}$. Take a $g_2 = g_1 \begin{pmatrix} I & 0 \\ \lambda(\alpha) & I \end{pmatrix} g_1^{-1} = \begin{pmatrix} B_{11} & 0 \\ B_{21} & B_{22} \end{pmatrix} \in X$ for each

$$\hat{\lambda}(\alpha) = \begin{pmatrix} \alpha & 0 & \cdots & 0 \\ * & \cdots & * & \hat{\lambda}_2 \\ \vdots & \cdots & \vdots & \vdots \\ * & \cdots & * & \hat{\lambda}_d \end{pmatrix} \in K.$$

with

$$B_{11}^{(r)} = \begin{pmatrix} I \\ \ddots \\ \delta \alpha & I \end{pmatrix} \quad \text{and} \quad B_{22}^{(r)} = \begin{pmatrix} I \\ -\lambda_2 \delta & I \\ \vdots & \ddots \\ -\lambda_d \delta & I \end{pmatrix},$$

and take $g_3 = [\begin{pmatrix} I & 0 \\ I'' & I \end{pmatrix}, g_2] = \begin{pmatrix} I & 0 \\ B & I \end{pmatrix} \in X$ with $B = B_{22}^{-1}B_{11} - I = B_{11} - B_{22}$ of rank $\leq h$. If we can choose α to make $B \neq 0$, then $\begin{pmatrix} I & B \\ 0 & I \end{pmatrix} = \begin{pmatrix} I & I \\ I & 0 \end{pmatrix}^{-1} \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix} \in X$ can replace g_1 , as desired. When char $F \neq 2$ we just take $\alpha = 1$, $\lambda(\alpha) = I$, $B = \begin{pmatrix} 2\delta & 0 \end{pmatrix} \neq 0$. Suppose char F = 2 and suppose we cannot choose $B \neq 0$, then B = 0 for all chosen $\alpha \in E$, thus

$$B_{22} = B_{11} = \begin{pmatrix} I & & \\ & \ddots & \\ \delta \alpha & & I \end{pmatrix},$$

all $\lambda_j = 0$ $(2 \le j \le d-1)$ and $\lambda_d = \delta \alpha \delta^{-1}$, $\delta \alpha \delta^{-1} \in E$ for all $\alpha \in E$. Now we take $\begin{bmatrix} \begin{pmatrix} I \\ \xi(\beta) & I \end{pmatrix}, g_2 \end{bmatrix} = \begin{pmatrix} I & 0 \\ C & I \end{pmatrix} \in X$ for each

$$\xi(\beta) = \begin{pmatrix} \xi_1(\beta) & \cdots & \xi_{d-1}(\beta) & \beta \\ * & \cdots & * & 0 \\ \vdots & \cdots & \vdots & \vdots \\ * & \cdots & * & 0 \end{pmatrix} \in K \subset \operatorname{Mat}_d E,$$

(where we denote by $\xi_j(\beta)$ $(1 \le j \le d-1)$ the (1, j)th entry of $\xi(\beta) \in \text{Mat}_d E$, which is a function of β), with

$$C = C(\alpha, \beta) = B_{22}^{-1}\xi(\beta) B_{11} - \xi(\beta) = \begin{pmatrix} \beta \delta \alpha & & \\ 0 & & \\ \vdots & 0 & \\ 0 & & \\ \delta \alpha \beta \ \delta \alpha + \delta \alpha \xi_1(\beta) & \cdots & \delta \alpha \beta \end{pmatrix}$$

dependent on $\alpha, \beta \in E$. For each $\beta, s \in E^*$ we choose $\alpha = \delta^{-1}\beta^{-1} \delta s$ (note that $\delta^{-1}\beta^{-1} \delta \in E^*$, thus $\delta^{-1}\beta^{-1} \delta s \in E^*$), thus $\beta \delta \alpha = \delta s$ is independent of the choice of β ; we have $\binom{I}{A} \binom{0}{I} = \binom{C(\delta^{-1}\beta^{-1}\delta s, \beta)}{I} \binom{0}{C(s, 1)} \binom{0}{I} \in X$, with $\Delta = \Delta(s, \beta) = C(\delta^{-1}\beta^{-1}\delta s, \beta) + C(s, 1)$ dependent on s and β , and rank $\Delta \leq h$. If we can choose $\Delta \neq 0$, $\binom{0}{I} \binom{A}{I} \in X$ can replace g_1 . Suppose we cannot do this; then for all chosen s, β we have $\Delta = 0$, $C(\delta^{-1}\beta^{-1}\delta s, \beta) = C(s, 1)$. Specifically, $\delta \cdot \delta^{-1}\beta^{-1}\delta s \cdot \beta = \delta \cdot s \cdot 1$, $s\beta s^{-1} = \delta^{-1}\beta\delta$. This also holds for s = 1, thus $\delta^{-1}\beta\delta = s\beta s^{-1} = \beta$, E is a commutative field, and δ centralizes E and thus lies in E^* . From $C(\beta^{-1}s, \beta) = C(\delta^{-1}\beta^{-1}\delta s, \beta) = C(s, 1)$ we also obtain $\delta^2 s^2 \beta^{-1} + \delta s \beta^{-1} \xi_1(\beta) = \delta^2 s^2 + \delta s \xi_1(1)$, $\delta s(\beta^{-1} + 1) = \beta^{-1} \xi_1(\beta) + \xi_1(1) = \delta(\beta^{-1} + 1)$, but when $E \neq F_2$ we can choose $s \neq 1$ and $\beta \neq 1$, thus $\delta s(\beta^{-1} + 1) \neq \delta(\beta^{-1} + 1)$, a contradiction as desired. Now consider the case $A_{12} = \binom{0}{\delta}$. We take $g_2 = g_1\binom{I}{\eta(\alpha)} g_1^{-1} = \binom{B_{11}}{\beta} = \delta \cdot S$ for each

$$\eta(\alpha) = \begin{pmatrix} * & \cdots & * & \eta_1(\alpha) \\ \vdots & \cdots & \vdots & \vdots \\ * & \cdots & * & \eta_{d-1}(\alpha) \\ \alpha & 0 & \cdots & 0 \end{pmatrix} \in K \subset \operatorname{Mat}_d E,$$

with

$$B_{11} = \begin{pmatrix} I \\ \ddots \\ \delta \alpha & I \end{pmatrix} \quad \text{and} \quad B_{22} = \begin{pmatrix} I & -\eta_1(\alpha)\delta \\ \ddots & \vdots \\ & -\eta_{d-1}(\alpha)\delta \\ & I \end{pmatrix};$$

then take $g_3 = \begin{bmatrix} \begin{pmatrix} I & 0 \\ \eta(1) & I \end{bmatrix}$, $g_2 = \begin{pmatrix} I & 0 \\ B & I \end{bmatrix} \in X$ with

$$B = B_{22}^{-1} \eta(1) B_{11} - \eta(1) = \begin{pmatrix} \eta_1(\alpha) \,\delta + \eta_1(1) \,\delta \alpha & \\ \vdots & 0 & \\ \eta_{d-1}(\alpha) \,\delta + \eta_{d-1}(1) \,\delta \alpha & \\ 0 & \cdots & 0 \end{pmatrix}$$

of rank $\leq h$, and we need only to choose $B \neq 0$. Since $\eta(1) \in K^*$ is invertible we must have $\eta_l(1) \neq 0$ for an *l*. When char $F \neq 2$ we take $\alpha = 1$, thus

$$B = \begin{pmatrix} 2\eta_1(1) & & \\ \vdots & 0 & \\ 2\eta_{d-1}(1) & & \\ 0 & \cdots & 0 \end{pmatrix} \neq 0$$

(since $2\eta_i(1) \delta \neq 0$). Suppose char F = 2 and suppose B = 0, then all

 $\eta_j(\alpha)\delta = \eta_j(1)\delta\alpha$ $(1 \le j \le d-1)$ for all $\alpha \in E$, and we see $\delta\alpha \delta^{-1} = \eta_i(1)^{-1}\eta_i(\alpha)\in E$ for all $\alpha \in E$. Now we take $[\binom{I}{A(\beta)}, g_2] = \binom{I}{C} \otimes I \in X$ for each

$$\Lambda(\beta) = \begin{pmatrix} * & \cdots & \Lambda_1(\beta) \\ \vdots & \cdots & \vdots \\ * & \cdots & \Lambda_{d-1}(\beta) \\ 0 & \cdots & \beta \end{pmatrix} \in K \subset \operatorname{Mat}_d E,$$

with

$$C = C(\alpha, \beta) = B_{22}^{-1} \Lambda(\beta) B_{11} - \Lambda(\beta)$$

=
$$\begin{pmatrix} (\Lambda_1(\beta) + \eta_1(1) \,\delta\alpha\beta) \,\delta\alpha & \eta_1(1) \,\delta\alpha\beta \\ \vdots & 0 & \vdots \\ (\Lambda_{d-1}(\beta) + \eta_{d-1}(1) \,\delta\alpha\beta) \,\delta\alpha & \eta_{d-1}(1) \,\delta\alpha\beta \\ \beta \,\delta\alpha & 0 & \cdots & 0 \end{pmatrix}.$$

For each $\beta, s \in E^*$ we choose $\alpha = s\beta^{-1}$, thus all $\eta_j(1) \delta \alpha \beta = \eta_j(1) \delta s$ $(1 \leq j \leq d-1)$; as we have $\binom{I}{d} {0 \atop l} \in X$ for the $\Lambda = \Lambda(s, \beta) = C(s\beta^{-1}, \beta) + C(s, 1)$ dependent on s and β and rank $\Delta \leq h$, we need only to choose $\Delta \neq 0$. Suppose all $\Delta(s, \beta) = 0$, $C(s\beta^{-1}, \beta) = C(s, 1)$, specifically $\beta \delta s\beta^{-1} = \delta s$, $\delta^{-1}\beta\delta = s\beta s^{-1} = 1\beta 1^{-1} = \beta$, E is commutative, and δ centralizes E and thus lies in E*. From $C(s\beta^{-1}, \beta) = C(s, 1)$ we also obtain $(\Lambda_i(\beta) + \eta_i(1) \delta s) \delta s\beta^{-1} = (\Lambda_i(1) + \eta_i(1) \delta s) \delta s$, thus $\Lambda_i(\beta) \beta^{-1} + \Lambda_i(1) = \eta_i(1) \delta s(\beta^{-1} + 1) = \eta_i(1) \delta 1(\beta^{-1} + 1)$, but when $E \neq F_2$ we can choose $\beta \neq 1$ and $s \neq 1$ to make $\eta_i(1) \delta s(\beta^{-1} + 1) \neq \eta_i(1) \delta(\beta^{-1} + 1)$, a contradiction.

So when $E \neq F_2$ we can always reduce to the case $g_1 = \begin{pmatrix} I & A_{12} \\ I & I \end{pmatrix}$. In this case we also have $\begin{pmatrix} I & 0 \\ A_{12} & I \end{pmatrix} \in X$, thus $\begin{pmatrix} \theta^{-1} \\ \theta \end{pmatrix} \begin{pmatrix} I & 0 \\ A_{12} & I \end{pmatrix} \begin{pmatrix} I & 0 \\ \theta^{-1} \end{pmatrix} \begin{pmatrix} I & 0 \\ -\theta_1 & I \end{pmatrix} = \begin{pmatrix} I & 0 \\ C & I \end{pmatrix} \in X$ for all $\theta, \theta_1 \in K^*$, with $C = \theta A_{12}\theta - \theta_1$, and $g_2 = g_1 \begin{pmatrix} I & 0 \\ C & I \end{pmatrix} g_1^{-1} = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \in X$ with $B_{12} = -A_{12}CA_{12} = -A_{12}(\theta A_{12}\theta - \theta_1)A_{12}$. We can choose an $\alpha^{(h)} \in E$ having the same first row as $\delta^{(h)}$, thus $0 \leq \operatorname{rank}(\delta - \alpha) < h$. When $A_{12} = \begin{pmatrix} \delta & 0 \end{pmatrix}$ we take

$$\theta = \xi(1) = \begin{pmatrix} * & \cdots & * & I^{(h)} \\ \vdots & \cdots & \vdots & \vdots \\ * & \cdots & * & 0 \end{pmatrix} \in K^* \quad \text{thus} \quad \theta A_{12} \theta = \begin{pmatrix} * & \cdots & * & \delta \\ & 0 \\ & \ddots & & \\ 0 & & \end{pmatrix}$$

and we choose $\theta_1 = \xi(\alpha)$, thus $B_{12} = \begin{pmatrix} \delta_1 & 0 \end{pmatrix}$ with $\delta_1 = -\delta(\delta - \alpha)\delta$, rank $B_{12} = \operatorname{rank}(\delta - \alpha) < h$. By the minimality of h we must have $B_{12} = 0$, $\delta = \alpha \in E^*$. When $A_{12} = \begin{pmatrix} 0 & \delta \end{pmatrix}$ we take $\theta = I^{(r)}$ and choose any $\theta_1 = (\alpha_{ij}^{(h)})_{d \times d} \in K^*$ with $\alpha_{dd} = \alpha$; then $B_{12} = \begin{pmatrix} 0 & \delta \end{pmatrix}$ with $\delta_1 = -\delta(\delta - \alpha)\delta$, rank $B_{12} = \operatorname{rank}(\delta - \alpha) < h$, leading to $\delta = \alpha \in E^*$ again. So in $g_1 = \begin{pmatrix} l & A_{12} \\ 0 & l \end{pmatrix}$ with $A_{12} = \begin{pmatrix} \delta & 0 \end{pmatrix}$ or $\begin{pmatrix} 0 & \delta \end{pmatrix}$ we must have $\delta^{(h)} \in E^*$, g_1 a transvection of SL(nd, E). When K is commutative g_1 is the symplectic transvection $\rho_{w_l e_{2,1}}$: $x \mapsto x + f_E(x, w_l e_2) w_l e_2$ of the $\operatorname{Sp}(2d, E, f_E) > SL(2, K) = \operatorname{Sp}(2, K, f)$, relative to the alternating E-form $f_E = \varphi_E f$ with $\varphi_E \in \operatorname{Hom}_E(K, E)$ defined by $\varphi_E(w_l w_d) = \delta$ and all $\varphi_E(w_l w_l) = 0$ $(1 \le i \le d-1)$, where l=1 when $A_{12} = \begin{pmatrix} \delta & 0 \end{pmatrix}$ or l=d when $A_{12} = \begin{pmatrix} 0 & \delta \end{pmatrix}$. All the $g^{-1}\rho_{w_l e_{2,1}} g = \rho_{w_l e_{2,R,1}} \in X$ $(g \in \operatorname{Sp}(2, K, f))$ exhaust the conjugates of $\rho_{w_l e_{2,1}}$ in $\operatorname{Sp}(2d, E, f_E)$ (since $w_l e_2 g$ ranges over non-zero vectors); thus they generate $\operatorname{Sp}(2d, E, f_E)$, a contradiction (since we assume X contains no $\operatorname{Sp}(2d, E, f_E)$ with $E \subsetneq K$). When K is non-commutative, for each $(\beta_1, ..., \beta_{d-1}) \in \operatorname{Mat}_{1 \times (d-1)} E$ we take a $\theta = (a_{ij})_{d \times d} \in K \subset \operatorname{Mat}_d E$, with $(\alpha_{11}, ..., \alpha_{1d}) = (\delta^{-1}\beta_1, ..., \delta^{-1}\beta_{d-1}, 0)$ when $A_{12} = \begin{pmatrix} 0 & \\ \delta \end{pmatrix}$; then we have $g_2 = g_1\begin{pmatrix} \ell & 0 \\ \ell & l \end{pmatrix} g_1^{-1} = \begin{pmatrix} B_{11} & 0 \\ B_{21} & B_{22} \end{pmatrix} \in X$ with

$$B_{11} = I + A_{12}\theta = \begin{pmatrix} I & & \\ \ddots & & \\ \beta_1 \cdots \beta_{d-1} & I \end{pmatrix},$$

which says that for each E-transvection $T = I + v'u \in SL(d, E)$ with

$$v' = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ I \end{pmatrix} \in \operatorname{Mat}_{d \times 1} E$$

and $u = (\beta_1, ..., \beta_{d-1}, 0) \in \operatorname{Mat}_{1 \times d} E$ with uv' = 0 we have a $\binom{T}{\bullet} \binom{0}{\bullet} \in X$ and $\binom{2}{\bullet} \binom{-1}{\bullet} \binom{T}{\bullet} \binom{0}{\bullet} \binom{2^{-1}}{\bullet} = \binom{2T2^{-1}}{\bullet} \otimes EX$ for all $\lambda \in K^*$, with $\lambda T \lambda^{-1} = I + (\lambda v')(u\lambda^{-1})$ ranging over all E-transvections in SL(d, E) (since $\lambda v'$ ranges over non-zero columns in $\operatorname{Mat}_{d \times 1} E$). The group $\{A \in GL(d, E) \mid \text{ some } \binom{4}{\bullet} \otimes EX \}$ contains all the E-transvections in SL(d, E) (since $\lambda v'$ ranges over non-zero columns in $\operatorname{Mat}_{d \times 1} E$). The group $\{A \in GL(d, E) \mid \text{ some } \binom{4}{\bullet} \otimes EX \}$ contains all the E-transvections in SL(d, E), thus contains SL(d, E). Since K is non-commutative we can take a commutator γ of K^* not centralizing K^* , $\binom{7}{I} \in SL(2, K) < X$, thus the subgroup $\langle g(\gamma_{I}) g^{-1} \mid g = \binom{4}{\bullet} \otimes EX_{Ke_1} \rangle$ of X contains a $\binom{P}{\bullet} \otimes I$ for each $P \in \langle A\gamma A^{-1} \mid A \in SL(d, E) \rangle = SL(d, E)$ and X contains $\left[\binom{I}{I} \circ I\right]$, $\binom{P}{\bullet} \circ I = \binom{P}{I} \binom{P}{I} \circ I$, thus X contains all $\binom{I}{B} \circ I$, with B lying in the additive group generated by all P - I with $P \in SL(d, E)$. These B can range over all $sE_{ij} \in \operatorname{Mat}_d E$ with $s \in E^*$ and $1 \leq i, j \leq d$; we can see $X \geq SL(2d, E)$ as in treating the case $n \geq 3$, a contradition as desired.

Now consider the remaining case, $E = F = F_2$. Excluding the settled case

 $K = F_4$ we have $r = d \ge 3$ and $\delta = 1$. When $g_1 = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$ with $A_{12} = \begin{pmatrix} 0 & 0^{(r-1)} \end{pmatrix}$ we take $g_2 = g_1 \begin{pmatrix} l & 0 \\ l & l \end{pmatrix} g_1^{-1} = \begin{pmatrix} B_{11} & 0 \\ B_{21} & B_{22} \end{pmatrix} \in X$ with

$$B_{11} = B_{22} = \begin{pmatrix} 1 & & \\ & \ddots & \\ 1 & & 1 \end{pmatrix}.$$

$$\eta(1) = w_r^{-1} w_1 = \begin{pmatrix} * & \cdots & * & a_1 \\ \vdots & \cdots & \vdots & \vdots \\ * & \cdots & * & a_{r-1} \\ 1 & 0 & \cdots & 0 \end{pmatrix} \in K^*,$$

with

$$B_{11} = \begin{pmatrix} 1 & & \\ & \ddots & \\ 1 & & 1 \end{pmatrix} \text{ and } B_{22} = \begin{pmatrix} 1 & & a_1 \\ & \ddots & & \vdots \\ & & 1 & a_{r-1} \\ & & & 1 \end{pmatrix}.$$

Define $\varphi \in \operatorname{Hom}(K, F_2)$ by $\varphi(w_r^2) = 1$ and all $\varphi(w_i w_r) = 0$ $(1 \le i \le r-1)$, and define $f_0 = \varphi f$. Note that for each $1 \le i \le r-1$ we have $w_i w_r^{-1} w_1 = w_i \eta(1) = \sum_{j=1}^r \eta_{ij} w_j + a_i w_r$ (with all $\eta_{ij} \in F_2$), $w_i w_1 = \sum_{j=1}^r \eta_{ij} w_j w_r + a_i w_r^2$, thus $\varphi(w_i w_1) = a_i$, so we can see $\binom{B_{11}}{B_{22}} = t_{w_1 e_1, w_r e_2} \in \operatorname{Sp}(2r, F_2, f_0)$, $\left[\binom{I \ 0}{I \ 1}, g_2\right] = \left[\binom{I \ 0}{I \ 1}, \binom{B_{11}}{B_{22}}\right] = \binom{I \ 0}{C \ 0} \in X \cap \operatorname{Sp}(2r, F_2, f_0)$ with

$$C = B_{22}^{-1} B_{11} - I = \begin{pmatrix} a_1 & \cdots & a_1 \\ \vdots & 0 & \vdots \\ a_{r-1} & \cdots & a_{r-1} \\ 1 & 0 & \cdots & 0 \end{pmatrix};$$

such an $\binom{I}{C} \binom{I}{I}$ is a product $\rho_{(w_1+w_r)e_1} \rho_{w_re_1}$ of two symplectic transvections $\rho_{(w_1+w_i)e_1}$ and $\rho_{w_re_1}$ in Sp $(2r, F_2, f_0)$ (where we denote $\rho_u: x \mapsto x + f_0(x, u)u$ for each $u \in V$). Considering the conjugates under N = Sp(2, K, f) we know that X contains all $\rho_{xu}\rho_u$ with $u \neq 0$ and $\alpha = w_1w_r^{-1} + 1 \in K^* \setminus \{1\}$. If $\alpha^2 \in F_2 \oplus F_2 \alpha$, thus $\alpha^2 = 1 + \alpha$, then we have $F_2[\alpha] = F_4$, thus 2|r. $W = \{\theta \in K | \varphi(\theta) = \varphi(\alpha \theta) = 0\} \text{ is an }$ $F_2[\alpha]$ -space, we can write $K = F_2[\alpha]\beta \oplus W$ for a $\beta \in K^*$ with $\varphi(\beta) = 1$, and we can define $\varphi_1 \in \operatorname{Hom}_{F_2[\alpha]}(K, F_2[\alpha])$ by $\varphi_1(e\beta + w) = e$ for each $e \in F_2[\alpha]$ and $w \in W$ and define $\varphi_2 \in \text{Hom}(F_2[\alpha], F_2)$ by $\varphi_2(e) = \varphi(e\beta)$, thus $\varphi = \varphi_2 \varphi_1$. Now all the $\rho_{xu} \rho_u \in X$ act as symplectic transvections of Sp (r, F_4, f_1) relative to $f_1 = \varphi_1 f$; all such symplectic transvections generate $\text{Sp}(r, F_4, f_1) \leq X$, a contradiction. Now suppose $\alpha^2 \notin F_2 \oplus F_2 \alpha$, then we can take a $\lambda \in K^*$ $\varphi(\lambda) = \varphi(\lambda\alpha) = 0 \neq \varphi(\lambda\alpha^2)$ with and take $T = \rho_{\alpha\lambda e_2} \rho_{\lambda e_2} \in X,$ thus $T^{-1}(\rho_{\alpha e_1}, \rho_{e_1})T = \rho_{\alpha e_1 + \alpha \lambda_2} \rho_{e_1} \in X$. Considering the conjugates under N we know $\rho_{\alpha\lambda e_2} \rho_{e_1 + \theta e_2} \in X$ for all $\theta \in K$, thus $(\rho_{\alpha\lambda e_2} \rho_{e_1})^{-1} \rho_{\alpha\lambda e_2} \rho_{e_1 + \theta e_2} =$ $\rho_{e_1} \rho_{e_1 + \theta e_2} \in X$, and $\rho_u \rho_v \in X$ for all u, v with $f(u, v) \neq 0$. For non-zero u, wwith f(u, w) = 0 we can choose v with both f(u, v) and f(u, w) non-zero, thus $(\rho_u \rho_v)(\rho_v \rho_w) = \rho_u \rho_w \in X$. X contains all the conjugates of $\rho_{e_1} \rho_{e_2}$ in $Sp(2r, F_2, f_0)$, thus contains the whole $Sp(2r, F_2, f_0)$, a contradiction again.

2. Overgroups of Sp(2v, K) in GL(2vr, F)

LEMMA 4. Let X be an overgoup of any symplectic group Sp(2m, E) in $\Gamma L(2m, E)$; then we have $X \succeq Sp(2m, E)$ or $X \trianglerighteq SL(2m, E)$.

Proof. Each transvection in SL(2m, E)has the form $\tau_{u,v}: x \mapsto x + (x, v)u$, associated with a pair of non-zero vectors u, v with (u, v) = 0 (where (x, y) denotes the alternating inner product of any pair of vectors x, y in the underlying space of Sp(2m, E)). We see that $\tau_{u,v} \in \text{Sp}(2m, E)$ if and only if u and v are collinear. If $X \triangleq \text{Sp}(2m, E)$, then X contains a $\tau_{u_1, v_1} \notin \text{Sp}(2m, E)$, with u_1, v_1 non-collinear, and X contains all $g^{-1}\tau_{u_1,v_1}g = \tau_{u_1g,v_1g}$ with $g \in \text{Sp}(2m, E)$. Since $\{u_1g, v_1g\}$ $(g \in \text{Sp}(2m, E))$ ranges over all the non-collinear and orthogonal pairs of vectors, we know τ_{u_1g,v_1g} ranges over all transvections in SL(2m, E) not lying in Sp(2m, E); X contains all the transvections of SL(2m, E), thus contains the whole of SL(2m, E).

In Lemma 5 we shall write $A_{(k)}$ to suggest that $A \in Mat_k R$.

LEMMA 5. Let R be a ring with 1, D a field lying in R as a subring. Let $n = 2v \ge 4$, Γ be the normalizer of GL(n, D) in GL(n, R), and $g_1 = (a_{ij})_{n \times n} \in GL(n, R) \setminus \Gamma$ with all $a_{1j} = 0$ $(j \ge 2)$. Let Sp(n, D) = $\{A \in GL(n, D) | AHA' = H \} \text{ for } H = \begin{pmatrix} 0 & I_{(1)} \\ I_{(n)} & 0 \end{pmatrix} \in GL(n, D), \quad Y = \langle \operatorname{Sp}(n, D), g_1 \operatorname{Sp}(n, D) g_1^{-1} \rangle.$ Then

(1) Y contains a

$$T = \begin{pmatrix} I_{(v)} & 0 \\ - - - - - \\ S & I_{(v)} \\ 0 & I \end{pmatrix}$$

with $S = \begin{pmatrix} a & b \\ c & 0 \end{pmatrix} \in (\operatorname{Mat}_2 R) \setminus \operatorname{Mat}_2 D);$

(2) for each $S = \begin{pmatrix} a & b \\ c & 0 \end{pmatrix} \in Mat_2 R$ with

$$\begin{pmatrix} I_{(v)} & 0\\ ----\\ S & I_{(v)}\\ 0 & \end{pmatrix} \in Y,$$

Y contains all $T_{\nu+1,1}(\theta c + b\theta)$ $(\theta \in D)$ and *Y* contains $T_{\nu+1,1}(a)$ and all $T_{\nu+1,1}(b\theta c)$ $(\theta \in D)$ when $D \neq F_2$ or $\nu \ge 3$;

(3) when $D \neq F_2$ or $v \ge 3$ we have $T_{v+1,1}(aa_1a) \in Y$ for any $T_{v+1,1}(a), T_{v+1,1}(a_1) \in Y$.

Proof. (1) We point out that we can replace g_1 by any gg_1z with $g \in Y$ and $z \operatorname{Sp}(n, D) z^{-1} = \operatorname{Sp}(n, D)$, without changing Y. We can also replace g_1 by a $g \in Y$, thus replace Y by a $Y_1 \leq Y$, provided that we can find a needed T in Y_1 .

For each $\theta \in D^*$, consider

$$g_{2} = g_{1} T_{v+1,1}(\theta) g_{1}^{-1} = \begin{pmatrix} 1 & & \\ b_{2} & 1 & \\ \vdots & \ddots & \\ b_{n} & & 1 \end{pmatrix} \in Y$$

with $b_i = a_{i,v+1} \theta a_{11}^{-1}$ $(i \ge 2)$. Consider $[T_{i \le v,i}(1), g_2] = T_{i+v,1}(b_i) \in Y$ for each $i \notin \{1, v+1\}$ (where

$$i \pm v = \begin{cases} i + v & \text{when } i \leq v \\ i - v & \text{when } i > v \end{cases}$$

thus $1 \le i \pm v \le 2v$). If we can choose $\theta \in D^*$ to make $b_i \notin D$ for an $i \notin \{1, v+1\}$, then $[T_{v+1,i+v}(1) T_{i1}(\mp 1), T_{i\pm v,1}(b_i)] = T_{v+1,1}(b_i) \in Y$ is just the needed T. Suppose $b_i = a_{i,v+1} \theta a_{11}^{-1} \in D$ for all $\theta \in D$ and all

 $i \notin \{1, v+1\}$. If for an $i \notin \{1, v+1\}$ we have $a_{i,v+1} \neq 0$, thus $b_i \in D^*$, $T_{i \pm v,1}(b_i) \in SL(n, D) \setminus Sp(n, D), \quad Y \ge \langle Sp(n, D), T_{i + v,1}(b_i) \rangle = SL(n, D)$ by Lemma 4, we can replace g_1 by zg_1 to annihilate all $a_{i,\nu+1}$ ($i \neq \nu + 1$) for a suitable $z = (\alpha_{ii})_{n \times n} \in SL(n, D) < Y$ with all $\alpha_{1i} = 0$ $(j \ge 2)$. So we may begin by assuming all $a_{i,v+1} = 0$ $(i \neq v+1)$. Since g_1 is invertible we have $a_{v+1,v+1} \neq 0$ and $g_2 = T_{v+1,1}(b_{v+1}) \in Y$ with $b_{v+1} = a_{v+1,v+1} \theta a_{11} \neq 0$ for all $\theta \in D^*$. If we can choose θ to make $b_{\nu+1} \notin D$, $T = T_{\nu+1,1}(b_{\nu+1})$ is just what we need. Suppose $b_{y+1} \in D^*$ for all chosen $\theta \in D^*$. Specifically, we have $a_{v+1,v+1}a_{11}^{-1} \in D^*$, thus $a_{11}\theta a_{11}^{-1} = (a_{v+1,v+1}a_{11}^{-1})^{-1}a_{v+1,v+1}\theta a_{11}^{-1}$ $\in D^*$ for all $\theta \in D^*$. Now, for each $A \in \operatorname{Sp}(n, D)$ we have $a_{11}Aa_{11} \in D^*$. GL(n, D) and $(a_{11}Aa_{11}^{-1})H(a_{11}Aa_{11}^{-1})' = a_{11}A(a_{11}^{-1}Ha_{11})A'a_{11}^{-1} = H$, thus $A \in \text{Sp}(n, D)$. This shows that $a_{11} \text{Sp}(n, D) a_{11}^{-1} = \text{Sp}(n, D), g_1 \text{Sp}(n, D) g_1^{-1} =$ $(g_1a_{11}^{-1})$ Sp $(n, D)(g_1a_{11}^{-1})^{-1}$, we can replace g_1 by $g_1a_{11}^{-1}$ to reduce to the case $a_{11} = 1$, and $a_{v+1,v+1} \in D^*$. Since $g_1 \notin I$ we have some $a_{ij} \notin D$. If $a_{ij} \in D$ for all $i \neq v + 1$, we have some $a_{v+1,i} \notin D$; since $(a_{11}, ..., a_{1n}) = (1, 0, ..., 0)$ and $a_{2,\nu+1} = 0$ we can take a $z \in Sp(n, D)$ having the same first two rows as g_1 , and can replace g_1 by g_1z^{-1} to reduce to the case $(a_{21}, ..., a_{2n}) =$ (0, 1, 0, ..., 0). Still we have some $a_{v+1, j} \notin D$ and can replace g_1 by $P_{12}P_{y+1,y+2}g_1(P_{12}P_{y+1,y+2})^{-1}$ to reduce to the case in which some $a_{v+2,j} \notin D$. So we may start by assuming that there exists an $a_{kl} \notin D$ with $k \neq v + 1$ (and, of course, $k \neq 1$). When $k \ge v + 2$ we replace g_1 by $P_{k=v,k} g_1$ to reduce to the case $2 \le k \le v$. Suppose $k \le v$; then we replace g_1 by $(P_{2k}P_{v+2,v+k}) g_1$ to reduce to the case k = 2. So we suppose some $a_{2l} \notin D$. If $a_{2l} \notin D$ for an $l \neq 1$ (of course $l \neq v + 1$, since $a_{2,v+1} = 0$), we replace g_1 by $g_1 T_{i1}(1) T_{v+1,i-v}(\mp 1) g_1^{-1} = (b_{ij})_{u \times u} \in Y$ with $b_{11} = b_{22} = 1$, $b_{21} = a_{2l} \notin D$, and $b_{1j_1} = b_{2j_2} = 0$ for all $j_1 \ge 2$ and $j_2 \ge 3$. Suppose all $a_{2i} \in D$ $(j \ge 2)$ but $a_{21} \notin D$; then we can choose a $z = (\theta_{ij})_{n \times n} \in \operatorname{Sp}(n, D)$ with $(\theta_{11}, ..., \theta_{1n}) = (1, 0, ..., 0)$ and $(\theta_{21}, ..., \theta_{2n}) = (0, a_{22}, ..., a_{2n})$, and can replace g_1 by $g_1 z^{-1}$ to reduce to the case $(a_{21}, ..., a_{2n}) = (a_{21}, 1, 0, ..., 0)$ with $a_{21} \notin D$. Anyway, we may reduce to the case in which $(a_{21}, ..., a_{2n}) =$ $(a_{21}, 1, 0, ..., 0)$ with $a_{21} \notin D$. Now we take

$$g_{2} = g_{1} T_{v+2,2}(1) g_{1}^{-1} = (b_{ij})_{n \times n} = \begin{pmatrix} 1 & & \\ 0 & 1 & & \\ b_{31} & b_{32} & 1 & \\ \vdots & \vdots & \ddots & \\ b_{n1} & b_{n2} & & 1 \end{pmatrix} \in Y,$$

with $b_{i2} = a_{i,v+2}$ and $b_{i1} = -a_{i,v+2}a_{21}$ for $3 \le i \le n$. Since g_1 is invertible we have some $a_{k,v+2} \ne 0$ ($k \ge 3$). For each such k, if $b_{k2} = a_{k,v+2} \in D^*$ we have $b_{k1} = -a_{k,v+2}a_{21} \notin D$ (since $a_{21} \notin D$). Namely, we have either $b_{k2} \notin D$ or $b_{k1} \notin D$, $g_2 \notin \Gamma$ in any case. If $b_{k2} \ne 0$ for a $k \notin \{v+1, v+2\}$, we have

$$\tilde{g}_{2} = \begin{bmatrix} g_{2}, T_{21}(1) & T_{v+1,v+2}(-1) \end{bmatrix}$$

$$= \begin{pmatrix} 1 & & & \\ 0 & 1 & & \\ b_{32} & 1 & & \\ \vdots & & \ddots & \\ b_{v+1,2} + b_{v+2,1} & b_{v+2,2} & 1 & \\ \vdots & & & \ddots & \\ b_{n2} & & & 1 \end{pmatrix} \in Y,$$

thus $[T_{k\pm\nu,k}(1), \tilde{g}_2] = T_{k\pm\nu,1}(b_{k2}) \in Y$. When $b_{k2} \in D^*$ we have $Y \ge \langle \operatorname{Sp}(n, D), T_{k+\nu,1}(b_{k2}) \rangle = SL(n, D)$ by Lemma 4. Applying Lemma 3 we know $Y \ge \langle SL(n, D), g_2SL(n, D) g_2^{-1} \rangle \ni T_{\nu+1,1}(c)$ for a $c \in R \setminus D$, as desired. When $b_{k2} \notin D$, take $T = [T_{\nu+1,k+\nu}(1) T_{k1}(\mp 1), T_{k\pm\nu,1}(b_{k2})] = T_{\nu+1,1}(b_{k2}) \in Y$, still we are done. Now we suppose $b_{i2} = 0 = b_{i1}$ for all $i \notin (\nu+1, \nu+2)$,

$$g_{2} = \begin{pmatrix} I_{(v)} & | & 0 \\ - & - & - \\ C & | & I_{(v)} \\ 0 & | & \end{pmatrix} \in Y$$

with $C = (\frac{b_{v+1,1}}{b_{v+2,2}}) \notin \text{Mat}_2 D$. If $b_{v+2,2} \in D$ we have $T_{v+2,2}(-b_{v+2,2}) \in Sp(n, D)$, thus can take $T = g_2 T_{v+1,1}(-b_{v+2,2}) \in Y$. When $b_{v+2,2} \notin D$ we have

$$T = [T_{21}(1) \ T_{v+1,v+2}(-1), \ g_2^{-1}] = \begin{pmatrix} I_{(v)} & | & 0 \\ - & - & - \\ S & | & I_{(v)} \\ 0 & | & \end{pmatrix} \in Y$$

with $S = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} C \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} - C = \begin{pmatrix} \bullet & \bullet & \bullet \\ b_{v+2,2} & b_{0}^{-2,2} \end{pmatrix} \notin \operatorname{Mat}_2 D$, as required. (2) Denote

$$L = \left\{ S \in \operatorname{Mat}_{v} R \middle| \begin{pmatrix} I_{(v)} & \mid & 0 \\ - & - & \mid \\ S & \mid & I_{(v)} \end{pmatrix} \in Y \right\}$$

and

$$L_2 = \left\{ S \in \operatorname{Mat}_2 R \middle| \begin{pmatrix} S & \\ & O_{(v-2)} \end{pmatrix} \in L \right\}.$$

One can see that L and L_2 are additive groups. For each

$$g = \begin{pmatrix} A_{(v)} & | & 0 \\ - & - & | \\ - & - & - \\ & | \\ * & | & B_{(v)} \end{pmatrix} \in Y \text{ and } S \in L$$

we have $g\begin{pmatrix} I & 0 \\ S & I \end{pmatrix} g^{-1} = \begin{pmatrix} I & 0 \\ S_1 & I \end{pmatrix} \in Y$ with $S_1 = BSA^{-1}$, thus $BSA^{-1} \in L$. In particular, for each $A \in GL(v, D)$ we have $\operatorname{diag}(A'^{-1}, A) \in \operatorname{Sp}(n, D)$; thus $ASA' \in L$ for all $S \in L$. And we have $ASA' \in L_2$ for all $A \in GL(2, D)$ and $S \in L_2$. Now, for each $S = \begin{pmatrix} a & b \\ c & 0 \end{pmatrix} \in L_2$ and $\theta \in D$, we have $\begin{pmatrix} 1 & \theta \\ 0 & 1 \end{pmatrix} S\begin{pmatrix} 0 & 1 \\ \theta & 1 \end{pmatrix} - S = \begin{pmatrix} \theta c + b\theta \\ 0 \end{pmatrix} \in L_2$, i.e., $T_{v+1,1}(\theta c + b\theta) \in Y$. When $D \neq F_2$ we can take $1 \neq \theta \in D^*$, thus $\begin{pmatrix} a & b \\ c & 0 \end{pmatrix} \in L_2$ implies $\begin{pmatrix} 1 & (\theta - 1)^{-1} \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & \theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \theta \end{pmatrix} = \begin{pmatrix} a & b \\ c & 0 \end{pmatrix} = L_2$ and $\begin{pmatrix} a & 0 \\ c & 0 \end{pmatrix} = \begin{pmatrix} a & b \\ c & 0 \end{pmatrix} = L_2$, i.e., $T_{v+1,1}(a) \in Y$. When $v \ge 3$, $\begin{pmatrix} a & b \\ c & 0 \end{pmatrix} \in L_2$ implies

$$\begin{pmatrix} 1 & & \\ & 0 & 1 & \\ & & 1 & 0 & \\ & & & I \end{pmatrix} \begin{pmatrix} 1 & & & \\ & 1 & 0 & \\ & & 1 & 1 & \\ & & & I \end{pmatrix} \begin{pmatrix} a & b & \\ c & 0 & \\ & & & 0 \end{pmatrix} \begin{pmatrix} 1 & & & \\ & 0 & 1 & \\ & & & I \end{pmatrix} = \begin{pmatrix} 0 & b & \\ c & 0 & \\ & & & c & 0 \\ & & & & 0 \end{pmatrix} \in L;$$

thus $\begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix} \in L_2$ and $\begin{pmatrix} a & 0 \end{pmatrix} \in L_2$ again. Now, $\begin{pmatrix} 0 & c \\ b & 0 \end{pmatrix} \in L_2$ implies

$$P_{2,\nu+2}^{-1} \begin{pmatrix} I_{(\nu)} & | \\ ----- \\ 0 & b & | \\ c & 0 & | \\ c & 0 & | \\ 0 & | \\ \end{pmatrix} P_{2,\nu+2}$$

$$= \operatorname{diag} \left(\begin{pmatrix} 1 & \\ -c & 1 \\ & I_{(\nu-2)} \end{pmatrix}, \begin{pmatrix} 1 & b & \\ 1 & \\ & I_{(\nu-2)} \end{pmatrix} \right);$$

thus $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} S \begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix} \in L_2$ for all $S \in L_2$. In particular, for each $\theta \in D^*$ we have $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & \theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix} = \begin{pmatrix} b \theta c \\ 0 \end{pmatrix} \in L_2$, $T_{\nu+1,1}(b\theta c) \in Y$.

(3) $T_{v+1,1}(a) \in Y$ implies $\binom{1 \ 0}{1 \ 1}\binom{a}{0}\binom{1 \ 1}{0 \ 1} - \binom{a}{0}\binom{0 \ 1}{0 \ 1} - \binom{0 \ 1}{1 \ 0}\binom{a}{0}\binom{0 \ 1}{0 \ 1} = \binom{0 \ 1}{a \ 0} \in L_2$; thus $\binom{1 \ a}{0 \ 1} S\binom{1 \ 0}{a \ 1} \in L_2$ for all $S \in L_2$ (by the proof of (2)).

232

Proof of Theorem 2. Let $N_1 = \operatorname{Sp}(n, K, f) \leq X \leq G = GL(nr, F)$. Choose a minimal intermediate field E between F and K such that $X \geq \operatorname{Sp}(nd, E, f_E)$ (where $d = \dim_E K$) for an f_E . If E = F, $X \geq \operatorname{Sp}(nr, F)$, apply Lemma 4. So we suppose $E \supseteq F$ and replace K by E to reduce to the case in which X contains no $\operatorname{Sp}(nd, E)$ with $E \subsetneq K$. If $X \leq \Gamma =$ $GL(n, K) \rtimes \operatorname{Aut} K/F$, by Lemma 4 we know $X \trianglerighteq \operatorname{Sp}(n, K, f)$ or $X \trianglerighteq SL(n, K)$, so Theorem 2 holds. So we suppose $X \leq \Gamma$, and try to find an $\operatorname{Sp}(nd, E) \leq X$ with $E \subsetneq K$, thus obtaining a contradiction and completing the proof of Theorem 2.

When n = 2, by the proof of Theorem 1 in Section 1 we know X contains an Sp(nd, E) with $E \subsetneq K$, a contradiction already. So we suppose $n = 2v \ge 4$ in the following. We shall choose the basis $\{e_1, ..., e_{2v}\}$ of V(2v, K) such that the inner products $f(e_i, e_{i+v}) = 1 = -f(e_{i+v}, e_i)$ for $1 \le i \le v$, and $f(e_i, e_j) = 0$ for $1 \le i$, $j \le 2v$ and $i \ne j \pm v$. Relative to this basis we have $N_1 = \{A \in GL(n, K) \mid AHA' = H\}$ for $H = \begin{pmatrix} 0 & I_{(v)} & 0 \\ 0 & 0 \end{pmatrix}$ (where A' is the transpose of A in Mat_nK and the identity $I_{(v)} \in GL(v, K)$).

Take a $g_1 = (A_{ij}^{(r)})_{n \times n} \in X_{\langle e_{11}, \dots, e_{1k} \rangle} \setminus \Gamma$ with maximal $k \leq r$. We want to prove that k = r. Suppose $k \leq r-1$; we try to obtain a contradiction. Denote by u_{ij} the ((i-1)r+j)th row of g_1 . We can take $z \in N_1$, sending e_1 and $u_{1,k+1}$ into the K-space $Ke_1 \oplus Ke_2 \oplus Ke_{v+2}$. In $g_1 z = (B_{ij}^{(r)})_{n \times n}$ the block $B_{1,v+1}$ has the first k+1 rows zero, thus $g_2 = (g_1 z) T_{v+1,1}(I^{(r)})(g_1 z)^{-1} \in X_{\langle e_{11}, \dots, e_{1,k+1} \rangle}$. By the maximality of k we must have $g_2 \in \Gamma$, and we see $g_2 \in \Gamma_{Ke_1}$. Applying Lemma 2 we know that g_2 is a transvection of SL(n, K). If $g_2 \notin N_1$ we have $X \geq \langle N_1, g_2 \rangle = SL(n, K)$ by Lemma 4; X is known by Theorem 1. Suppose $g_2 \in N_1$; we have some $z_1 \in N_1$ such that $z_1 g_2 z_1^{-1} = T_{v+1,1}(\alpha)$ for an $\alpha^{(r)} \in K^*$, $T_{v+1,1}(\alpha) = \tilde{g}_1 T_{v+1,1}(I) \tilde{g}_1^{-1}$ for $\tilde{g}_1 =$ $z_1 g_1 z \in X \setminus \Gamma$. From $\tilde{g}_1(T_{v+1,1}(I) - I) = (T_{v+1,1}(\alpha) - I) \tilde{g}_1$ we see $\tilde{g}_1 \in X_{Ke_1}$, k = r as desired.

So we can always find a $g_1 = (A_{ij}^{(r)})_{n \times n} \in X_{Ke_1} \setminus \Gamma$. Applying Lemma 5 to the case $D = K \neq F_2$ and R = Mat, F we know X contains a

$$T = \begin{pmatrix} I^{(vr)} & | \\ - - - - | \\ S & | \\ 0 & | \\ 0 & | \\ I^{(vr)} \end{pmatrix}$$

with

$$S = \begin{pmatrix} A_0^{(r)} & B_0^{(r)} \\ C_0^{(r)} & 0 \end{pmatrix} \notin Mat_2 K,$$

and X contains $T_{v+1,1}(A_0^{(r)})$, all $T_{v+1,1}(\theta C_0 + B_0\theta)$ and all $T_{v+1,1}(B_0\theta C_0)$ $(\theta \in K)$. We claim that X contains a $T_1 = T_{v+1,1}(A_1^{(r)})$ with $A_1 \notin K$. When $A_0 \notin K$ resp. $C_0 + B_0 \notin K$ we can take $T_1 = T_{v+1,1}(A_0)$ resp. $T_{v+1,1}(C_0 + B_0)$. Suppose both A_0 and $C_0 + B_0$ lie in K; since $S \notin Mat_2 K$ we must have $B_0 \notin K$ and $C_0 \notin K$. We can choose an $\alpha^{(r)} \in K$ having the same first row as B_0 , and can replace T by $TT_{v+1,2}(-\alpha) T_{v+2,1}(-\alpha) \in X$, thus replacing $S = \begin{pmatrix} A_0 & B_0 \\ C_0 & 0 \end{pmatrix}$ by $S - \begin{pmatrix} 0 & \alpha \\ \alpha & 0 \end{pmatrix} = \begin{pmatrix} A_0 & B_0 - \alpha \\ C_0 - \alpha & 0 \end{pmatrix}$, to annihilate the first row of B_0 , thus reducing to the case in which B_0 is singular. So we suppose B_0 is singular, and B_0 and C_0 are non-zero (since they are not in K). We can choose a $\theta \in K^*$ sending a non-zero row u of B_0 to $u\theta \notin \text{Ker } C_0$, thus $B_0\theta C_0 \neq 0$. But $B_0\theta C_0$ is singular (since B_0 is singular), thus $B_0\theta C_0 \notin K$, $T_1 = T_{v+1,1}(B_0\theta C_0) \in X$ is just what we need.

So we can always find a $T_1 = T_{v+1,1}(A_1^{(r)}) \in X$ with $A_1 \notin K$. We can take a $\theta_1 \in K$ having the same first row as A_1 and replace T_1 by $T_1 T_{v+1,1}(-\theta_1) \in X$, thus replacing A_1 by $A_1 - \theta_1$, to annihilate the first row of A_1 . We have $0 < \operatorname{rank} A_1 < r$ for such A_1 . Choose a $T_{v+1,1}(A)$ with smallest $h = \operatorname{rank} A > 0$, then h < r. By Lemma 5 (3) we know that $T_{v+1,1}(A\theta A) \in X$ for all $\theta \in K$. Since $\operatorname{rank} (A\theta A) \leq \operatorname{rank} A = h$, we must have either $\operatorname{rank} (A\theta A) = h$ or $A\theta A = 0$. By Lemma 1 we know that $\operatorname{Im} A$ and $\operatorname{Ker} A$ are subspaces of K over the field E generated by all $\beta \beta_1^{-1}$ $(\vec{\beta} \in \operatorname{Im} A)$ for a given non-zero $\vec{\beta}_1 \in \operatorname{Im} A$, with $\dim_E(\operatorname{Im} A) = 1$ and $\dim_E(\operatorname{Ker} A) = d - 1$ (where $d = \dim_E K = r/h$). We can choose a basis $\{v_1, ..., w_d\}$ of K/E and a basis $\{\varepsilon_1, ..., \varepsilon_h\}$ of E/F to construct a basis $\{\varepsilon_j w_i | 1 \leq i \leq d, 1 \leq j \leq h\}$ of K/F to replace $\{k_1, ..., k_r\}$, to reduce A to the form (δ^{-0}) or $(\circ^{-\delta})$ with $\delta \in GL(h, F)$ and $K \subset \operatorname{Mat}_d E$. We can choose an $\alpha^{(h)} \in E$ having the same first row as $\delta^{(h)}$, thus $\operatorname{rank} (\delta - \alpha) < h$. When $A = (\delta^{-0})$, take

$$\eta = \begin{pmatrix} * & \cdots & * & I^{(h)} \\ \vdots & \cdots & \vdots & 0 \\ * & \cdots & * & 0 \end{pmatrix} \in K^* \subset \operatorname{Mat}_d E.$$

By Lemma 5 (3) we have $T_{y+1,1}(\eta A\eta) \in X$ with

$$\eta A \eta = \begin{pmatrix} * & \cdots & * & \delta \\ & & 0 & \\ & & \ddots & \\ 0 & & & \end{pmatrix}.$$

Take a $\theta_1 = (\alpha_{ij})_{d \times d} \in K^*$ with $\alpha_{1d} = \alpha$, then by Lemma 5 (3) we have $T_{v+1,1}(A_2) \in X$ for $A_2 = A(\eta A \eta - \theta_1)A = (\delta_1^{-0})$ with $\delta_1 = \delta(\delta - \alpha)\delta$,

OVERGROUPS, I

rank $A_1 = \operatorname{rank} (\delta - \alpha) < h$; by the minimality of h we must have $\delta - \alpha = 0$, $\delta = \alpha \in E^*$. When $A = \begin{pmatrix} 0 \\ \delta \end{pmatrix}$ we take $\alpha^{(r)} = \operatorname{diag}(\alpha^{(h)}, ..., \alpha^{(h)}) \in K^*$. Since $T_{v+1,1}(A)$ and $T_{v+1,1}(A - \alpha)$ lie in X, we know $T_{v+1,1}(A(A - \alpha)A) \in X$ by Lemma 5 (3), with $A(A - \alpha)A = \begin{pmatrix} 0 \\ \delta_1 \end{pmatrix}$, $\delta_1 = \delta(\delta - \alpha)\delta$, still leading to δ $= \alpha \in E^*$. So we have $\delta \in E^*$ anyway, $T_{v+1,1}(A) \in X$ is a transvection of SL(nd, E). Furthermore, $T_{v+1,1}(A)$ is just the symplectic transvection $\rho_{w(e_1,1)}: x \mapsto x + f_E(x, w_t e_1) w_t e_1$ of the symplectic group $\operatorname{Sp}(2vd, E, f_E)$ relative to the alternating E-form $f_E = \varphi_E f$, with $\varphi_E \in \operatorname{Hom}_E(K, E)$ defined by

$$\varphi_E(w_i w_i) = \begin{cases} 0 & \text{when } i \neq d \\ \delta & \text{when } i = d, \end{cases}$$

where t = 1 when $A = (s^{(0)})$, t = d when $A = ({}^{(0)}_{\delta})$. X contains the conjugates $g^{-1}\rho_{w_te_{1,1}} g = \rho_{w_te_{1,g,1}}$ of $\rho_{w_te_{1,1}} = T_{v+1,1}(A) \in X$ by all $g \in N_1 < Sp(2vd, E, f_E)$. Since $w_te_1 g$ $(g \in N_1)$ ranges over all the non-zero vectors we know $\rho_{w_te_{1,g,1}}$ ranges over all the conjugates of $\rho_{w_te_{1,1}}$ in $Sp(2vd, E, f_E)$; all such $\rho_{w_te_{1,g,1}}$ generate a normal subgroup of $Sp(2vd, E, f_E)$ which must coincide with $Sp(2vd, E, f_E)$, $X \ge Sp(2vd, E, f_E)$, contradicting our assumption (remember that we assume X contains no Sp(2vd, E) with $E \subsetneq K$), thus completing the proof of Theorem 2.

References

- 1. M. ASCHBACHER, On the maximal subgroups of finite classical groups. *Invent. Math.* 76 (1984), 469-514.
- 2. W. M. KANTOR, Linear groups containing a singer cycle, J. Algebra 62 (1980), 232-234.
- 3. R. H. DYE, A maximal subgroup of $PSp_{6}(2^{m})$ related to a spread, J. Algebra 84 (1983). 128-135.
- R. H. DYE, Maximal subgroups of symplectic groups stabilizing spreads, J. Algebra 87 (1984), 493-509.
- R. H. DYE, Maximal subgroups of PSp_{6n}(q) stabilizing spreads of totally isotropic planes, J. Algebra 99 (1986), 191–209.